Parametric shape optimization for combined additive-subtractive manufacturing

Lorenzo Tamellini

CNR-IMATI, Pavia

Joint work with:

- M. Chiumenti, CIMNE, Barcelona, Spain
- **C. Altenhofen,** Fraunhofer IGD, Darmstadt, Germany
- M.Attene, M. Livesu, F. Marini, M. Martinelli, CNR-IMATI, Pavia & Genova, Italy
- **O. Barrowclough, V. Skytt,** SINTEF, Oslo, Norway

Within the project **CAxMan, Computer-Aided technologies for Additive Manufacturing** (2015-2018), European Union's Horizon 2020 research and innovation program, Grant Agreement 680,448

computer aided technologies for additive manufacturing

Printer-aware shape optimization

- 3D printers don't produce exactly the shape requested (nominal geometry), due to
 - Surface roughness
 - Imprecisions in the printing path
 - Support structures to be removed a-posteriori
 - Thermal deformations
 - Residual stresses
- Many of these defects can be fixed by post processing (**subtractive machining**)
- We need therefore an extra layer of material (*coating*)
- What is the **optimal coating thickness** for machining operations?
 - Enough to meet machining equipment tolerances
 - Not too much, to avoid wastes of time and material
 - Different surfaces can have different coating thicknesses

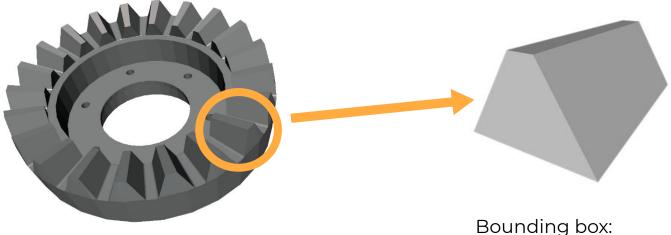
Printer-aware shape optimization

- nominal geometry + coating = stock part
- It's a constrained **optimization problem**:

 $egin{pmatrix} \min_{ ext{coating}>0} \textit{Extra Volume}[\textit{Printed stock part}] \ ext{s. t.} \ ext{dist}(\textit{Printed stock part},\textit{Nominal geometry}) > Tol \end{split}$

- Assessing the shape of the printed stock part for a given choice of coating is
 expensive: time-dep. elasto-plastic PDE to simulate the printing process. More
 on this later on
- Shortcoming: **we do not check mechanical compliance** to nominal loading (one extra elastic PDE constraining the optimization)
- More general question: what's the best shape to give to the printer as input given the printer limitations? (*inverse problem*)

- Printing one tooth of the NuGear by STAM (<u>http://www.stamtech.com</u>), one of CAxMan project use cases
- Material: Ti64
- Reference printer: EOS M280 (selective laser melting printer)
- Machining tolerance: 0.04 mm



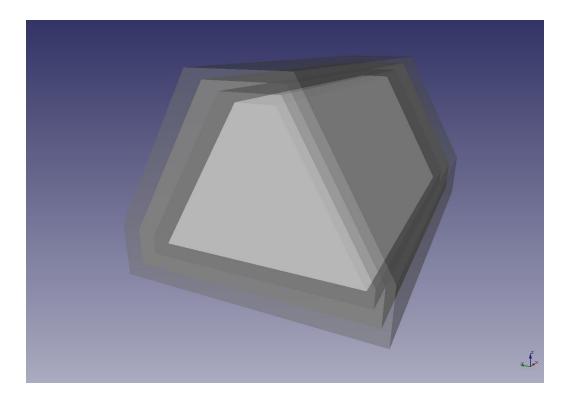
Bounding box: 6 mm x 10 mm x 4 mm

Parametric shape optimization

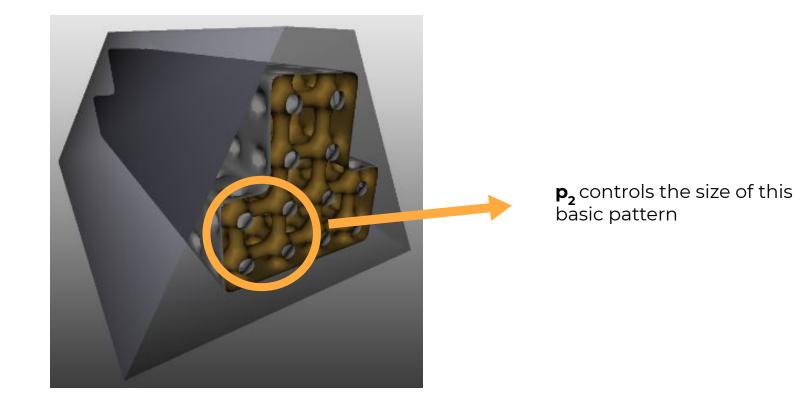
- 1. Instead of free-form shape optimization (i.e., each node of the mesh can be moved independently), we work in a **parametric optimization** setting.
- 2. Each stock part can be obtained by fixing **p** = [**p**₁, **p**₂, **p**₃]
 - **p**₁ = Coating thickness / offset (one constant value for the whole part)
 - **p**₂ = size of internal voids
 - **p**₃ = wall-thickness (distance of voids from surface)
- 3. **p**₂, **p**₃ are unrelated to coating, but having voids helps reducing the overall warping of the printed stock part, so hopefully they can help reducing the thickness of the coating layer

4.
$$\mathbf{p} \in \Gamma = [p_{1\,min}, p_{1\,max}] \times [p_{2\,min}, p_{2\,max}] \times [p_{3\,min}, p_{3\,max}]$$

p₁: offset



p₂: size of internal voids



Wall thickness	0.0 mm	0.1 mm	0.2 mm	0.3 mm	0.4 mm	0.5 mm
Resulting cavities						
Remaining material	50.89 %	74.82 %	80.02 %	81.57 %	86.27 %	90.88 %

Surrogate-model-based optimization

 $\begin{cases} \min_{\mathbf{p}\in\Gamma} Extra Volume[Printed stock part(\mathbf{p})] \\ \text{s. t.} \\ \operatorname{dist}(Printed stock part(\mathbf{p}), Nominal geometry) > Tol \end{cases}$

Problem: Assessing the shape of the printed stock part for a given choice of **p** is **expensive**: time-dependent elasto-plastic PDE to **simulate the printing process**.

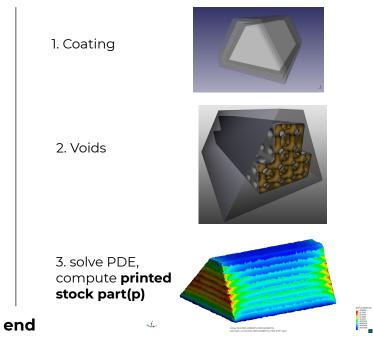
Approach:

- Step 1: Build a surrogate model of the map: p → Printed stock part(p).
 Still requires solving the PDE for some values of p
- **Step 2: Replace surrogate** model in the optimization problem. **Very fast**, since evaluating the surrogate model is real-time
- Rationale: the number of PDEs to solve to build the surrogate is (hopefully) substantially smaller than the number of PDEs required by the optimization routine

Summary and sneak-peak of results

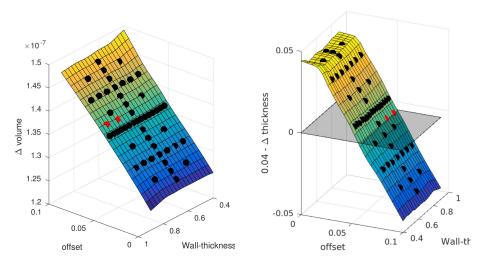
STEP 1

For values of ${\boldsymbol{\mathsf{p}}}$ to be tested



STEP 2

- Tested values
- Optimal values



Objective function

Constraint

And now, details

- 1. Given **p**, how do we
 - a. Generate coating
 - b. Generate voids
 - c. Simulate the printing process
 - d. Compute
 - i. Extra volume of the printed stock part
 - ii. distance between printed stock part and nominal geometry
- 2. How do we build the surrogate model
- 3. How do we solve the optimization problem
- 4. Results

And now, details

- 1. Given **p**, how do we
 - a. Generate coating
 - b. Generate voids
 - c. Simulate the printing process
 - d. Compute
 - i. Extra volume of the printed stock part
 - ii. distance between printed stock part and nominal geometry
- 2. How do we build the surrogate model
- 3. How do we solve the optimization problem
- 4. Results

Generate coating

- The exact offset of a polyhedron may have parts of its surface that are not piecewise-linear, i.e. some surface parts may be locally cylindrical or spherical. **Does not suit our needs**
- Generalization: **Minkowski sum S+M,** obtained rolling M on the surface of S. If M is a sphere, you get exact offset.

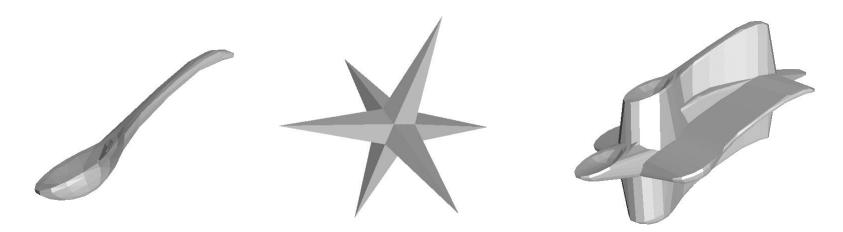
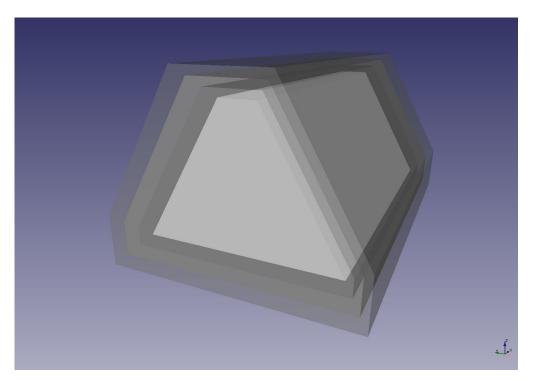


Image from: https://doc.cgal.org/Manual/3.5/doc_html/cgal_manual/Minkowski_sum_3/Chapter_main.html

Generate coating

We take **M** to be a **cube.** The offset is the size of the cube.

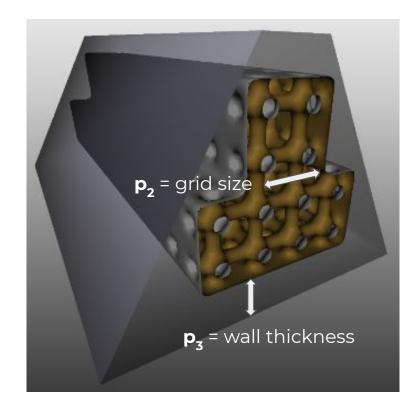


Details

1. Given **p**, how do we

- a. Generate coating
- b. Generate voids
- c. Simulate the printing process
- d. Compute
 - i. Extra volume of the printed stock part
 - ii. distance between printed stock part and nominal geometry
- 2. How do we build the surrogate model
- 3. How do we solve the optimization problem
- 4. Results

Generate voids

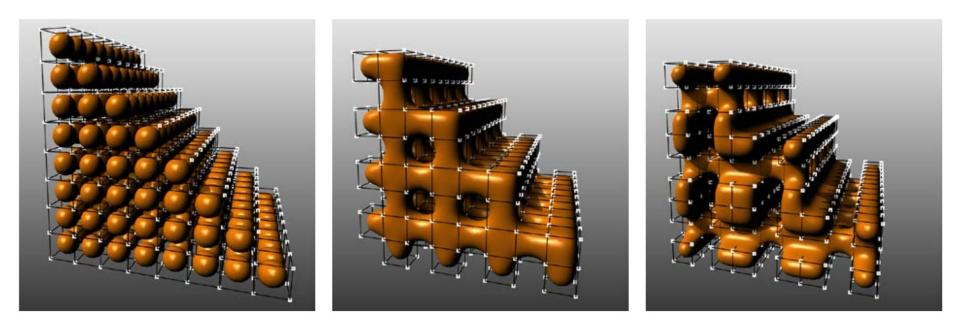


• Rationale:

- reducing the volume of the part mitigates its thermal deformation
- saves material and printing time.
- Based on **Catmull–Clark (CC) subdivision** surfaces (computer graphics, animation)
- **smooth** surfaces (C²-cont. in regular areas, C¹-cont. around extraordinary points)
- Regular CC subdivisions correspond to bi-cubic B-spline surfaces (**CAD-compatible**)
- Assumption: inner cavities do not alter the mechanical performance of the tooth. Add elastic PDE as a constraint otherwise.

Generate voids

Several patterns can be used



Details

1. Given **p**, how do we

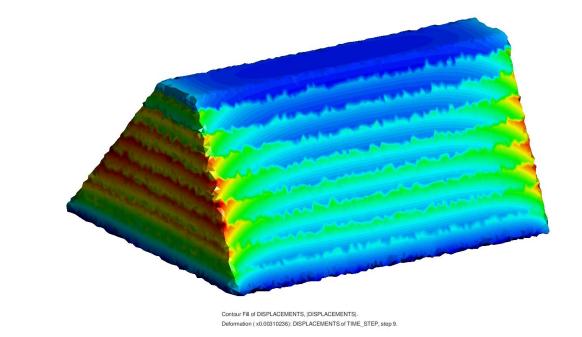
- a. Generate coating
- b. Generate voids
- c. Simulate the printing process
- d. Compute
 - i. Extra volume of the printed stock part
 - ii. distance between printed stock part and nominal geometry
- 2. How do we build the surrogate model
- 3. How do we solve the optimization problem
- 4. Results

Simulate the printing process

- Goal: computing distortions of the component
- Full simulation is too expensive. Use a simplified method: the **inherent strain method**
- **main hypothesis**: the heat-affected zone is small, does not affect the rest of the domain. **Replace** coupled non-linear thermo-mechanical analysis **by a sequence of mechanical computations**
- layer-by-layer, skip simulation of scanning sequence.
- inherent strains = thermal strains + plastic strains, calibrated offline according to:
 - o melt-pool temperature and thermal expansion coefficient (thermal strains)
 - scanning speed and the power heat (plastic strains)
- multi-layer activation process: pack up to 10 layers (≈200 µm)
- back plate = clamping boundary conditions
- loose powder plays no role
- supporting structures: replaced by an equivalent stiffness

Simulate the printing process

×



DISPLACEMENTS| 0.019644 0.017461 0.015278 0.010913 0.0087305 0.0008478 0.00043652 0.0001826 0.0001826

Details

1. Given **p**, how do we

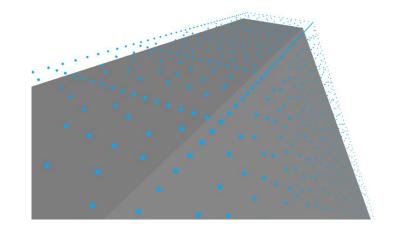
- a. Generate coating
- b. Generate voids
- c. Simulate the printing process
- d. Compute
 - i. Extra volume of the printed stock part
 - ii. distance between printed stock part and nominal geometry
- 2. How do we build the surrogate model
- 3. How do we solve the optimization problem
- 4. Results

Compute extra volume and distance

• Computing the **extra volume is easy**; just remember that the nominal geometry has no voids. We assume negligible distortion between nominal and printed voids. Thus:

 $Extra volume = printed \ stock \ part \ volume - (Nominal \ geometry \ volume - nominal \ voids \ volume)$

- Computing the **distance** between the printed stock part and the nominal geometry requires more work.
- We start from the **cloud of points** obtained by applying the deformation to the stock part mesh and use an iterative **closest point projection method** (*3d shapes registration*)



Details

- 1. Given **p**, how do we
 - a. Generate coating
 - b. Generate voids
 - c. Simulate the printing process
 - d. Compute
 - i. Extra volume of the printed stock part
 - ii. distance between printed stock part and nominal geometry

2. How do we build the surrogate model

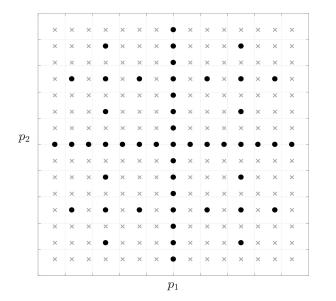
- 3. How do we solve the optimization problem
- 4. Results

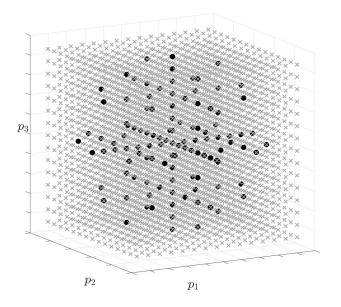
Surrogate-model construction

- It's actually two surrogate models:
 - one for the extra volume (objective function)
 - one for the distance (constraint function)
- Rough idea:
 - \circ sample parametric space Γ
 - For each sample, compute the full-model deformations, and derive extra volume and distance
 - Compute an interpolant / regression polynomial for both
- What sampling strategy and polynomial?
 - cartesian sampling of the parametric space Γ + Lagrange interpolant is expensive, cost = O(M³)
 - Monte Carlo sampling + Least Squares regression is also inaccurate if not enough points

Surrogate-model construction

- We consider sparse grids sampling with splines interpolant: good compromise between accuracy and cost
- Other choices in literature: reduced basis, PGD, radial basis functions, gaussian processes...





• = sparse grid point, **x** = cartesian grid point

Details

1. Given **p**, how do we

- a. Generate coating
- b. Generate voids
- c. Simulate the printing process
- d. Compute
 - i. Extra volume of the printed stock part
 - ii. distance between printed stock part and nominal geometry
- 2. How do we build the surrogate model

3. How do we solve the optimization problem

4. Results

How do we solve the optimization problem

• use penalization methods to convert constrained optimization into unconstrained

```
\left\{egin{aligned} \min_{\mathbf{p}\in\Gamma}\,f(\mathbf{p})\ 	ext{s. t.}\ g(\mathbf{p})\leq 0 \end{aligned}
ight.\Rightarrow\min_{\mathbf{p}\in\Gamma}\,f(\mathbf{p})+G(\mathbf{p})
```

where $G(\mathbf{p})$ is large if $g(\mathbf{p})>0$ (unfeasible point). Bounding box left but easy to deal with.

- Three penalization methods considered:
 - Log-barrier
 - Squared penalty
 - Augmented Lagrangian
- Solve unconstrained method by either
 - **Gradient** method: fast but can get stuck close to boundary of Γ
 - **Nelder-mead** (simplex) method, gradient-free: slower but more robust
- For each combination of penalization + unconstrained solver, consider **5 initial guesses** (Latin Hypercube or MC sampling), choose best result out of these 5 runs
- Total: 3 x 2 x 5 = 30 optimization runs. Massive costs without surrogate model!

Details

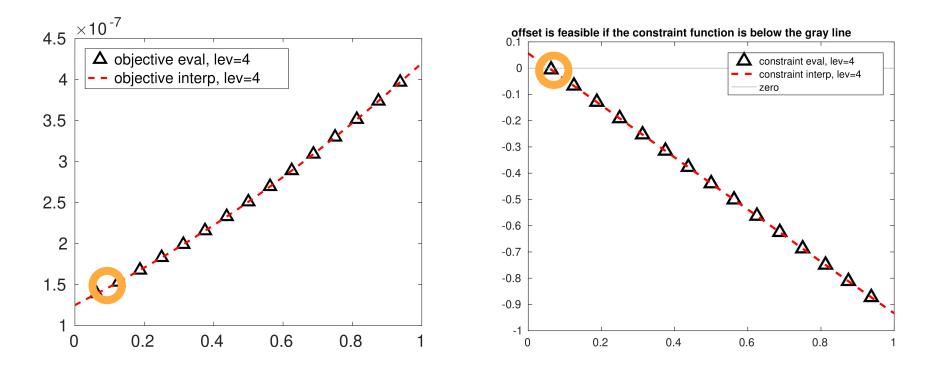
1. Given **p**, how do we

- a. Generate coating
- b. Generate voids
- c. Simulate the printing process
- d. Compute
 - i. Extra volume of the printed stock part
 - ii. distance between printed stock part and nominal geometry
- 2. How do we build the surrogate model
- 3. How do we solve the optimization problem
- 4. Results

Results

- 4 cases
 - o Offset
 - Offset + grid size
 - Offset + wall thickness
 - Offset + grid size + wall thickness
- For every case, report
 - Plot of extra volume (objective function)
 - Plot of distance (constraint function)
 - best of 30 optimization runs for increasingly refined surrogate models

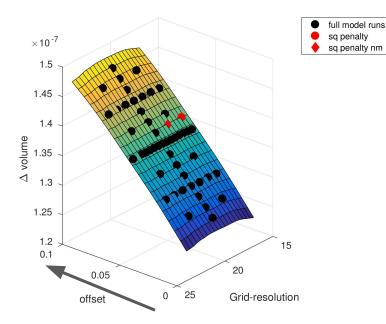
Results, case 1: offset

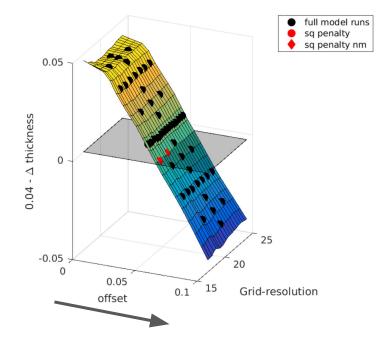


Results, case 1: offset

W	Design points	Optimal offset (mm)	Optimal volume (mm ³)	Method	Interpolant evaluations	Computational time (hh:mm:ss)
2	3	0.0569	132.67	Squared penalty gradient	52	00:12:01
3	7	0.0571	136.93	Squared penalty gradient	50	00:25:41
4	15	0.0567	137.59	Squared penalty gradient	49	00:56:35
5	31	0.0567	137.62	Squared penalty gradient	48	01:57:14

Results, case 2: offset + grid size

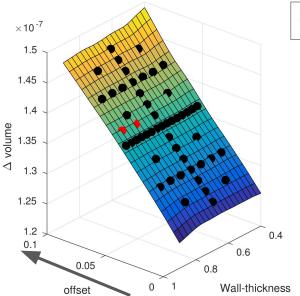


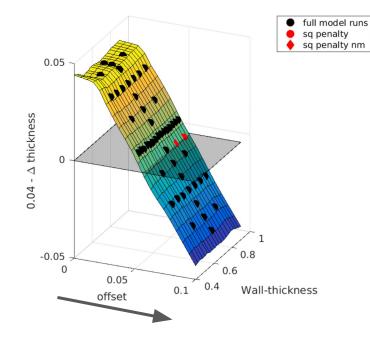


Results, case 2: offset + grid size

W	Design points	Optimal offset (mm)	Optimal volume (mm2)	Optimal grid resolution	Method	interpolant evaluations	Computational time (hh:mm:ss)
2	5	0.0568	137.96	24	Squared penalty Nelder Mead	1715	00:32:43
3	17	0.0576	138.31	22.4	Squared penalty Nelder Mead	2184	01:50:18
4	49	0.0576	138.25	17.6	Squared penalty gradient	58	05:15:11

Results, case 3: offset + wall thickness

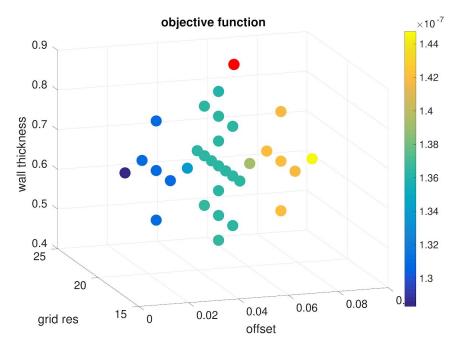


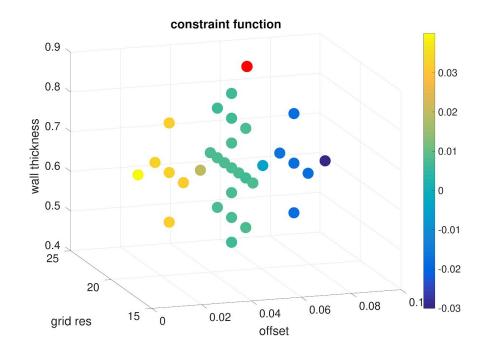


Results, case 3: offset + wall thickness

W	Design points	Optimal offset (mm)	Optimal volume (mm ³)	Optimal wall- thickness	Method	interpolant evaluations	Computational time (hh:mm:ss)
2	5	0.0562	137.45	0.9	Squared penalty Nelder Mead	1731	00:22:34
3	17	0.0576	137.73	0.9	Squared penalty Nelder Mead	1733	01:18:51
4	49	0.0567	137.82	0.75	Squared penalty Nelder Mead	2200	03:47:49

Results, case 4: offset + void parameters





Results, case 4: offset + void parameters

W	Design points	Optimal offset (mm)	Optimal volume (mm ³)	Optimal grid resolution	Optimal wall- thickness	Method	Interpolant evaluations	Computational time (hh:mm:ss)
2	7	0.0551	137.24	17	0.9	Aug. Lagrangian Nelder-M.	2008	00:34:35
3	31	0.0566	137.54	20.65	0.9	Squared penalty Nelder-M.	2057	02:27:23

Conclusions

- Printer-aware shape optimization to reduce post-print machining
- Ingredients:
 - Parametrization of shapes: offset, and two parameters for void generation
 - Constrained optimization
 - PDE solver to compute distortions due to printing
 - Surrogate model to reduce costs
- Results can be obtained within a few hours. Voids seem to play little role
- Possible extensions
 - More parameters (different offsets for different surfaces)
 - More printer-aware constraints (overhangs, etc)
 - Add elastic PDE as a further constraint
 - Monitor effects of uncertainties (Uncertainty Quantification)

Bibliography

L. Tamellini, M. Chiumenti, C. Altenhofen, M. Attene, O. Barrowclough, M. Livesu, F. Marini, M. Martinelli, V. Skytt. *"Parametric Shape Optimization for Combined Additive-Subtractive Manufacturing"* JOM, Vol. 72, No. 1, 2020

A version with more details is available as arXiv preprint 1907.01370

Thanks for your attention