
On the solution of the photometric stereo
problem with unknown lighting

A. Concas, C. Fenu, G. Rodriguez

Department of Mathematics and Computer Science
University of Cagliari, Italy

Mathematical Methods for Objects Reconstruction:
from 3D Vision to 3D Printing

INdAM, “Rome”, February 10–12, 2021

G. Rodriguez Photometric stereo with unknown lighting



Shape from shading

A typical problem in Computer Vision consists of reconstructing
the 3D shape of an object, starting from a set of pictures.

Photometric stereo: the camera and the object are at fixed
positions, pictures correspond to different lighting conditions.
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Input & Output
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PS in Archaeology

Our research started during a project for documenting petroglyphs
found in neolithic tombs called Domus de Janas in Sardinia.

Motivation: obtaining 3D reproductions of rock art or artifacts.
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The mathematical model: Lambert’s cosine law

n(x,y)

u(x,y)

l

The reflectance at each point is proportional to the cosine of the
angle between the normal vector n(x , y) and the light direction `.

ρ(x , y) · 〈n(x , y), `〉 = I(x , y)

ρ(x , y) is the albedo (depends upon material, paint, etc.)

for the normal vector, ‖n(x , y)‖ = 1

‖`‖ is proportional to the light intensity

the surface is represented by z = u(x , y)

I(x , y) is the observed radiant intensity (prop. to pixel value)
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Experimental setting

In the following we will assume that
1 the object is at the origin of a reference system in R3;
2 the camera is on the z-axis, aiming at the origin;
3 q pictures are available, with light sources at `t , t = 1, . . . , q;
4 each digital picture mt has resolution r × s, with p = rs pixels;
5 the pictures are vectorized (pixels in lexicographic order).
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Physical assumptions:

the surface is Lambertian;

there are no self-obstructions, light reflections, or shades;

the light sources are placed at ∞ distance;

the camera is sufficiently far from the object to avoid
perspective distortions.

None of these assumptions is perfectly met in practice.
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There are two main solution approaches

Hamilton–Jacobi formulation (q ≥ 2)

ρ(x , y)
〈−∇u(x , y), ˜̀t〉+ `3t√

1 + ‖∇u(x , y)‖2
= It(x , y), t = 1, . . . , q,

[Kozera, Appl. Math. Comput. 1991], [Mecca, Falcone, SIIMS 2013].

Poisson formulation (q ≥ 3)

1 Determine (discrete) normal vector field nk , k = 1, . . . , p.

2 Approximate the divergence of the normal field and solve

∆u(x , y) = f (x , y).

For both: Ω is a rectangle, Dirichlet b.c., q lights are known.
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Poisson formulation & unknown lighting

In the H–J model the operator to be inverted depends upon the
data: the matrix of the discretized problem may be singular or
severely ill-conditioned in certain lighting conditions.

On the contrary, in the Poisson approach only the RHS depends on
the data.

Advantage: the computation is decoupled into two simpler
problems, allowing for the treatment of unknown lighting.

Drawbacks:

it requires a larger number of images (3);
to locate lights the SVD of a large dense matrix is needed.
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Determining the normal vectors with known lighting - 1

Lambert’s law: ρ(x , y) · 〈n(x , y), `t〉 = It(x , y), t = 1, . . . , q.

After discretizing the problem on a regular grid and ordering the
pixels lexicographically, we obtain the matrices

R = diag(ρ1, . . . , ρp) ∈ Rp×p, N = [n1, . . . ,np] ∈ R3×p,

L = [`1, . . . , `q] ∈ R3×q, M = [m1, . . . ,mq] ∈ Rp×q,

where

ρk = ρ(xk , yk), nk = n(xk , yk), k = 1, . . . , p,

`t , mt = vec(It(xk , yk)), t = 1, . . . , q.

Then, Lambert’s law can be written as

ρk n
T
k `t = mkt , i.e., R NTL = M.
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Determining the normal vectors with known lighting - 2

Lambert’s law: R NTL = M

When the light positions are known, we first compute

ÑT = ML†, where ÑT := R NT ,

and then determine the factorization NR = Ñ by normalizing the
columns of Ñ.

Since p (number of pixels) is usually very large, computing R and
N requires that q ≥ 3 and that the `t vectors are independent.

Finally, we solve the Poisson equation (with Dirichlet b.c.)

∆u(x , y) = f (x , y),

[Dess̀ı, Mannu, R, Tanda, Vanzi, DAACH 2015].
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Photometric stereo under unknown lighting

The need for accurate information about the relative position of
the lights and the object is a severe limitation of the method.

In practical PS, being able to obtain the lights position opens the
possibility of freehand lighting, removing the requirement for
accurate positioning of lamps, one of the most difficult issues.

[Hayakawa, J. Opt. Soc. Am. A 1994] proved that the lights position can
be determined if at least q = 6 images are available, under the usual
assumption of a Lambertian surface with lights at ∞ distance.
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Determining the lights position - 1

Let the “compact” SVD of the observation matrix be

M = UΣV T ,

with Σ = diag(σ1, . . . , σq), U ∈ Rp×q, and V ∈ Rq×q.

Since it is expected that rank(M) = 3, we set
W = [σ1u1, σ2u2, σ3u3]T and Z = [v1, v2, v3]T , so that

W TZ ' M.

This produces the best rank-3 approximation to the data matrix M
with respect to both the Euclidean and the Frobenius norms.

As 3 ≤ q � p, when p is very large, the SVD can be approximated
by a Lanczos approach [Baglama, Reichel, BIT 2013].
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Determining the lights position - 2

Theorem

The normal vectors and the lights position can be uniquely
determined from RNTL = M, up to a unitary transformation, only
if at least 6 images taken in different lighting conditions are
available.

Proof.
We start from the rank-3 factorization W TZ = M, with

W = [w1, . . . ,wp] and Z = [z1, . . . , zq].

Since ‖`t‖ = 1, we seek B such that ‖Bzt‖ = 1, t = 1, . . . , q.
This implies solving the system of equations

diag(ZTGZ ) = 1,

where G = BTB is symmetric positive definite.
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Determining the lights position - 2

diag(ZTGZ ) = 1 ⇒ zTt Gzt =
3∑

i ,j=1

zitzjtgij = 1,

for each t = 1, . . . , q, where gij (i ≤ j) are the entries of G .
The system can be rewritten as

Hg = 1,

where g = (g11, g22, g33, g12, g13, g23)T and H ∈ Rq×6 has rows[
z21t z22t z23t 2z1tz2t 2z1tz3t 2z2tz3t

]
, t = 1, . . . , q.

The (LS) solution vector g may be unique only if q ≥ 6.

Remark

The matrix B is obtained from G by Cholesky factorization.
Then, Ñ = B−TW , L = BZ .
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The solution is not unique!

Only the relative position of lights is determined.
[Belhumeur, Kriegman, Yuille, Int. J. Comput. Vis. 1999]

Given an admissible rank-3 factorization

ÑTL = M,

any matrix pair (QÑ,QL), with Q ∈ R3×3 unitary, is a solution as well.

The system object-camera-lights may result rotated in the
reconstruction, perhaps with axes inversions.

A suitable rotation is essential, if the object is represented by an
explicit function z = u(x , y). It can be determined if a suitable
shooting technique is adopted.
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A numerical experiment

synthetic data set (100× 100 pixels)
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A numerical experiment
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A numerical experiment
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A numerical experiment
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A numerical experiment
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A numerical experiment
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An experimental data set with “quasi-ideal” lighting

shell data set: 20 pictures (885× 705), sun light
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An experimental data set with “quasi-ideal” lighting
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An experimental data set with “quasi-ideal” lighting
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Working in unideal light conditions

Real light sources are often far from being ideal

1 they may be placed close to the surface (especially in narrow
locations, like caves or excavation sites)

2 they are differently attenuated at different points of the
object, according to distance

We must also keep into account the deformation caused by the
finite (often small) distance between the camera and the object,
though it might be corrected by camera calibration techniques.

How does the algorithm perform in this light conditions?
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The stela data set
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Ptolemaic stela (39 B.C.) from the Museo Egizio (Torino), 8 pictures
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The stela data set
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Synthetic data with lights at fixed distance

distance σ3/σ4 Elights Esurface

∞ 8.74e+14 1.40e-15 1.08e-03
1000 6.21e+03 4.62e-05 2.53e-03

100 6.21e+02 4.67e-04 2.33e-02
10 6.18e+01 5.20e-03 2.57e-01

1 5.21e+00 9.66e-02 1.25

computer generated images
unit for distance is object width

σ3/σ4 represents “closeness to rank 3”
errors are relative in the Frobenius norm
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How to deal with close lights?

An alternative to adopting a more complex mathematical model,
we are working on an approximation approach.

Numerical tests on small portions of a large object suggest that
when the lights cannot be moved away from the object,
accuracy can be improved by reducing the size of the domain.
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Solution: domain decomposition

the process can be applied to a subdomain
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Solution: domain decomposition

light rays are divergent for the whole domain,
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Solution: domain decomposition

light rays are divergent for the whole domain,
but they are almost parallel for a small sudomain
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Domain decomposition and parallelization

Decomposing the problem in subdomains may be useful at various
levels:

Parallelize the algorithm and optimize performance
(even with lights at ∞).

Reduce the distortion deriving from non-ideal conditions,
i.e., with lights at a finite distance.

Schwharz domain decomposition for PDE’s.

Localize lights at finite distance and resort to a different,
more complex, model.
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The computation cannot be fully parallelized
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The computation cannot be fully parallelized

If lights are at ∞, their direction
can be used as a reference for
determining a coherent rotation.

This cannot be done if lights are
at a finite distance, as they are
seen from different points of view.
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Computing the normals on the subdomains
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Computing the normals on the subdomains
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Computing the normals on the subdomains
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Computing the normals on the subdomains
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Determining the correct rotation

Let N1 = Nnorth
1,1 and N2 = Nsouth

1,2 denote the “north” and “south”
boundary normal vectors for the first two domains.

We seek a unitary matrix Q which solves the optimization problem

min
QTQ=I

‖N1 − QN2‖F .

The solution is obtained by computing the SVD

N2N
T
1 = UΣV T ,

and setting Q = VUT [Higham, book chapter 1989].

Computing Q is really not a problem as N2N
T
1 ∈ R3×3.
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Software and testing “under construction”

A Matlab suite for PS3D with unknown lighting has been
developed and it will be available soon.

We have a prototypal version of the domain decomposition
software, but it will take time to optimize it.

On small size synthetic datasets (104–105 pixels) we observed
a 15% reduction in the reconstruction error with 3× 3 and
a 30% reduction in the reconstruction error with 5× 5
subdomain grids.
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Finally, . . .

thank you for your attention!
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