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OVERVIEW
§ Learning inverse rendering without direct supervision

1. InverseRenderNet: Outdoor, scene level inverse rendering

§ Self-supervised by differentiable rendering

2. “Backwards rasterisation”: faces, using a 3D morphable model

§ Towards avoiding forward rendering
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SCENE LEVEL, OUTDOOR 
INVERSE RENDERING

§ Geometry
§ Surface normal?
§ Depth map?
§ Mesh?
§ Implicit surface?

§ Material properties
§ Diffuse albedo?
§ Specular params?

§ Illumination
§ Shadows
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BEYOND SUPERVISION
§ What if it’s very difficult (or impossible) to obtain training data 

and/or annotations?

§ What if the inverse problem we’re trying to learn is unsolved?

1. Use output of an existing algorithm

• But then just learning to replicate performance
2. Synthesise images with known ground truth

• Generalisation limited by diversity/realism of data
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SELF-SUPERVISION

CNNInput Normals, 
albedo, lighting

Differentiable 
Renderer Output

Inverse problem Forward simulation

Reconstruction
loss

I = A⊙ B(N)L



WILL SMITH

INVERSERENDERNET
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Y. Yu and W.A.P. Smith. InverseRenderNet: Learning single image inverse rendering. In Proc. CVPR, 2019.
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ILL-POSED PROBLEM: SHADED VERSUS PAINTED
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ILL-POSED PROBLEM: SHADED VERSUS PAINTED

We need more 
supervision!
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SHAPE-FROM-SHADING IN HUMANS
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NATURAL ILLUMINATION
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STATISTICAL ILLUMINATION MODEL
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(a) mean + 1st

(b) mean + 2nd

(c) mean - 3rd

(d) mean

(e) mean + 3rd

(f) mean - 2nd

(g) mean - 1st

Figure 3: Statistical illumination model. The central image
shows the mean illumination. The two diagonals and the
vertical show the first 3 principal components.

within this low dimensional space, not all possible illumina-
tion environments are natural. The space of natural illumi-
nation possesses statistical regularities [9]. We can use this
knowledge to constrain the space of possible illumination
and enforce a prior on the illumination parameters. To do
this, we build a statistical illumination model (see Fig. 3) us-
ing a dataset of 79 HDR spherical panoramic images taken
outdoors. For each environment, we compute the spheri-
cal harmonic coefficients, Li 2 R3⇥9. Since the overall
intensity scale is arbitrary, we also normalise each lighting
matrix to unit norm, kLikFro = 1, to avoid ambiguity with
the albedo scale. Our illumination model in (5) uses sur-
face normals in a viewer-centred coordinate system. So, the
dataset must be augmented to account for possible rotations
of the environment relative to the viewer. Since the rotation
around the vertical (v) axis is arbitrary, we rotate the light-
ing coefficients by angles between 0 and 2⇡ in increments
of ⇡/18. In addition, to account for camera pitch or roll,
we additionally augment with rotations about the u and w

axes in the range (�⇡/6, ⇡/6). This gives us a dataset of
139,356 environments. We then build a statistical model,
such that any illumination can be approximated as:

vec(L) = Pdiag(�1, . . . , �D)↵ + vec(L̄). (7)

where P 2 R27⇥D contains the principal components,
�

2
1 , . . . , �

2
D are the corresponding eigenvalues, L̄ 2 R3⇥9 is

the mean lighting coefficients and ↵ 2 RD is the paramet-
ric representation of L. We use D = 18 dimensions. Under

the assumption that the original data is Gaussian distributed
then the parameters are normally distributed: ↵ ⇠ N (0, I).
When we compute lighting, we do so within the subspace
of the statistical model. In addition, we introduce a prior
loss on the estimated lighting vector: `lighting = k↵k2.

5.3. Multiview stereo supervision
A pipeline comprising structure-from-motion followed

by multiview stereo (which we refer to simply as MVS) en-
ables both camera poses and dense 3D scene models to be
estimated from large, uncontrolled image sets. Of particular
importance to us, these pipelines are relatively insensitive to
illumination variation between images in the dataset since
they rely on matching local image features that are them-
selves illumination insensitive. We emphasise that MVS is
run offline prior to training and that at inference time our
network uses only single images of novel scenes. We use
the MVS output for three sources of supervision.

Cross-projection We use the MVS poses and depth maps
to establish correspondence between views, allowing us to
cross-project quantities between overlapping images. Given
an estimated depth map, w(x, y), in view i and camera ma-
trices for views i and j, a pixel (x, y) can be cross-projected
to location (x0

, y
0) in view j via:
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In practice, we perform the cross-projection in the re-
verse direction, computing non-integer pixel locations in the
source view for each pixel in the target view. We can then
use bilinear interpolation of the source image to compute
quantities for each pixel in the target image. Since the MVS
depth maps contain holes, any pixels that cross project to a
missing pixel are not assigned a value. Similarly, any target
pixels that project outside the image bounds of the source
are not assigned a value.

Direct normal map supervision The per-view depth
maps provided by MVS can be used to estimate normal
maps, albeit that they are typically coarse and incomplete
(see Fig. 1, column 5). We compute guide normal maps
from the depth maps and intrinsic camera parameters esti-
mated by MVS using (2). The guide normal maps are used
for direct supervision by computing a loss that measures the
angular difference between the guide, nguide, and estimated,
nest, surface normals: `NM = arccos(nguide · nest).

Albedo consistency loss Diffuse albedo is an intrinsic
quantity. Hence, we expect that albedo estimates of the
same scene point from two overlapping images should be
the same, even if the illumination varies between views.

5
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MULTIVIEW SUPERVISION



WILL SMITH MULTIVIEW SUPERVISION

Inputs Albedos
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projection

Depth map

f1, f2, [R | t]
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Cross-projection loss
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INVERSE RENDERING RESULTS

InverseRenderNet: Learning single image inverse rendering

Ye Yu and William A. P. Smith
Department of Computer Science, University of York, UK

{yy1571,william.smith}@york.ac.uk

Input Diffuse albedo Illumination NM prediction NM from MVS Frontal shading Shading
Figure 1: From a single image (col. 1), we estimate albedo and normal maps and illumination (col. 2-4); comparison multi-
view stereo result from several hundred images (col. 5); re-rendering of our shape with frontal/estimated lighting (col. 6-7).

Abstract

We show how to train a fully convolutional neural net-
work to perform inverse rendering from a single, uncon-
trolled image. The network takes an RGB image as input,
regresses albedo and normal maps from which we compute
lighting coefficients. Our network is trained using large un-
controlled image collections without ground truth. By in-
corporating a differentiable renderer, our network can learn
from self-supervision. Since the problem is ill-posed we
introduce additional supervision: 1. We learn a statistical
natural illumination prior, 2. Our key insight is to perform
offline multiview stereo (MVS) on images containing rich il-
lumination variation. From the MVS pose and depth maps,
we can cross project between overlapping views such that
Siamese training can be used to ensure consistent estima-
tion of photometric invariants. MVS depth also provides
direct coarse supervision for normal map estimation. We
believe this is the first attempt to use MVS supervision for
learning inverse rendering.

1. Introduction

Inverse rendering is the problem of estimating one or
more of illumination, reflectance properties and shape from
observed appearance (i.e. one or more images). In this pa-
per, we tackle the most challenging setting of this problem;
we seek to estimate all three quantities from only a sin-
gle, uncontrolled image. Specifically, we estimate a normal
map, diffuse albedo map and spherical harmonic lighting
coefficients. This subsumes two classical computer vision
problems: (uncalibrated) shape-from-shading and intrinsic
image decomposition.

Classical approaches [4,29] cast these problems in terms
of energy minimisation. Here, a data term measures the dif-
ference between the input image and the synthesised image
that arises from the estimated quantities. We approach the
problem as one of image to image translation and solve it
using a deep, fully convolutional neural network. However,
inverse rendering of uncontrolled, outdoor scenes is itself
an unsolved problem and so labels for supervised learning

1
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INVERSERENDERNET++4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2021
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Fig. 2: At inference time, our network regresses shadow, diffuse albedo and normal maps from a single, uncontrolled
image. These are used to infer shadow free and shading only images from which we compute least squares optimal
spherical harmonic lighting coefficients. At training time, we introduce self-supervision via an appearance loss computed
using a differentiable renderer and the estimated quantities.

local reflectance, and hence appearance, is determined by
surface orientation, i.e. the local surface normal direction.
So, to render a depth map for self-supervision, we would
need to compute the surface normal. From a perspective
depth map w(x, y), the surface normal direction in camera
coordinates is given by:

n̄ =

2

4
�fwx(x, y)
�fwy(x, y)

(x � cx)wx(x, y) + (y � cy)wy(x, y) + w(x, y)

3

5 (2)

from which the unit length normal is given by: n = n̄/kn̄k.
The derivatives of the depth map in the image plane,
wx(x, y) and wy(x, y), can be approximated by finite dif-
ferences. However, (2) requires knowledge of the intrin-
sic camera parameters. This would severely restrict the
applicability of our method. For this reason, we choose
to estimate a surface normal map directly. An additional
advantage of working in the surface normal domain is
that the normal map can capture high frequency shape
details without strictly satisfying integrability constraints.
This leads to higher quality image renderings.

Although the surface normal can be represented by a 3D
vector, since knk2 = 1 it has only two degrees of freedom.
So, our network estimates two quantities per-pixel: nx/nz

and ny/nz . Since nz > 0 for visible pixels we can compute
the surface normal from the estimated quantities as:

n =
[nx/nz, ny/nz, 1]T

k[nx/nz, ny/nz, 1]k . (3)

We assume that appearance can be approximated by
a local reflectance model under environment illumination,
modulated by a scalar shadowing/ambient occlusion term.
Specifically we use a Lambertian diffuse model with order
2 spherical harmonic lighting.

Alone, this cannot model phenomena such as cast shad-
ows, spatially varying illumination and specularities. In
[11], this results in these phenomena being baked into one
or both of the albedo and normal maps. Of these phenom-
ena, the most severe are cast shadows. We introduce an
additional term that acts multiplicatively on the appearance
predicted by the local spherical harmonics model. Without
appropriate constraint, the introduction of this additional
channel could lead to trivial solutions. Hence, we constrain
it in two ways. First, we restrict it to the range [0, 1] so that
it can only downscale appearance. Second, it is a scalar
quantity acting equally on all colour channels. Together,
these restrictions encourage this channel to explain cast
shadows and we refer to it as a shadow map. However, note
that we do not expect it to be a physically valid shadow map
nor that it contains only shadows.

Under this model, RGB intensity can be computed as

i(x, y) =

2

4
ir(x, y)
ig(x, y)
ib(x, y)

3

5 = ↵(x, y) � s(x, y)B(n(x, y))l, (4)

where � is the Hadamard (element-wise) product,
l 2 R27 contains the order 2, colour spherical
harmonic colour illumination coefficients, ↵(x, y) =
[↵r(x, y), ↵g(x, y), ↵b(x, y)]T is the colour diffuse albedo,
s(x, y) 2 [0, 1] is the shadowing weight and the order 2
basis B(n) 2 R3⇥27 is given by B(n) = I3 ⌦ b(n) where ⌦
is the Kronecker product and

b(n) = [1, nx, ny, nz, 3n
2
z � 1, nxny, nxnz, nynz, n

2
x � n2

y]. (5)

This appearance model neglects high frequency illumina-
tion effects and interreflections. However, we found that in
practice this model works well for typical outdoor scenes.

Y. Yu and W.A.P. Smith, Outdoor inverse rendering from a single 
image using multiview self-supervision, IEEE T-PAMI, to appear.
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SHADOW ESTIMATION
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Input Diffuse albedo Normal Map Shadow Map Shadow free

Figure 3: Inverse rendering with shadow prediction. Rows 1 and
3: proposed variant, rows 2 and 4: original InverseRenderNet [45].

The input to the neural rendering network is constructed
from the outputs of InverseRenderNet (see Figure. 2). The
albedo and normals are taken as direct inputs from the out-
put of InverseRendernet, because they are scene invariants.
Additional inputs of a shading map and a shadow map consis-
tent with the target illumination are constructed. The shading
channel is obtained using the Lambertian spherical harmonic
lighting model under the desired lighting with the estimated
normal map. The shadow map for a given novel lighting
condition is predicted using a separate shadow prediction
network described in Section 5.2.

We concatenate the albedo prediction (3 channels), nor-
mal prediction (3 channels), shading (3 channels), shadow
map (1 channel) and sky segmentation (1 channel) into an
11 dimensional tensor. In addition to this tensor, we com-
pute another 3-channel residual map that contains the lost
fine-scale details from original image after inverse rendering
decomposition. The residual map is computed by subtracting
Lambertian rendering composed by inverse rendering results
from original input image. We then stack this residual map
at the end of concatenated 11 dimensional tensor and feed it
to the neural rendering network.

5.1. Losses

We use three classes of loss function in order to train
the neural renderer. First, an adversarial loss ensures the
realism of the generated images. Second, direct supervision
is provided in the form of self-reconstruction and cross-
projection rendering losses to ensure the images are accurate
predictions of the scene appearance under desired lighting
conditions. Third, this direct supervision is aided by a cycle
consistency loss that uses InverseRenderNet to consistent
decompositions of original and rendered images.

Adversarial loss For our adversarial loss we use the mul-
tiscale LSGAN [17] architecture. Real instances are simply
real images with the sky masked out. Fake images are the
neural renderings, again with all pixels in the sky region set
to black.

Direct supervision Our training set provides real example
images under a variety of illumination conditions. We can ex-
ploit these for direct supervision. When the chosen lighting
condition for relighting is the same as the original image, we
expect the neural rendering to exactly match the original im-
age. We refer to this as self-reconstruction loss. In practice,
this is computed as a sum of the VGG perceptual loss [34]
(difference in VGG features from the first two layers) and L2
distance in LAB colour space. However, self-reconstruction
loss does not penalise baked-in effects. To overcome this,
we use multiview supervision. A mini-batch consists of a set
of overlapping images with different illumination and which
can be cross projected from one view to another using the
multi-view stereo (MVS) reconstructed geometry and cam-
era parameters. We use this for additional direct supervision.
Within a mini-batch, we shuffle the lighting estimates from
InverseRenderNet so that we relight the albedo and normal
predictions from one view with the lighting from another.
We rotate the spherical harmonic lighting to account for the
relative pose between views. Supervision is provided by
comparing the neural rendering against the cross projection
of the view from which the lighting was taken, again mea-
sured in terms of VGG perceptual loss and L2 distance in
LAB space. However, errors in the MVS geometry and cam-
era poses cause slight misalignments in the cross projected
images. We found that applying this loss at full resolution
led to a blurry output. For this reason, before computing the
cross projection loss, we downscale both the cross projected
and rendered images by a factor of 4.
Cycle consistency We found that direct supervision and
adversarial loss alone are insufficient for good performance
and smooth relighting under smooth illumination parameter
changes. This is partly due to the fact that cross projected
images are incomplete and can be quite sparse when the
view change is large. Therefore, to improve stability we
propose to also include a cycle consistency loss. Here, we
use the InverseRenderNet trained as described in Section 4
and measure the consistency between the input maps to the
neural renderer and those obtained by decomposing the neu-
ral rendered image. Specifically, we penalise the difference
in the albedo, normal, lighting and shadow maps. Lighting
consistency is measured by the sum of VGG feature loss and
L2 difference between the Lambertian shading maps. Nor-
mal map consistency is measured by the mean angular error
between original and estimated normal maps. For albedo
consistency, we weight the error by the shading map. The
idea is that albedo estimates in darkly shaded regions are
unlikely to be accurate and we do not wish to overempha-
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Input Diffuse albedo Shadow Normal map Illumination Frontal shading Shading

Fig. 1: Sample output from our inverse rendering network. From a single image (col. 1), we estimate albedo, shadow and
normal maps and illumination (col. 2-5); re-rendering of our shape with (col. 6) frontal, white point source and with (col. 7)
estimated spherical harmonic lighting.

ground truth does not exist, such approaches must either
train on synthetic data (in which case generalisation to the
real world is not guaranteed) or generate pseudo ground
truth using an existing method (in which case the network
is just learning to replicate the performance of the existing
method). Inverse rendering of outdoor, complex scenes is
itself an unsolved problem and so reliable ground truth is
not available and supervised learning cannot be used. In this
context, we make the following contributions. To the best of
our knowledge, we are the first to exploit MVS supervision
for learning inverse rendering. Second, we are the first to
tackle the most general version of the problem, considering
arbitrary outdoor scenes and learning from real data, as
opposed to restricting to a single object class [9] or using
synthetic training data [10]. Third, we introduce a statistical
model of spherical harmonic lighting in natural scenes that
we use as a prior. Finally, the resulting network is the first
to inverse render all of shape, reflectance and lighting in the
wild, outdoors.

An earlier version of the work in this paper was origi-
nally presented in [11]. Here, we have extended the method
in a number of ways. First, we additionally estimate a
shadow map, avoiding cast shadows from being baked
into the albedo map. Second, we improve the labels used
for direct normal map supervision by explicitly detecting
ground plane pixels (which have unreliable MVS depth
estimates) and replacing them with an estimated ground
plane normal direction. Third, we reformulate the least
squares solution for lighting parameters to avoid numerical
instability. Fourth, we introduce a new source of training

data by exploiting geometry and reflectance invariants in
fixed position time-lapse video. Fifth, we also make changes
to the architecture, use perceptual instead of mean squared
error losses and use high resolution cross projections to
avoid blurring the supervision signal. Taken together, these
extensions improve performance and mean that we avoid
the need to use generic priors such as smoothness as used
in [11]. Finally, we provide a more thorough evaluation of
our method.

2 RELATED WORK

Classical approaches Classical methods estimate in-
trinsic properties by fitting photometric or geometric
models using optimisation. Most methods require mul-
tiple images. From multiview images, a structure-from-
motion/multiview stereo pipeline enables recovery of dense
mesh models [5], [12] though illumination effects are baked
into the texture. From images with fixed viewpoint but vary-
ing illumination, photometric stereo can be applied. More
sophisticated variants consider statistical BRDF models [13],
the use of outdoor time-lapse images [2] and spatially-
varying BRDFs [14]. Attempts to combine geometric and
photometric methods are limited. Haber et al. [15] assume
known geometry (which can be provided by MVS) and
inverse render reflectance and lighting from community
photo collections. Kim et al. [16] represents the state-of-the-
art and again use an MVS initialisation for joint optimisa-
tion of geometry, illumination and albedo. Some methods
consider a single image setting. Jeson et al. [17] introduce
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WHAT DOES IT ACTUALLY LEARN?

§ Shape-from-…?

§ Shading?

§ Texture?

§ Shadows?

§ Ambient occlusion?
§ …

§ Semantics?

§ General principles of shape-from-X?
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Input GT Normal Estimated Normal

Fig. 12: Qualitative results for surface normal prediction
on DIODE dataset [65]. Left to right: input, ground truth
normal map, estimated normal map.

(a) (b)

(c) (d)

Fig. 13: Shape estimation results on the plates shading
illusion. For four orientations of the image (a-d) we show the
input image and the estimated normal map with estimated
lighting inset.

if it has been added afterwards. In this case, our network
does not seem to have learnt such a strong convexity prior
and correctly reconstructs the S-shaped profile. This can
partly be explained by the fact that our network is forced
to reconstruct a single, global illumination condition which
differs from the human interpretation of this scene.

In Fig. 15 we show two example results on Trompe-

Fig. 14: Shape estimation result on the turbine blade illusion
[69].

Fig. 15: Shape estimation in the presence of Trompe-l’œil
and mirror illusions.

l’œil illusions and one for a mirror illusion. Trompe-l’œil
use albedo variations (i.e. painted surface texture) to de-
pict 3D scenes, giving the illusion of additional geometric
variation. A mirror illusion is similar except that the albedo
variation is a reflection of another part of the real scene.
In all examples, the shape reconstruction is fooled by the
illusion. In the example in the first column, both the sky
segmentation network and our inverse rendering network
are fooled. The shape of the painted windows, doors and
fountain as well as the false building corners are recovered.
For the reflection illusion in the third column, the shape of
the reflected scene is reconstructed. This is not surprising
since we do not model reflections and the MVS supervision
would not correctly deal with reflective surfaces.

There are many promising ways in which this work
can be extended. First, our modelling assumptions could
be relaxed, for example using more general reflectance
models and estimating global illumination effects. Second,
our network could be combined with a depth prediction
network. Either the two networks could be applied inde-
pendently and then the depth and normal maps merged
[70], or a unified network could be trained in which
the normals computed from the depth map are used to
compute the losses we use in this paper. Third, our net-
work could benefit from losses used in training intrinsic
image decomposition networks [38]. Fourth, our lighting
prior could be extended to better handle indoor scenes.
Finally, our fixed reflectance and illumination model could
be made partially learnable in order to be able to bet-
ter explain real world appearance [55]. Our code, trained
model and inverse rendering benchmark data is available at
https://github.com/YeeU/InverseRenderNet.
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APPLICATION: RELIGHTING
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Figure 6: Inverse Rendering Results.

Reflectances Normals
Methods MSE LMSE DSSIM Mean Median

Li et al. [34] - - - 50.6 50.4
Godard et al. [16] - - - 79.2 79.6

Nestmeyer et al. [38] 0.0204 0.0735 0.241 - -
Li et al. [33] 0.0171 0.0637 0.208 - -
SIRFS [4] 0.0383 0.222 0.270 50.6 48.5

Ours 0.0170 0.0718 0.201 37.7 34.8

Table 2: Quantitative inverse rendering results. Reflectance
(albedo) errors are measured against multiview inverse ren-
dering result [26] and normals against MVS results.

Input Relit 1 Relit 2

Figure 7: Relighting results from predicted albedo and nor-
mal maps (see Fig. 1, row 3). The novel lighting is shown
in the upper left corner.

commonly used for evaluating albedo predictions. To eval-
uate normal predictions, we use angular errors. The cor-
rectness of illumination predictions could be inferred by the
other two, so we do not perform explicit evaluations on it.
The quantitative evaluations are shown in Tab. 2. For depth
prediction methods, we first compute the optimal scaling
onto the ground truth geometry, then differentiate to com-
pute surface normals. These methods can only be evaluated
on normal prediction. Intrinsic image methods can only be
evaluated on albedo prediction. We can see that our net-
work performs best in normal prediction and also the best in
MSE and DSSIM. Qualitative example results can be seen
in Fig. 6.

Relighting Finally, as an example application we show
that our inverse rendering result is sufficiently stable for re-
alistic relighting. A scene from Fig. 1 is relit in Fig. 7 with
two novel illuminations. Both show realistic shading and
overall colour balance.

8. Conclusions
We have shown for the first time that the task of in-

verse rendering can be learnt from real world images in un-
controlled conditions. Our results show that “shape-from-
shading” in the wild is possible and are far superior to clas-
sical methods. It is interesting to ponder how this feat is
achieved. We believe the reason this is possible is because
of the large range of cues that the deep network can ex-
ploit, for example shading, texture, ambient occlusion, per-
haps even high level semantic concepts learnt from the di-
verse data. For example, once a region is recognised as a
“window”, the possible shape and configuration is much re-
stricted. Recognising a scene as a man-made building sug-
gests the presence of many parallel and orthogonal planes.
These sort of cues would be extremely difficult to exploit in
hand-crafted solutions.

There are many promising ways in which this work can
be extended. First, our modelling assumptions could be re-
laxed, for example using more general reflectance models
and estimating global illumination effects such as shadow-
ing. Second, our network could be combined with a depth
prediction network. Either the two networks could be ap-
plied independently and then the depth and normal maps
merged, or a unified network could be trained in which the
normals computed from the depth map are used to compute
the losses we use in this paper. Third, our network could
benefit from losses used in training intrinsic image decom-
position networks. For example, if we added the timelapse
dataset of [33] to our training, we could incorporate their
reflectance consistency loss to improve our albedo map es-
timates. Our code, trained model and inverse rendering
benchmark data is available at <URL removed for review>.
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Figure 1: We present a novel self-supervised technique to photorealistically relight an outdoor scene from a single image to any given target
illumination condition. Our method is able to generate plausible shading, shadows, color-cast and sky region in the relit output image, while
preserving the high-frequency details of the underlying scene reflectance.

Abstract

Outdoor scene relighting is a challenging problem that
requires good understanding of the scene geometry, illu-
mination and albedo. Current techniques are completely
supervised, requiring high quality synthetic renderings to
train a solution. Such renderings are synthesized using pri-
ors learned from limited data. In contrast, we propose a
self-supervised approach for relighting. Our approach is
trained only on corpora of images collected from the internet
without any user-supervision. This virtually endless source
of training data allows training a general relighting solution.
Our approach first decomposes an image into its albedo, ge-
ometry and illumination. A novel relighting is then produced
by modifying the illumination parameters. Our solution cap-
ture shadow using a dedicated shadow prediction map, and
does not rely on accurate geometry estimation. We evalu-
ate our technique subjectively and objectively using a new
dataset with ground-truth relighting. Results show the ability
of our technique to produce photo-realistic and physically
plausible results, that generalizes to unseen scenes.

1. Introduction

Virtual relighting of real world outdoor scenes is an im-
portant problem that has wide applications. Performing such
a relighting task involves correctly estimating and editing

the various scene components – geometry, reflectance and
the direct and indirect lighting effects. Measuring these high-
dimensional parameters traditionally required the use of in-
struments such as LIDAR scanners and gonio-reflectometers
and extensive manual effort [37, 39]. This problem has been
simplified by using only a small number of 2D images of a
scene in a process known as image based rendering (IBR),
but this leads to far fewer constraints on the unknown vari-
ables and runs into the problem of ill-posedness.

Multi-view and multi-illumination constraints have
proved to be effective in solving this problem [11, 4, 27, 45].
2D images of a scene from different viewpoints and un-
der different lighting conditions provide the necessary con-
straints to reconstruct the geometry of the scene and dis-
ambiguate the lighting from the reflectance. For example,
the method of Laffont et al. [11], along with multi-view 3D
reconstruction, also uses manual interactions to perform an
intrinsic decomposition of the scene images into reflectance
and shading layers. By reprojecting the reflectance layer
from one viewpoint to another and recombining with the
original shading image, lighting conditions of one image
of a scene can be transferred to another. While this tech-
nique is effective, it is limited in its relighting capability
because it cannot relight the scene under an arbitrary light-
ing condition of choice. The method of Duchene et al. [4]
also performs a similar intrinsic decomposition of multi-
view images, and additionally estimate the shadows and the

1
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Figure 1: We present a novel self-supervised technique to photorealistically relight an outdoor scene from a single image to any given target
illumination condition. Our method is able to generate plausible shading, shadows, color-cast and sky region in the relit output image, while
preserving the high-frequency details of the underlying scene reflectance.

Abstract

Outdoor scene relighting is a challenging problem that
requires good understanding of the scene geometry, illu-
mination and albedo. Current techniques are completely
supervised, requiring high quality synthetic renderings to
train a solution. Such renderings are synthesized using pri-
ors learned from limited data. In contrast, we propose a
self-supervised approach for relighting. Our approach is
trained only on corpora of images collected from the internet
without any user-supervision. This virtually endless source
of training data allows training a general relighting solution.
Our approach first decomposes an image into its albedo, ge-
ometry and illumination. A novel relighting is then produced
by modifying the illumination parameters. Our solution cap-
ture shadow using a dedicated shadow prediction map, and
does not rely on accurate geometry estimation. We evalu-
ate our technique subjectively and objectively using a new
dataset with ground-truth relighting. Results show the ability
of our technique to produce photo-realistic and physically
plausible results, that generalizes to unseen scenes.

1. Introduction

Virtual relighting of real world outdoor scenes is an im-
portant problem that has wide applications. Performing such
a relighting task involves correctly estimating and editing

the various scene components – geometry, reflectance and
the direct and indirect lighting effects. Measuring these high-
dimensional parameters traditionally required the use of in-
struments such as LIDAR scanners and gonio-reflectometers
and extensive manual effort [37, 39]. This problem has been
simplified by using only a small number of 2D images of a
scene in a process known as image based rendering (IBR),
but this leads to far fewer constraints on the unknown vari-
ables and runs into the problem of ill-posedness.

Multi-view and multi-illumination constraints have
proved to be effective in solving this problem [11, 4, 27, 45].
2D images of a scene from different viewpoints and un-
der different lighting conditions provide the necessary con-
straints to reconstruct the geometry of the scene and dis-
ambiguate the lighting from the reflectance. For example,
the method of Laffont et al. [11], along with multi-view 3D
reconstruction, also uses manual interactions to perform an
intrinsic decomposition of the scene images into reflectance
and shading layers. By reprojecting the reflectance layer
from one viewpoint to another and recombining with the
original shading image, lighting conditions of one image
of a scene can be transferred to another. While this tech-
nique is effective, it is limited in its relighting capability
because it cannot relight the scene under an arbitrary light-
ing condition of choice. The method of Duchene et al. [4]
also performs a similar intrinsic decomposition of multi-
view images, and additionally estimate the shadows and the
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Figure 1: We present a novel self-supervised technique to photorealistically relight an outdoor scene from a single image to any given target
illumination condition. Our method is able to generate plausible shading, shadows, color-cast and sky region in the relit output image, while
preserving the high-frequency details of the underlying scene reflectance.

Abstract

Outdoor scene relighting is a challenging problem that
requires good understanding of the scene geometry, illu-
mination and albedo. Current techniques are completely
supervised, requiring high quality synthetic renderings to
train a solution. Such renderings are synthesized using pri-
ors learned from limited data. In contrast, we propose a
self-supervised approach for relighting. Our approach is
trained only on corpora of images collected from the internet
without any user-supervision. This virtually endless source
of training data allows training a general relighting solution.
Our approach first decomposes an image into its albedo, ge-
ometry and illumination. A novel relighting is then produced
by modifying the illumination parameters. Our solution cap-
ture shadow using a dedicated shadow prediction map, and
does not rely on accurate geometry estimation. We evalu-
ate our technique subjectively and objectively using a new
dataset with ground-truth relighting. Results show the ability
of our technique to produce photo-realistic and physically
plausible results, that generalizes to unseen scenes.

1. Introduction

Virtual relighting of real world outdoor scenes is an im-
portant problem that has wide applications. Performing such
a relighting task involves correctly estimating and editing

the various scene components – geometry, reflectance and
the direct and indirect lighting effects. Measuring these high-
dimensional parameters traditionally required the use of in-
struments such as LIDAR scanners and gonio-reflectometers
and extensive manual effort [37, 39]. This problem has been
simplified by using only a small number of 2D images of a
scene in a process known as image based rendering (IBR),
but this leads to far fewer constraints on the unknown vari-
ables and runs into the problem of ill-posedness.

Multi-view and multi-illumination constraints have
proved to be effective in solving this problem [11, 4, 27, 45].
2D images of a scene from different viewpoints and un-
der different lighting conditions provide the necessary con-
straints to reconstruct the geometry of the scene and dis-
ambiguate the lighting from the reflectance. For example,
the method of Laffont et al. [11], along with multi-view 3D
reconstruction, also uses manual interactions to perform an
intrinsic decomposition of the scene images into reflectance
and shading layers. By reprojecting the reflectance layer
from one viewpoint to another and recombining with the
original shading image, lighting conditions of one image
of a scene can be transferred to another. While this tech-
nique is effective, it is limited in its relighting capability
because it cannot relight the scene under an arbitrary light-
ing condition of choice. The method of Duchene et al. [4]
also performs a similar intrinsic decomposition of multi-
view images, and additionally estimate the shadows and the
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MERGING WITH MONODEPTHDepth estimation meets inverse rendering for single image novel view synthesis CVMP 2019, Dec. 17–18, London, UK
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Figure 2: Overview of our proposed process for merging depth predictions and inverse rendering results for novel view syn-
thesis.

geometry that can be re-lit using the albedo estimated by the inverse
rendering network. In the remainder of the paper, we begin by
introducing necessary notation, review the depth estimation and
inverse rendering networks, describe the merging process and then
present our results.

4 PERSPECTIVE GEOMETRY
We begin by introducing required notations and concepts from sin-
gle view perspective geometry. We work in the coordinate system
of the camera and parameterise the scene by the unknown depth
function Z (u), where u = (x ,�) is a location in the image. The 3D
coordinate at u is given by:

P(u) =
2666664

x�x0
f Z (u)

���0
f Z (u)
Z (u)

3777775
, (1)

where f is the focal length of the camera and (x0,�0) is the principal
point.

The tangent vectors to the surface are given by:

@P(u)
@x

=

26666664

� 1
f

⇣
(x � x0) @Z (u)@x + Z (u)

⌘
� 1
f (� � �0) @Z (u)@x

@Z (u)
@x

37777775
, (2)

@P(u)
@�

=

26666664

� 1
f (x � x0) @Z (u)@�

� 1
f

⇣
(� � �0) @Z (u)@� + Z (u)

⌘
@Z (u)
@�

37777775
. (3)

Note that these tangent vectors are linear functions of the surface
depth.

The direction of the outward pointing surface normal is de�ned
as the cross product of the tangent vectors, themselves the partial

Input Depth Input Depth

Figure 3: Sample output from MegaDepth [Li and Snavely
2018c]. Dark is closer to viewer.

derivatives of the position function:

n(u) = @P(u)
@x

⇥ @P(u)
@�

=

k

26666664

�f @Z (u)
@x

�f @Z (u)
@�

(x � x0) @Z (u)@x + (� � �0) @Z (u)@� + Z (u)

37777775
, (4)

where k is an arbitrary scale factor. Note that the magnitude of the
surface normal vector is not important, only its direction. Also note
that linearly scaling the depth function does not change the direc-
tion of the surface normal vector.We denote by n̄(u) = n(u)/kn(u)k,
the unit length surface normal.

5 SINGLE IMAGE DEPTH ESTIMATION
The goal of single image depth estimation is to compute a depth
value, Z (u), for each pixel in the image, collectively known as a
depth map. Note that from (1), this cannot be transformed into
positions in world units without knowing camera calibration infor-
mation. In low accuracy applications, the principal point is usually
assumed to be the centre of the image and we make this assumption.
The focal length however is typically unknown. However, often a
good estimate can be made from image metadata and a database of
sensor sizes. We take this approach allowing us to assume the focal
length is known. However, estimating absolute depth from amonoc-
ular image is highly ambiguous. For this reason, depth prediction
networks usually estimate depth only up to an unknown global

Y. Yu and W.A.P. Smith. Depth estimation meets inverse rendering for single image novel view synthesis. In Proc. CVMP, 2019.

Z. Li and N. Snavely. MegaDepth: Learning Single-View Depth Prediction from Internet Photos. In Proc. CVPR, 2018.

D. Nehab, S. Rusinkiewicz, J. Davis and R. Ramamoorthi. Efficiently combining positions and normals for precise 3D geometry. 
ACM TOG, 2005.
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Figure 5: Results of applying our method to images from the MegaDepth dataset [Li and Snavely 2018c]. Col. 1: input image.
Col. 2 and 3: albedo and surface normal maps estimated by InverseRenderNet [Yu and Smith 2019]. Col. 4: rendering of the
geometry provided by the depth prediction network. Col. 5: re�ned geometry after merging with the surface normals. Col. 6
and 7: novel views under two di�erent lighting conditions.
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Figure 5: Results of applying our method to images from the MegaDepth dataset [Li and Snavely 2018c]. Col. 1: input image.
Col. 2 and 3: albedo and surface normal maps estimated by InverseRenderNet [Yu and Smith 2019]. Col. 4: rendering of the
geometry provided by the depth prediction network. Col. 5: re�ned geometry after merging with the surface normals. Col. 6
and 7: novel views under two di�erent lighting conditions.
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CLASS SPECIFIC METHODS

Figure 1. Our deep model-based face autoencoder enables unsupervised end-to-end learning of semantic parameters, such as pose, shape,
expression, skin reflectance and illumination. An optional landmark-based surrogate loss enables faster convergence and improved
reconstruction results, see Sec. 6. Both scenarios require no supervision of the semantic parameters during training.

Here, the average face shape As has been computed based
on 200 (100 male, 100 female) high-quality face scans [3].
The linear PCA bases Es 2 R3N⇥80 and Ee 2 R3N⇥64

encode the modes with the highest shape and expression
variation, respectively. We obtain the expression basis by
applying PCA to the combined set of blendshapes of [1] and
[6], which have been re-targeted to the face topology of [3]
using deformation transfer [49]. The PCA basis covers more
than 99% of the variance of the original blendshapes.

In addition to facial geometry, we also parameterize per-
vertex skin reflectance R = {ri 2 R3|1  i  N} based
on an affine parametric model:

R = R̂(�) = Ar +Er� . (3)

Here, the average skin reflectance Ar has been computed
based on [3] and the orthogonal PCA basis Er 2 R3N⇥80

captures the modes of highest variation. Note, all basis
vectors are already scaled with the appropriate standard de-
viations �•

k such that ET
• E• = diag(· · · , [�•

k]
2
, · · · ).

5. Parametric Model-based Decoder

Given a scene description in the form of a semantic code
vector x, our parametric decoder generates a realistic syn-
thetic image of the corresponding face. Since our image
formation model is fully analytical and differentiable, we
also implement an efficient backward pass that inverts im-
age formation via standard backpropagation. This enables
unsupervised end-to-end training of our network. In the
following, we describe the used image formation model.

Perspective Camera We render realistic facial imagery
using a pinhole camera model under a full perspective pro-
jection ⇧ : R3 ! R2 that maps from camera space to screen
space. The position and orientation of the camera in world
space is given by a rigid transformation, which we parameter-
ize based on a rotation T 2 SO(3) and a global translation
t 2 R3. Hence, the functions �T,t(v) = T�1(v � t) and

⇧ � �T,t(v) map an arbitrary point v from world to camera
space and further to screen space.

Illumination Model We represent scene illumination us-
ing Spherical Harmonics (SH) [34]. Here, we assume distant
low-frequency illumination and a purely Lambertian surface
reflectance. Thus, we evaluate the radiosity at vertex vi with
surface normal ni and skin reflectance ri as follows:

C(ri,ni,�) = ri ·
B2X

b=1

�bHb(ni) . (4)

The Hb : R3 ! R are SH basis functions and the B
2 = 9

coefficients �b 2 R3 (B = 3 bands) parameterize colored
illumination using the red, green and blue channel.

Image Formation We render realistic images of the scene
using the presented camera and illumination model. To this
end, in the forward pass F , we compute the screen space
position ui(x) and associated pixel color ci(x) for each
vertex vi:

Fi(x) = [ui(x), ci(x)]
T 2 R5

, (5)

ui(x) = ⇧ � �T,t

�
V̂i(↵, �)

�
,

ci(x) = C
�
R̂i(�),Tni(↵, �),�

�
.

Here, Tni transforms the world space normals to camera
space and � models illumination in camera space.

Backpropagation To enable training, we implement a
backward pass that inverts image formation:

Bi(x) =
dFi(x)

d(↵, �, �, T, t, �)
2 R5⇥257

. (6)

This requires the computation of the gradients of the image
formation model (see Eq. 5) with respect to the face and
scene parameters. For high efficiency during training, we
evaluate the gradients in a data-parallel manner, see Sec. 7.

BFM 2019
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BFM 2019
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A. Tewari et al. MoFA: Model-based Deep Convolutional Face Autoencoder 
for Unsupervised Monocular Reconstruction. In Proc. ICCV, 2017.

Problem: rasterising a mesh is 
not differentiable
Changes in triangle visibility or 
rasterisation have zero gradient
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DISCONTINUITIES IN RENDERING

Rasterisation Visibility
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BACKWARDS RASTERISATION

Rasterisation = Given a mesh…
§ For every pixel, find closest mesh triangle that covers the pixel
§ Having established correspondence from mesh model to image, 

compute a colour from other rasterised quantities (depth, normal, 
albedo etc)

Backwards Rasterisation = Given an image…
§ Predict the buffers that would have arisen from rasterising the model
§ Solve optimisation to find model consistent with predicted buffers
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BACKWARDS RASTERISATION

Z-buffer

Face buffer

Normal buffer

Albedo buffer

Solve 
optimisation 

problem

…
Goodness of fit becomes 
the learning signal
Solution must be 
differentiable
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Supplementary material

In this supplementary document, we provide additional details regarding our
choice of 3D morphable model, implementation details and additional experi-
mental results.

A Morphable model details

We employ the Basel Face Model 2017 [12] as a representation of a face, which
has Ns = 199, Ne = 100, and Nr = 199 dimensions for facial identity shape,
facial expression shape, and skin albedo respectively. We scale basis s

i

j
and a

i

j

so that the standard deviation of ↵i and �i is 1.
Since our di↵erentiable linear least squares layer samples the 3DMM mean

and basis for each pixel based on predicted correspondence, we flatten the 3DMM
to a 2D parameterisation beforehand. Specifically, we generate a Tutte embed-
ding [10] for each component of the 3DMM. We force the boundary of the em-
bedding to be square. We refer to the flattened 3DMM as UV-3DMM and its
domain of definition as UV-space. To fill a hole inside the mouth of the Basel
Face Model 2017, we introduce an auxiliary vertex inside the hole and connect
it with the boundary vertices of the mouth. We set the mean value of mouth
boundary vertices for each component of the auxiliary vertex. The resolution of
precomputed UV-3DMM is 320⇥320 pixels. In our linear least squares layer, we
process 3DMM and input data as described in Figure 10.

B Stochastic Sampling

Solving a linear system over all pixels for all images in a minibatch within the net-
work during training is prohibitively computationally expensive. For this reason,

Geometry
Least Square

3DMM UV 3DMM

Correspondence

Confidence

Pixel 3DMM

Depth

Sampling

Image

Shape Coefficients
Camera Parameters

Colour
Least Square

Albedo Coefficients
SH Coefficients

Pixel SH BasisPixel Normal

Shape Albedo

Shape Albedo

Fig. 10: Overview of linear least square layer (outputs in red).
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RATIONALE
1. Minimal representation

§ Compute geometric parameters from correspondence

§ Compute photometric parameters from image + geometric 
parameters

2. Task better suited to CNN architecture, smaller network
3. Every pixel can contribute to appearance losses – alternative to 

soft rasterization

4. Defer estimation of actual face geometry – intermediate 
representation

5. Can train completely unsupervised – no landmarks!
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INVERSE SPHERICAL HARMONIC LIGHTING

! = #⨀% & '

Appearance

Reflectance 
(albedo)

SH basis 
(depends 

on normal)

Lighting 
coefficients

!⨀% & ' = #

Shading

Inverse shading

Closed form (linear least squares) solution for 
albedo and lighting parameters simultaneously!
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Regular SH

Inverse SH
Max error 0.049 0.109 0.123 0.272
RMS error 0.019 0.043 0.029 0.058

Fig. 11: Empirical validation of inverse spherical harmonic lighting model.

we introduce a stochastic sampling of pixels for the linear least square process
to reduce memory consumption. We randomly select 10,000 pixels which have
confidence value larger than 0.001⇥ the maximum confidence value. If the num-
ber of pixels which fulfil the above criteria is less than 10,000, we select the rest
of the pixels randomly.

C Empirical validation of inverse lighting model

We empirically validate inverse spherical harmonic(SH) lighting model in Figure
11. The upper row shows randomly generated images based on conventional SH
lighting. We generate random SH coe�cients by � = 0.2 and add the random
lighting to constant lighting with intensity 0.9. We use the same SH coe�cients
for all RGB channels. The lower row shows images of the same faces rendered
based on inverse SH lighting. Inverse SH coe�cients are calculated as a least
squares solution that minimises the di↵erence between estimated inverse lighting
and inverted original lighting at random 100,000 sample points on the sphere.
We also show mean and max errors of lighting intensity between conventional
and inverse SH lighting model among sample points.

D Stability of photometric least squares

We assume the pixel value in both images and 3DMM is scaled to [0, 1]. Dark
pixels, with value close to zero, cause numerical unstability so we clamp low
pixel values of an input image. Specifically, we apply softplus function to input
image as preprocessing: ix,y = log(1+e

⇠·ix,y )/⇠ where ⇠ is a parameter to adjust
the scale of softplus function. We also apply inverse function of softplus function
to visualise output images. We use ⇠ = 4.

E Network pretraining

We pretrain our network using a small number of roughly aligned images by
applying data augmentation by 2D similarity transformation. In pretraining, we
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Input Correspondence Image!UV Depth 3D Points Confidence

Fig. 13: Intermediate output of pixel-wise prediction network. Left to right: Cor-
respondence map, image mapped to UV-space, depth map, depth map as point
cloud and confidence map.
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Fig. 14: Comparison to Deng et al. [6].

G Intermediate output

Fig. 13 shows outputs of the pixel-wise prediction network. Even without the
least square 3DMM fitting, the quality of output is also convincing.

H Additional comparison

We also compare our method with the state-of-the-art Deng et al. [6] (Fig. 14).
Due to richer supervision based on landmarks and ID, Deng et al. [6] shows
better quality. However, our method still has comparable quality despite it is
unsupervised method and has robustness against 2D similarity transformation.
Fig. 15 shows comparison with Tran et al. [34], MoFA [32], and Genova et al. [11]
in 3D visualisation. This indicates our method has comparable quality to other
deep learning based 3D face reconstruction methods.

We also evaluate based on the identity of reconstructed faces (16,4). As Gen-
ova et al. [11] optimises facial identity of reconstructed image, it outperforms
ours. However, our method is slightly better than Tran et al. [34] and MoFA
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Input Reconstruction Geometry Albedo Illumination

Fig. 18: Reconstruction result from images in ImageNet dataset. Images contain-
ing a face are selected and cropped.

Input 0 1k 2k 5k 10k 20k 50k 100k 200k

Fig. 19: Convergence of reconstructed images during training. Odd rows show
the overlay of the reconstructed image. Even rows show the visualisation of the
robust residual loss on each pixel. .

transformation of the input image. To validate our contribution, we tested MoFA
with 2D similarity data augmentation based on our MoFA [32] reimplementa-
tion (2D-augmented MoFA). Since our approach employs pretraining based on
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Fig. 6: Reconstruction result of MoFA [29] and ours from images in MoFA-test
dataset.
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Fig. 7: Result of multiframe aggregation.

5 Experiments

Qualitative Evaluation We qualitatively evaluate our method based on test
images from CelebA dataset (Fig. 6). Our method successfully predicts 3D face
including ears under arbitrary 2D similarity transformation. We compare our
method with MoFA [29] which can only reconstruct the centre region of a face
whereas our method can reconstruct a full head face. Our method also has bet-
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VIDEO FITTING RESULTS



WILL SMITH

CONCLUSIONS
§ “Models” (physics-based reflectance models, statistical object 

class models, geometric models from MVS, linear least squares 
fitting) can supervise learning

§ The network “learns” from the model

§ The model encapsulates what we know about the world
§ All models are wrong

§ Should reflectance/rendering models be partially (fully?) 
learnable?

§ Broader question: what is the right balance between 
“modelling” (human understanding/domain knowledge) and 
learning


