SELF-SUPERVISED INVERSE RENDERING

WILL SMITH (+ YE YU & TATSURO KOIZUMI) UNIVERSITY of York

ΙΟTH FEBRUARY 2021

OVERVIEW

- Learning inverse rendering without direct supervision
 - 1. InverseRenderNet: Outdoor, scene level inverse rendering
 - Self-supervised by differentiable rendering
 - 2. "Backwards rasterisation": faces, using a 3D morphable model
 - Towards avoiding forward rendering

ΙΝδΑΜ

SCENE LEVEL, OUTDOOR INVERSE RENDERING

- Geometry
 - Surface normal?
 - Depth map?
 - Mesh?
 - Implicit surface?
- Material properties
 - Diffuse albedo?
 - Specular params?
- Illumination
- Shadows

BEYOND SUPERVISION

- What if it's very difficult (or impossible) to obtain training data and/or annotations?
- What if the inverse problem we're trying to learn is unsolved?
- 1. Use output of an existing algorithm
 - But then just learning to replicate performance
- 2. Synthesise images with known ground truth
 - Generalisation limited by diversity/realism of data

SELF-SUPERVISION

INVERSERENDERNET

Y. Yu and W.A.P. Smith. InverseRenderNet: Learning single image inverse rendering. In Proc. CVPR, 2019.

ΙΝδΑΜ

ILL-POSED PROBLEM: SHADED VERSUS PAINTED

ΙΝδΑΜ

ILL-POSED PROBLEM: SHADED VERSUS PAINTED

We need more supervision!

SHAPE-FROM-SHADING IN HUMANS

NATURAL ILLUMINATION

ΙΝδΑΜ

STATISTICAL ILLUMINATION MODEL

MULTIVIEW SUPERVISION

Input photos

Sparse reconstruction

Dense reconstruction

ΙΝδΑΜ

MULTIVIEW SUPERVISION

ΙΝδΑΜ

INVERSE RENDERING RESULTS

ΙΝδΑΜ

INVERSERENDERNET++

Y. Yu and **W.A.P. Smith**, Outdoor inverse rendering from a single image using multiview self-supervision, *IEEE T-PAMI*, to appear.

SHADOW ESTIMATION

Input Diffuse albedo Normal Map Shadow Map Shadow free

WHAT DOES IT ACTUALLY LEARN?

- Shape-from-...?
 - Shading?
 - Texture?
 - Shadows?
 - Ambient occlusion?
 - ...

iNδAN

- Semantics?
- General principles of shape-from-X?

APPLICATION: RELIGHTING

RELIGHTING WITH NEURAL RENDERING

Self-supervised Outdoor Scene Relighting, In Proc. ECCV, 2020.

UNIVERSITY

RELIGHTING WITH NEURAL RENDERING

ΙΝδΑΜ

RELIGHTING WITH NEURAL RENDERING

RELIGHTING WITH NEURAL RENDERING

MERGING WITH MONODEPTH

Y. Yu and W.A.P. Smith. Depth estimation meets inverse rendering for single image novel view synthesis. In Proc. CVMP, 2019.

Z. Li and N. Snavely. MegaDepth: Learning Single-View Depth Prediction from Internet Photos. In Proc. CVPR, 2018.

D. Nehab, S. Rusinkiewicz, J. Davis and R. Ramamoorthi. Efficiently combining positions and normals for precise 3D geometry. ACM TOG, 2005.

ΪΝδΑΜ

ΙΝδΑΜ

RESULTS

RESULTS

RESULTS

Input

ΝδΑΜ

Deep Encoder

or VGG-

Ser

Vork

Model-based Decoder

Loss

Eloss

Problem: rasterising a mesh is not differentiable Changes in triangle visibility or rasterisation have zero gradient

A. Tewari et al. MoFA: Model-based Deep Convolutional Face Autoencode for Unsupervised Monocular Reconstruction. In Proc. ICCV, 2017.

BACKWARDS RASTERISATION

Rasterisation = Given a mesh...

- For every pixel, find closest mesh triangle that covers the pixel
- Having established correspondence from mesh model to image, compute a colour from other rasterised quantities (depth, normal, albedo etc)

Backwards Rasterisation = Given an image...

- Predict the buffers that would have arisen from rasterising the model
- Solve optimisation to find model consistent with predicted buffers

BACKWARDS RASTERISATION

BACKWARDS RASTERISATION

BACKWARDS RASTERISATION

ΙΝδΑΜ

ΙΝδΑΜ

BACKWARDS RASTERISATION

ΙΝδΑΜ

BACKWARDS RASTERISATION

LINEAR LEAST SQUARES FITTING

INδAM

RATIONALE

- 1. Minimal representation
 - Compute geometric parameters from correspondence
 - Compute photometric parameters from image + geometric parameters
- 2. Task better suited to CNN architecture, smaller network
- 3. Every pixel can contribute to appearance losses alternative to soft rasterization
- 4. Defer estimation of actual face geometry intermediate representation
- 5. Can train completely unsupervised no landmarks!

iNδAM

INVERSE SPHERICAL HARMONIC LIGHTING

albedo and lighting parameters simultaneously!

RESULTS

Input Correspondence Image \rightarrow UV Depth 3D Points Confidence

ίνδαμ

Reconstruction Geometry Albedo Illumination

ΙΝδΑΜ

MULTIFRAME AGGREGATION

VIDEO FITTING RESULTS

ίΝδΑ

CONCLUSIONS

- "Models" (physics-based reflectance models, statistical object class models, geometric models from MVS, linear least squares fitting) can supervise learning
- The network "learns" from the model
- The model encapsulates what we know about the world
- All models are wrong
 - Should reflectance/rendering models be partially (fully?) learnable?
 - Broader question: what is the right balance between "modelling" (human understanding/domain knowledge) and learning