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OVERVIEW

" Learning inverse rendering without direct supervision

1. InverseRenderNet: Outdoor, scene level inverse rendering
= Self-supervised by differentiable rendering

2. “Backwards rasterisation”: faces, using a 3D morphable model

» Towards avoiding forward rendering
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SCENE LEVEL, OUTDOOR
INVERSE RENDERING
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= Geometry

= Surface normal?

= Depth map?

= Mesh?

= |mplicit surface?
= Material properties

= Diffuse albedo?

= Specular params?
= |llumination
= Shadows
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BEYOND SUPERVISION

= What if it’s very difficult (or impossible) to obtain training data
and/or annotations?

= What if the inverse problem we’re trying to learn is unsolved?
1. Use output of an existing algorithm

 But then just learning to replicate performance
2. Synthesise images with known ground truth

* Generalisation limited by diversity/realism of data
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SELF-SUPERVISION

Inverse problem Forward simulation

Differentiable

Renderer
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Reconstruction
loss
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INVERSERENDERNET

Albedo

Lighting T

Y.Yu and W.A.P. Smith. InverseRenderNet: Learning single image inverse rendering.
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In Proc. CVPR, 2019.
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We need more
supervision!
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T2

SHAPE-FROM-SHADING IN HUMANS
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STATISTICAL ILLUMINATION MODEL
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MULTIVIEW SUPERVISION

nput photos Spane recorsanuction Dese recomtrachon
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MULTIVIEW SUPERVISION
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ERING RESULTS

INVERSE REND
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Y. Yu and W.A.P. Smith, Outdoor inverse rendering from a single
I:‘ NSAM] image using multiview self-supervision, /EEE T-PAM)/, to appear.
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SHADOW ESTIMATION

Input Diffuse albedo Normal Map Shadow Map Shadow free

B e th Yn LN
.‘ ..‘ -.Mlm‘

UNIVERSITY



Input

Diffuse albedo

b
’ 4 0
o - l |
e . | —
—

- -

—-——

=N A

TeYY Y

Shadow Normal map  Illumination Frontal shading Shading






WILL SMITH

WHAT DOES IT ACTUALLY LEARN?

= Shape-from-...?
= Shading?
= Texture?
= Shadows?
= Ambient occlusion?
= Semantics?

= General principles of shape-from-X?
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APPLICATION: RELIGHTING
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RELIGHTING WITH NEURAL RENDERI
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Y.Yu, A. Meka, M. Elgharib, H.-P. Seidel, C. Theobalt, W.A.P. Smith,
Self-supervised Outdoor Scene Relighting, In Proc. ECCV, 2020.
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RELIGHTING WITH N
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[llumination]l = Relightingl =~ Illumination2  Relighting2
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Inut [llumination3  Relightingd  Illumination4  Relighting4
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RELIGHTING WITH NEURAL RENDERING

Source Relighting New lighting
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MERGING WITH MONODEPTH

Lighting Normal Albedos Rendering
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—> Renderer —>

—_— ! [R | t], Lightings User
model
MegaDepth

Depth Result

Y. Yu and W.A.P. Smith. Depth estimation meets inverse rendering for single image novel view synthesis. In Proc. CVMP, 2019.
Z. Li and N. Snavely. MegaDepth: Learning Single-View Depth Prediction from Internet Photos. In Proc. CVPR, 2018.

D. Nehab, S. Rusinkiewicz, J. Davis and R. Ramamoorthi. Efficiently combining positions and normals for precise 3D geometry.
ACM TOG, 2005.
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RESULTS
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Image
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A. Tewari et al. MoFA: Model-based Deep Convolutional Face Autoencoder
for Unsupervised Monocular Reconstruction. In Proc. ICCV, 2017.
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DISCONTINUITIES IN RENDERING *#

~ l \

plz < p2z
therefore plis
visible
Image plane
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BACKWARDS RASTERISATION

Rasterisation = Given a mesh...
= For every pixel, find closest mesh triangle that covers the pixel
= Having established correspondence from mesh model to image,

compute a colour from other rasterised quantities (depth, normal,
albedo etc)

Backwards Rasterisation = Given an image...
= Predict the buffers that would have arisen from rasterising the model
= Solve optimisation to find model consistent with predicted buffers
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BACKWARDS RASTERISATION
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Goodness of fit becomes
the learning signal
Solution must be
differentiable
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BACKWARDS RASTERISATION
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T. Koizumi and W.A.P. Smith, "Look Ma, no landmarks!" - Unsupervised,
I:‘ NSAM] model-based dense face alignment, Proc. ECCV, 2020.
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BACKWARDS RASTERISATION
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T. Koizumi and W.A.P. Smith, "Look Ma, no landmarks!" - Unsupervised,
I:‘ NSAM] model-based dense face alignment, Proc. ECCV, 2020.
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Image

[ iN5AM |

=3”) UNIVERSITY

BACKWARDS RASTERISATION
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T. Koizumi and W.A.P. Smith, "Look Ma, no landmarks!" - Unsupervised,
model-based dense face alignment, Proc. ECCV, 2020.
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BACKWARDS RASTERISATION
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T. Koizumi and W.A.P. Smith, "Look Ma, no landmarks!" - Unsupervised,
I:‘ NSAM] model-based dense face alignment, Proc. ECCV, 2020.
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LINEAR LEAST SQUARES FITTING
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RATIONALE

1. Minimal representation
= Compute geometric parameters from correspondence

= Compute photometric parameters from image + geometric
parameters

2. Task better suited to CNN architecture, smaller network

Every pixel can contribute to appearance losses — alternative to
soft rasterization

4. Defer estimation of actual face geometry — intermediate
representation

5. Can train completely unsupervised — no landmarks!
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INVERSE SPHERICAL HARMONIC LIGHTING

Shadmg
i = rG)B(n)L
Appearance Lighting
coefficients
Reflectance SH basis

(albedo) (depends e g\
on normal) 3
Regular SH
Inverse shading A
l_l_\ '
IGB(n)L =T Inverse SH

. . Max error 0.049 0.109 0.123 0.272
Closed form (linear least squares) solution for RMS orror . 0.019 0013 0029  0.053
albedo and lighting parameters simultaneously!
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RESULTS
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MULTIFRAME AGGREGATION
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VIDEO FITTING RESULTS
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CONCLUSIONS

= “Models” (physics-based reflectance models, statistical object
class models, geometric models from MVS, linear least squares
fitting) can supervise learning

®= The network “learns” from the model
= The model encapsulates what we know about the world
= All models are wrong

= Should reflectance/rendering models be partially (fully?)
learnable?

= Broader question: what is the right balance between

“modelling” (human understanding/domain knowledge) and
learning
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