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Foreword: shape optimization in the industrial context

• Shape and topology optimization techniques
have aroused a tremendous enthusiasm within
the engineering and industrial communities.

• One drawback of these methods is that the
optimized designs are often too complicated
to be constructed by traditional methods such
as milling or casting.

• The recent headway made by additive
manufacturing methods allow to assemble
structures with a high degree of complexity...

• ... But these techniques raise new constraints
about the manufactured components.

Typical ‘truss’ designs resulting
from shape and topology
optimization processes.

Part produced with an additive
manufacturing method (from
http://www.autodesk.com/).
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Additive manufacturing in a nutshell (I)

• All the additive manufacturing processes begin with a slicing stage: the input
shape is decomposed into a series of horizontal layers.

• These 2d layers are built one on top of the other according to the selected
technology.

Sketch of the slicing procedure, initiating any additive manufacturing process.

• In principle, additive manufacturing technologies make it possible to construct
arbitrarily complex shapes.
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Additive manufacturing in a nutshell (II)

Two popular additive manufacturing technologies are:

• Material extrusion methods (e.g. FDM): they act by direct deposition of rasters
of a molten filament. Such methods are often used to process plastic (ABS).

• Powder bed fusion methods (e.g. EBM, SLS), which are generally used to
process metals. Each 2d layer is assembled by spreading metallic powder within
the build chamber, then binding the grains together with a laser.

Sketch of the (left) FDM and (right) EBM additive manufacturing processes.
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The overhang issue (I)

All additive manufacturing technologies experience trouble when assembling shapes
with large overhangs, i.e. regions hanging over void.

• In the case of FDM processes, this amounts to assembling over void.

• In the case of powder-bed methods, the rapid melting then solidification of the
powder induces residual stress, especially in regions unanchored to the lower
structure. This may cause warpage of such parts upon cooling.

(Left) short overhang; support from the lower structure is sufficient to guarantee
manufacturability; (right) large overhang.
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The overhang issue (II)

• The most common strategy to deal with overhangs is to erect a sacrificial
scaffold structure alongside the construction of the shape [DuHeLe].

• This scaffold structure has to be removed as a post-processing, which is costly
and cumbersome.

⇒ Need to optimize designs so that they are overhang-free.

(Left) Warpage caused by residual constraints in an EBM assembly (from [CheLuChou]),
(right) scaffold structure in the construction of a part (from
https://hyrulefoundry.wordpress.com/).
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Anisotropy of the effective material properties (I)

• The observed physical properties of the assembled materials (resistance to
traction, to shear, etc.) do not match those predicted by theory.

• The main reason is that regions that are melted and solidify together present
stronger bonds than those that cool apart from one another.

• The effective material properties of structures assembled by additive
manufacturing are often anisotropic: they mainly depend on the pattern used
for assembling each 2d layer... which may depend on the shape itself!

• It is a crucial challenge in engineering to model and incorporate this peculiar
material behavior into the design optimization process.
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Anisotropy of the effective material properties (II)

(Left) One device printed by starting with the contour, then using an infill pattern; (right)
one part printed by following its contour offsets.
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Shape optimization of linear elastic shapes

In the context of its final use, a shape is a bounded
domain Ω ⊂ Rd , which is

• fixed on a part ΓD of its boundary,

• submitted to surface loads f , applied on
ΓN ⊂ ∂Ω, ΓD ∩ ΓN = ∅.

The displacement vector field uΩ : Ω → Rd is gov-
erned by the linear elasticity system:

−div(Ae(uΩ)) = 0 in Ω
uΩ = 0 on ΓD

Ae(uΩ)n = f on ΓN

Ae(uΩ)n = 0 on Γ

,

where e(u) = 1
2 (∇uT +∇u) is the strain tensor.

�D
�N

•

f

A ‘Cantilever’

The deformed cantilever
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The (isotropic) Hooke’s tensor

The Hooke’s law A of an isotropic material reads:

∀e ∈ Sd(R), Ae = 2µe + λtr(e)I .

where the Lamé parameters λ, µ are related to the more physical quantities E and ν:

µ =
E

2(1 + ν)
, and λ =

Eν

(1 + ν)(1 + ν(1− d))
.

• The Young’s modulus

E = σ/L

measures the resistance to
deformation under traction;

• The Poisson’s ratio

ν = −`/L

accounts for the relative
transverse displacement for a
given longitudinal deformation.

�

`

L
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The (anisotropic) Hooke’s tensor

• Anisotropic materials have different physical properties (i.e. Young’s modulus,
Poisson’s ratio, etc.) depending on the direction.

• The Hooke’s tensor A is a general mapping A : Sd(R)→ Sd(R).

• Most materials of interest are orthotropic: their properties have d principal
directions: they have one Young’s modulus in each principal direction, two
Poisson’s ratios and one shear modulus for each pair of directions.

Fiber-reinforced concrete and wood are examples of orthotropic materials.
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The shape optimization problem

The shape optimization problem of interest reads:

min
Ω∈Uad

J(Ω), s.t. P(Ω) ≤ α,

in which

• Uad is a set of (smooth) admissible shapes,

• The objective function J(Ω) is the structural compliance of shapes:

J(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ) dx =

∫
ΓN

f · uΩ ds,

• The constraint P(Ω) enforces e.g. the constructibility by additive
manufacturing processes,

• Other constraints may be added to the problem, e.g. on the volume Vol(Ω) of
shapes.
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Differentiation with respect to the domain: Hadamard’s method

Hadamard’s boundary variation
method describes variations of a
reference, Lipschitz domain Ω of the
form:

Ω→ Ωθ := (Id + θ)(Ω),

for ‘small’ θ ∈W 1,∞ (Rd ,Rd
)
.

⌦

⌦✓

✓

Definition 1.
Given a smooth domain Ω, a function J(Ω) of the domain is shape differentiable at Ω
if the function

W 1,∞(Rd ,Rd) 3 θ 7→ J(Ωθ)

is Fréchet-differentiable at 0, i.e. the following expansion holds around 0:

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o
(
||θ||W 1,∞(Rd ,Rd )

)
.
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Differentiation with respect to the domain: Hadamard’s method

Techniques from optimal control theory make it possible to calculate shape
derivatives; in the case of ‘many’ functionals of the domain J(Ω), the shape
derivative has the particular structure:

J ′(Ω)(θ) =

∫
Γ

vΩ θ · n ds,

where vΩ is a scalar field depending on uΩ, and possibly on an adjoint state pΩ.

Example: If the objective function

J(Ω) =

∫
ΓN

f · uΩ ds

is the compliance, vΩ = −Ae(uΩ) : e(uΩ) is the (negative) elastic energy density.
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The generic algorithm

This shape gradient provides a natural descent direction for J(Ω): for instance,
defining θ as

θ = −vΩn

yields, for t > 0 sufficiently small (to be found numerically):

J((Id + tθ)(Ω)) = J(Ω)− t

∫
Γ

v2
Ωds + o(t) < J(Ω)

Gradient algorithm: For n = 0, ... until convergence,
1. Compute the solution uΩn (and pΩn ) of the elasticity system on Ωn.

2. Compute the shape gradient J ′(Ωn) thanks to the previous formula, and
infer a descent direction θn for the cost functional.

3. Advect the shape Ωn according to θn, so as to get Ωn+1 := (Id + θn)(Ωn).

In practice Shapes and their deformations are accounted for by the level set
method [AlJouToa].
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The ‘naive’, geometric attempt (I)

• Many approaches in the literature rely on the angle between ∂Ω and the
(vertical) build direction to detect and penalize overhangs.

• An intuitive approach relies on anisotropic perimeter functionals of the form:

Pg (Ω) =

∫
∂Ω

ϕ(nΩ) ds, where ϕ : Rd → R is given.

Example The choice ϕa(n) := (n · ed + cos ν)2
−, where (s)− := min(s, 0),

penalizes regions of ∂Ω where the angle n · (−ed) is smaller than a threshold ν.

⌦

n⌦

⌦

n⌦
⌫

�ed

Parts of ∂Ω (left) violating and (right) satisfying the angle-based criterion.
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The ‘naive’, geometric attempt (II)

Proposition 1.

The functional Pg (Ω) is shape differentiable at any admissible shape Ω ∈ Uad, and its
shape derivative reads:

P ′g (Ω)(θ) =

∫
Γ

κ ϕ(n) θ · n ds −
∫

Γ

∇(ϕ(n)) · ∇∂Ω(θ · n) ds,

where ∇∂Ωψ := ∇ψ − (∇ψ · n)n is the tangential gradient of a smooth enough
function ψ : ∂Ω→ R.

• Unfortunately, this approach gives unsatisfactory results.

• We propose instead a general idea for modeling overhang constraints, which
appeals to their mechanical origin.
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Geometric constraints; the ‘dripping effect’ (I)

We consider the two-dimensional MBB Beam example.

6

1

f

Setting of the two-dimensional MBB beam example.

We first solve the compliance minimization problem:

min
Ω

J(Ω),

s.t. Vol(Ω) ≤ αvVol(D).
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Geometric constraints; the ‘dripping effect’ (II)

(Top) initial shape Ω0 and (bottom) optimized shape Ω∗ for compliance minimization in the
two-dimensional MBB Beam example.

The optimized shape Ω∗ presents large nearly horizontal bars which are very
important for the structural performance.

25 / 68



Geometric constraints; the ‘dripping effect’ (III)

To help in removing these overhangs, we rather solve the problem:

min
Ω

(1− αg ) J(Ω)
J(Ω∗)

+ αg
Pg (Ω)

Pg (Ω∗)
,

s.t. Vol(Ω) ≤ αvVol(D).

Optimized shape using αg = 0.5.

The shape develops an oscillatory boundary so that:

• The angle requirement is (approximately) satisfied,

• The structural performance is not too much altered: the large bars connecting
loads to anchor points have not disappeared.
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Definition of the mechanical constraint (I)

The mechanical constraint P(Ω) relies on the physical behavior of the shape at each
stage of its construction.

• Ω is enclosed in the build chamber
D = S × (0,H), where S ⊂ Rd−1,

• Ωh := {x = (x1, ..., xd) ∈ Ω, xd < h} is the
intermediate shape at height h.

• The boundary ∂Ωh is decomposed as
∂Ωh = Γ0 ∪ Γu

h ∪ Γl
h, where

• Γ0 = {x ∈ ∂Ωh, xd = 0} is the contact
region between Ω and the build table,

• Γu
h = {x ∈ ∂Ωh, xd = h} is the upper side of

Ωh,
• Γl

h = ∂Ωh \ (Γ0 ∪ Γu
h) is the lateral surface.

D

h

e1
e2

e3

�u
h

�0

�l
h

`h
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Definition of the mechanical constraint (II)

• Each intermediate shape Ωh is only subjected to gravity effects g ∈ H1(Rd)d .
The elastic displacement of Ωh satisfies:

−div(Ae(uΩc
h
)) = g in Ωh,

uc
Ωh

= 0 on Γ0,

Ae(uc
Ωh

)n = 0 on Γl
h ∪ Γu

h.

• The self-weight of each intermediate shape Ωh is:

cΩh :=

∫
Ωh

Ae(uc
Ωh

) : e(uc
Ωh

) dx =

∫
Ωh

g · uc
Ωh

dx .

• The (self-weight) manufacturing compliance of a final shape Ω aggregates the
self weights of all its intermediate shapes:

Psw(Ω) =

∫ H

0
j(cΩh ) dh,

where j : R→ R is a smooth function.
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Other models

Other models may be used for the physical behavior of intermediate shapes Ωh. For
instance,

• The definition of uc
Ωh

could be replaced by:
−div(Ae(ua

Ωh
)) = gh in Ωh,

ua
Ωh

= 0 on Γ0,

Ae(ua
Ωh

)n = 0 on Γl
h,

Ae(ua
Ωh

)n = 0 on Γu
h,

where gh(x) =

{
g if xd ∈ (h − δ, h),
0 otherwise,

is an artificial force acting on the upper side of Ωh. As we shall see, this
formulation is better at penalizing perfectly horizontal parts hanging over void.

• The mechanical constraint P(Ω) could involve the solution vΩh to a thermal
cooling problem posed on Ωh, to model e.g. residual stresses in the final shape
Ω; see [AlJak].
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Shape derivative of the manufacturing compliance (I)

• We consider a fixed shape Ω ∈ Uad.

• Perturbations θ are confined to a class X k of vector fields of class Ck , which
identically vanish near the ‘flat regions’ of ∂Ω.

Theorem 2.

The manufacturing compliance Psw(Ω) is shape differentiable at Ω, in the sense that
the mapping θ 7→ Psw(Ωθ), from X k into R is differentiable for k ≥ 1; moreover,

∀θ ∈ X k , P ′sw(Ω)(θ) =

∫
∂Ω\Γ0

DΩ θ · n ds,

where the integrand factor DΩ is defined, for a.e. x ∈ ∂Ω \ Γ0, by:

DΩ(x) =

∫ H

xd

j ′(cΩh )
(
2g · uc

Ωh
− Ae(uc

Ωh
) : e(uc

Ωh
)
)

(x) dh.
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Mechanical approach: the manufacturing compliance (I)

Still in the setting of the two-dimensional MBB Beam example,

6

1

f

we now solve the constrained optimization problem:

min
Ω

J(Ω)

s.t. Vol(Ω) ≤ αvVol(D),
Psw(Ω) ≤ αcPsw(Ω∗),

where αc ∈ [0, 1] is a user-defined tolerance, and Ω∗ is the optimized shape for the
compliance under volume constraint (without additive manufacturing constraint).
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Mechanical approach: the manufacturing compliance (II)

Optimized shapes for the two-dimensional MBB Beam example; (top) optimized shape Ω∗,
without additive manufacturing constraints, and optimized shapes using parameters (from
top to bottom) αc = 0.50, αc = 0.30, and αc = 0.10.
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Mechanical approach: the manufacturing compliance (III)

This new approach yields better results; yet, it raises two issues:

1. Psw(Ω) inherently favors structures whose lower part is stronger.

2. The optimized shapes still show large, completely horizontal overhangs. This is
a flaw in the modelling of Psw(Ω), which assumes that each layer of material is
assembled instantaneously.

Completely flat overhangs are not so weak because of the instantaneous layer deposition
assumption.

35 / 68



Mechanical approach: the modified manufacturing compliance (I)

We now solve:
min

Ω
J(Ω)

s.t. Vol(Ω) ≤ αvVol(D),
Puw(Ω) ≤ αcPuw(Ω∗),

where the modified (upper weight) manufacturing compliance Puw(Ω) brings into
plays elastic displacements of the intermediate shapes ua

Ωh
involving an artificial load

concentrated on their upper side:


−div(Ae(ua

Ωh
)) = gh in Ωh,

ua
Ωh

= 0 on Γ0,

Ae(ua
Ωh

)n = 0 on Γl
h,

Ae(ua
Ωh

)n = 0 on Γu
h,

where gh(x) =

{
g if xd ∈ (h − δ, h),
0 otherwise.
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Mechanical approach: the modified manufacturing compliance (II)

Optimized 2d MBB Beams obtained using the modified manufacturing compliance Paf(Ω)
and parameters (from top to bottom) αc = 0.30, αc = 0.10, αc = 0.05, and αc = 0.03.
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Mechanical approach: the modified manufacturing compliance (III)

We now consider the design of a three-dimensional bridge.

1

1
6

f

Build
direction

We solve the following shape optimization problem:

min
Ω

Vol(Ω),

s.t. J(Ω) ≤ J(Ω∗),
Puw(Ω) ≤ αcPuw(Ω∗).
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Mechanical approach: the modified manufacturing compliance (IV)

The optimized shape Ω∗ without manufacturing shows several large overhangs.

Different views of the unconstrained optimized shape Ω∗.
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Mechanical approach: the modified manufacturing compliance (V)

Several small overhangs remain on the upper part of the optimized shape with the
imposed manufacturing constraint Puw(Ω).

Different views of the optimized shape for αc = 0.1.
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Effective material properties of additively assembled shapes

• The material properties are influenced by the path of the machine tool during
the assembly of each 2d layer.

• Our study focuses on the 2d case: we model the material properties inside one
2d layer of a ‘true’ 3d shape.

• We propose models for the properties associated to two different printing
patterns, but various different situations could be dealt with by similar means.

• Our constructions rely on the notion of signed distance function.

Several printing patterns for one 2d layer of a 3d structure.
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The signed distance function

Definition 2.
The signed distance function dΩ to a bounded domain Ω ⊂ Rd is defined by:

∀x ∈ Rd ,


−d(x , ∂Ω) if x ∈ Ω

0 if x ∈ ∂Ω

d(x , ∂Ω) if x ∈ cΩ
,

where d(x , ∂Ω) = min
y∈∂Ω

|x − y | is the usual Euclidean distance function to ∂Ω.

Graph of the signed distance function to a union of two disks (in black)

44 / 68



Signed distance function and geometry (I)

Definition 3.
Let Ω ⊂ Rd be a Lipschitz, bounded open set;

• Let x ∈ Rd ; the set of projections Π∂Ω(x) of x onto ∂Ω is:

Π∂Ω(x) = {y ∈ ∂Ω, d(x , ∂Ω) = |x − y |} .

• The skeleton Σ of ∂Ω is the set of points in Rd \ ∂Ω which have at least two
projection points:

Σ :=
{
x ∈ Rd \ ∂Ω, Π∂Ω(x) is not a singleton

}
.

• When x /∈ Σ, its projection onto ∂Ω is denoted by p∂Ω(x).
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Signed distance function and geometry (II)

⌦

⌃•

•

x

p@⌦(x)

x0

•

•

•

y1

y2

x has a unique projection over ∂Ω, whereas x ′ has two such points y1, y2.
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Signed distance function and geometry (III)

Proposition 3.
Let Ω ⊂ Rd be a Lipschitz, bounded open set;

• The signed distance function dΩ is differentiable at every point x /∈ Σ, and its
gradient reads:

∇dΩ(x) =
x − p∂Ω(x)

dΩ(x)
.

In particular, |∇dΩ(x)|= 1 wherever it makes sense.

• If Ω is of class C1, this last quantity equals ∇dΩ(x) = n(p∂Ω(x)).

• If Ω is of class Ck , k ≥ 2, then dΩ is also of class Ck on a neighborhood of ∂Ω.
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Signed distance function and geometry (IV)

⌦

⌃x

•

•

p@⌦(x)

rd⌦(x)

n(p@⌦(x))

Some level sets of dΩ are depicted in color; dΩ is as smooth as the boundary ∂Ω on the
shaded area (at least).
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Additional properties of the signed distance function

• The normal vector n : ∂Ω→ Rd and a
tangential vector field τ : ∂Ω→ Rd are
extended to any x ∈ Rd \ Σ by:

n(x) ≡ n(p∂Ω(x)),

and
τ(x) ≡ τ(p∂Ω(x)).

•

•
x

p@⌦(x)

n(p@⌦(x))
⌧(p@⌦(x))

⌧(x)
n(x)

• It is possible to calculate the shape derivative of the signed distance function:

For given x ∈ Rd , Ω 7→ dΩ(x),

and that of integral functionals of the form:

Ω 7→
∫
D

j(dΩ) dx , where j : R→ R.
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The ‘crust-pattern’ model (I)

• The contour of the assembled shape Ω is first printed carefully as a thin crust
composed of several offsets of ∂Ω.

• An infill pattern is used for the bulk of Ω: often, rasters of material are
deposited with pre-defined orientation and density (air gap between rasters).

Constructed shape Printing contour

Anisotropic crust,
isotropic bulk

anisotropic bulk
Anisotropic crust,

Horizontal rasters,

Vertical rasters,

small air gap

small air gap

large air gap
Vertical rasters,
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The ‘crust-pattern’ model (II)

When compared to the expected (isotropic) material properties Aref, the properties
Acp

Ω of a material printed according to the ‘crust-pattern’ model are such that:
• In the crust region,

• The Young’s modulus Eτ in the tangential direction is Eτ = Eref;
• The Young’s modulus En in the normal direction is ‘weak’: En < Eref.

• In the infill region,
• Both Eτ0 and En0 are proportional to the density ρ of the infill pattern.
• The Young’s modulus is stronger in the direction τ0 of the rasters than in the

transverse direction n0: En0 < Eτ0 .

n
⌧

n

En E⌧

n
⌧

n

En E⌧

n
⌧

n

En E⌧
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The ‘crust-pattern’ model (III)

This model relies on a subdivision of the computational domain D into 3 regions:
• The crust { x ∈ D, |dΩ(x)| < ε};
• The bulk region {x ∈ D, dΩ(x) < −ε};
• The ‘void’ {x ∈ D, dΩ(x) > ε}.

The Hooke’s tensor Acp
Ω (x) reads:

∀x ∈ D, Acp
Ω (x) = Acp(dΩ(x), n(x)),

where, introducing smooth interpolation functions hm, hp : R→ R,

Acp(d , n) = hm(d) Acp
bulk + (1− hm(d)− hp(d))Acrust(n) + hp(d) Avoid.

n

⌦

" "

�" 0 n"

Pbulk

Pcrust

Pvoid

Interpolation of any (scalar) entry P of the tensor Acp
Ω .
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The ‘offset’ model (I)

• The considered 2d layer Ω is printed by following the offsets of the contour ∂Ω
until the core of the layer.

• When compared to the reference material Aref, the properties encoded in the
tensor Aoff

Ω are such that:

• The Young’s modulus Eτ in the tangential direction is Eτ = Eref;
• The Young’s modulus En is ‘weak’ in the normal direction En < Eref;
• All other properties (Poisson’s ratios and shear modulus) are those of the

reference material.

Constructed shape Printing contour O↵set model
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The ‘offset’ model (II)

In the ‘offset model’, only two regions of D are considered:
• The shape Ω itself;

• The void D \ Ω.

The Hooke’s tensor Aoff
Ω (x) reads:

Aoff
Ω (x) = Aoff(dΩ(x), n(x)),

where, introducing an interpolation profile ho : R→ R,

Aoff(d , n) = ho(d) Aoff
bulk(n) + (1− ho(d))Avoid.

n

⌦

" "

�" 0 n"

Pbulk

Pvoid

Interpolation of any of the (scalar) entries P of the Hooke’s tensor Aoff
Ω .
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Extension to the 3d case

These models extend to the 3d situation by considering an orthotropic Hooke’s
tensor with weak rigidity (i.e. Young’s modulus) in the build direction.

⌦

n(x)

e3

e1 e2

⌧H(x) nH(x)

•x

⌦x3

Dx3

In three space dimensions, the natural frame for the orthotropy of the material in the crust
region is (τH , nH , e3).
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Shape derivative

We consider a generic Hooke’s tensor of the form:

AΩ(x) = A(dΩ(x), n(x)), for some mapping A : Rs × Rd
n → L(Sd(R), Sd(R)).

Theorem 4.

The compliance

J(Ω) =

∫
D

AΩe(uΩ) : e(uΩ) ds

is shape differentiable at Ω ∈ Uad and its shape derivative reads:

J′(Ω)(θ) =

∫
Γ

(∫
ray∂Ω

(x)

qΩ(x, dΩ(z))

(
∂A

∂s
(dΩ, n)e(uΩ) : e(uΩ)

)
(z) d`(z)

)
(θ · n)(x) ds(x)

−
∫

Γ

div∂Ω

(∫
ray∂Ω

(x)

QΩ(x, dΩ(z))

(
∂A

∂n
(dΩ, n)e(u) : e(u)

)
(z) d`(z)

)
(θ · n)(x)ds(x)

+

∫
Γ

(∫
ray∂Ω

(x)

QΩ(x, dΩ(z))

(
∂A

∂n
(dΩ, n)e(u) : e(u)

)
(z) d`(z)

)
· n κ(x)(θ · n)(x) ds(x),

where div∂Ωv := divv − (∇vn) · n is the tangential divergence of a smooth vector
field v : ∂Ω→ Rd , and the quantities qΩ(x , s) and QΩ(x , s) are defined by:

qΩ(x , s) =
d−1∏
i=1

(1 + sκi (x)), and QΩ(x , s) = −I + sIIΩ(x)(I + sIIΩ(x))−1.
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The cantilever, considering different printing patterns (I)

We consider the two-dimensional cantilever example.

�D

•

f

1

0.5

(Left) Setting and (right) initial design in the cantilever test case.

We minimize the volume of the structure:
min

Ω
Vol(Ω),

s.t. C(Ω) ≤ αc
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The cantilever, considering different printing patterns (II)

Optimized 2d cantilevers in (left) the ‘molded’ case, and (right) the ‘offset’ model.
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The cantilever, considering different printing patterns (III)

(c) isotropic crust and infill (d) isotropic crust and anisotropic infill

(e) anisotropic crust and infill (f) anisotropic crust and isotropic infill

Optimized shapes in the cantilever example obtained with the four ‘crust-pattern’ models
considered for the assembly of shapes, using an infill density ρcpbulk = 0.90.
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The cantilever, considering different printing patterns (IV)

(c) isotropic crust and infill (d) isotropic crust and anisotropic infill

(e) anisotropic crust and infill (f) anisotropic crust and isotropic infill

Optimized shapes in the cantilever example obtained with the four ‘crust-pattern’ models
considered for the assembly of shapes, using an infill density ρcpbulk = 0.75.
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The cantilever, considering different printing patterns (V)

(c) isotropic crust and infill (d) isotropic crust and anisotropic infill

(e) anisotropic crust and infill (f) anisotropic crust and isotropic infill

Optimized shapes in the cantilever example obtained with the four ‘crust-pattern’ models
considered for the assembly of shapes, using an infill density ρcpbulk = 0.60.
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The MBB beam, considering different printing patterns (I)

We now turn to the two-dimensional MBB beam example.

g

1

6

Setting of the MBB beam test case.

Again, we minimize the volume of the structure:

min
Ω

Vol(Ω),

s.t. C(Ω) ≤ αc

64 / 68



The MBB beam, considering different printing patterns (II)

(a) ‘Molded’ situation

(b) ‘Crust-pattern’ model with anisotropic crust, isotropic bulk

(c) ‘Crust-pattern’ model with isotropic crust, isotropic bulk

(d) ‘Crust-pattern’ model with isotropic crust, anisotropic bulk with hori-
zontal rasters
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Thank you !

Thank you for your attention!
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