# Numerical methods for piecewise Chebyshevian splines and applications

Carolina Beccari

Dip. di Matematica, Alma Mater Studiorum - Università di Bologna *Collaboration with:* Giulio Casciola and Lucia Romani (Univ. of Bologna),

Marie-Laurence Mazure (Université Grenoble Alpes)

CALCOLO SCIENTIFICO E MODELLI MATEMATICI: alla ricerca delle cose nascoste attraverso le cose manifeste Rome, April 6-8 2022

# outline

(1) From polynomial splines to. . .

(2) ... piecewise Chebyshevian splines

③ Existence of B-spline bases and refinability

(4) Evaluation and computational aspects

(5) Applications: design, interpolation and isogeometric analysis

# Polynomial splines

- Given  $I = [a, b] \subset \mathbb{R}$ ,  $\mathbb{P}_n$  polynomials of deg. *n*, choose:
  - ▶  $t_1 < \cdots < t_q \in [a, b]$ : interior knots
  - ▶ positive integers  $m_1, \ldots, m_q$ : knot multiplicities, with  $1 \leq m_k \leq n$  for  $1 \leq k \leq q$
- Spline space S := set of all functions  $S : [t_0, t_{q+1}] := [a, b] \rightarrow \mathbb{R}$  s.t.
  - ▶ for  $0 \leq k \leq q$ , there exists  $F_k \in \mathbb{P}_n$  such that  $S(x) = F_k(x)$  for all  $x \in [t_k, t_{k+1}]$
  - $\triangleright$  S is  $C^{n-m_k}$  at  $t_k$

# Polynomial splines

- Given  $I = [a, b] \subset \mathbb{R}$ ,  $\mathbb{P}_n$  polynomials of deg. *n*, choose:
  - ▶  $t_1 < \cdots < t_q \in [a, b]$ : interior knots
  - positive integers  $m_1, \ldots, m_q$ : knot multiplicities, with  $1 \leq m_k \leq n$  for  $1 \leq k \leq q$
- Spline space S := set of all functions  $S : [t_0, t_{q+1}] := [a, b] \rightarrow \mathbb{R}$  s.t.
  - ▶ for  $0 \leq k \leq q$ , there exists  $F_k \in \mathbb{P}_n$  such that  $S(x) = F_k(x)$  for all  $x \in [t_k, t_{k+1}]$
  - $\triangleright$  S is  $C^{n-m_k}$  at  $t_k$

• dim
$$\mathbb{S} = n + 1 + m$$
, with  $m := \sum_{k=1}^{q} m_k$ 

| From polynomial | Chebyshevian | Existence of        | Evaluation | Applications |
|-----------------|--------------|---------------------|------------|--------------|
| splines to      | (B-)splines  | refinable B-splines |            |              |

### B-spline bases

• For any  $S \in \mathbb{S}$ :  $S(x) = \sum_{i=-n}^{m} N_i^n(x) P_i$ ,  $x \in [a, b]$ 

where  $(N_{-n}, \ldots, N_m)$  is the **B-spline basis**. For simple knots it satisfies :

- Support property:  $Supp(N_i^n) = [t_i, t_{i+n+1}]$
- Positivity property:  $N_i^n(x) > 0$  for  $x \in ]t_i, t_{i+n+1}[$

- Normalisation property: 
$$\sum_{i=-n}^{q} N_i^n = \mathbf{1}$$

 $\longrightarrow$  optimal basis for shape preservation and numerical behavior

with

$$t_{-n} := t_{-n+1} := \cdots = t_{-1} := a$$
  
 $t_{q+2} := \cdots = t_{q+n} := t_{q+n+1} := b$ 



| From polynomial | Chebyshevian | Existence of        | Evaluation | Applications |
|-----------------|--------------|---------------------|------------|--------------|
| splines to      | (B-)splines  | refinable B-splines |            |              |

### B-spline bases

• For any  $S \in \mathbb{S}$ :  $S(x) = \sum_{i=-n}^{m} N_i^n(x) P_i$ ,  $x \in [a, b]$ 

where  $(N_{-n}, \ldots, N_m)$  is the **B-spline basis**. For simple knots it satisfies :

- Support property:  $Supp(N_i^n) = [t_i, t_{i+n+1}]$
- Positivity property:  $N_i^n(x) > 0$  for  $x \in ]t_i, t_{i+n+1}[$

- Normalisation property: 
$$\sum_{i=-n}^{q} N_i^n = \mathbf{1}$$

 $\longrightarrow$  optimal basis for shape preservation and numerical behavior

with

$$t_{-n} := t_{-n+1} := \cdots = t_{-1} := a$$
  
 $t_{q+2} := \cdots = t_{q+n} := t_{q+n+1} := b$ 



• When q = 0 (no interior knot)  $\Rightarrow$  Bernstein basis



# Polynomial splines and design



- cubic splines with 19 control points
- 🙂 Excellent mimicking, local control
- Need to change control points to improve the curve



### Polynomial splines and design/interpolation



cubic splines with 19 control points

Excellent mimicking, local control

Need to change control points to improve the curve



interpolating cubic splines



Unique solution under interlacing conditions [Schoenberg-Whitney 53]

Undesired oscillations

| Chebyshevian | Existence of        | Evaluation | Applications |
|--------------|---------------------|------------|--------------|
| (B-)splines  | refinable B-splines |            |              |

### A possible solution:

### introduce shape parameters

| Chebyshevian Existence of Evaluation<br>(B-)splines refinable B-splines | Applications |
|-------------------------------------------------------------------------|--------------|
|-------------------------------------------------------------------------|--------------|

•  $\mathbb{E}(n+1)$ -dimensional space contained in  $C^{n}(I)$ .

|  | Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|--|-----------------------------|-------------------------------------|------------|--------------|
|--|-----------------------------|-------------------------------------|------------|--------------|

- $\mathbb{E}(n+1)$ -dimensional space contained in  $C^{n}(I)$ .
- ... is an Extended Chebyshev (EC) spaces on I if  $Z_{n+1}(F) \leq n$  for any nonzero  $F \in \mathbb{E} \subset C^n(I) \rightarrow$  behaves like a polynomial space **but** with inherent parameters!

| Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|-----------------------------|-------------------------------------|------------|--------------|
|-----------------------------|-------------------------------------|------------|--------------|

- $\mathbb{E}(n+1)$ -dimensional space contained in  $C^{n}(I)$ .
- ... is an Extended Chebyshev (EC) spaces on I if  $Z_{n+1}(F) \leq n$  for any nonzero  $F \in \mathbb{E} \subset C^n(I) \rightarrow$  behaves like a polynomial space **but** with inherent parameters!

EXAMPLES: the spaces spanned by

- ▶ 1, x, ...,  $x^{n-2}$ , cosh x, sinh x (on  $I = \mathbb{R}$ ) "hyperbolic spaces"
- ▶ 1, x, ...,  $x^{n-2}$ , cos x, sin x (on  $|I| < 2\pi$  for  $n \ge 3$ ) "trigonometric spaces"
- $1, x^{k+1}, ..., x^{k+n}$  with k > 0 (on  $I = ]0, +\infty[) ...$

| Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|-----------------------------|-------------------------------------|------------|--------------|
|-----------------------------|-------------------------------------|------------|--------------|

- $\mathbb{E}(n+1)$ -dimensional space contained in  $C^{n}(I)$ .
- ... is an Extended Chebyshev (EC) spaces on I if  $Z_{n+1}(F) \leq n$  for any nonzero  $F \in \mathbb{E} \subset C^n(I) \rightarrow$  behaves like a polynomial space **but** with inherent parameters!

EXAMPLES: the spaces spanned by

- ▶ 1, x, ...,  $x^{n-2}$ , cosh x, sinh x (on  $I = \mathbb{R}$ ) "hyperbolic spaces"
- ▶ 1, x, ...,  $x^{n-2}$ , cos x, sin x (on  $|I| < 2\pi$  for  $n \ge 3$ ) "trigonometric spaces"
- $1, x^{k+1}, \ldots, x^{k+n}$  with k > 0 (on  $I = ]0, +\infty[) \ldots$
- E contains constants.

| Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|-----------------------------|-------------------------------------|------------|--------------|
|-----------------------------|-------------------------------------|------------|--------------|

- $\mathbb{E}(n+1)$ -dimensional space contained in  $C^{n}(I)$ .
- ... is an Extended Chebyshev (EC) spaces on I if  $Z_{n+1}(F) \leq n$  for any nonzero  $F \in \mathbb{E} \subset C^n(I) \rightarrow$  behaves like a polynomial space **but** with inherent parameters!

EXAMPLES: the spaces spanned by

- ▶ 1, x, ...,  $x^{n-2}$ , cosh x, sinh x (on  $I = \mathbb{R}$ ) "hyperbolic spaces"
- ▶ 1, x, ...,  $x^{n-2}$ , cos x, sin x (on  $|I| < 2\pi$  for  $n \ge 3$ ) "trigonometric spaces"

▶ 1, 
$$x^{k+1}$$
,...,  $x^{k+n}$  with  $k > 0$  (on  $I = ]0, +\infty[)$  ...

E contains constants.



\*  $D\mathbb{E}$  EC-space on  $I \Rightarrow \mathbb{E}$  EC-space on I

### Piecewise Chebyshevian splines

- Choose:
  - ▶ interior knots  $t_1 < \cdots < t_q$  knots interior to  $I := [t_0, t_{q+1}]$  and their multiplicities  $m_1, \ldots, m_q, 0 \leq m_k \leq n$
  - ▶ a sequence  $\mathbb{E}_k$ , k = 0, ..., q of section spaces:  $\forall k$ ,  $\mathbb{E}_k$  is (n + 1)-dimensional, contains constants, and  $D\mathbb{E}_k$  is a EC on  $[t_k, t_{k+1}]$
- Chebyshevian spline space S := set of all continuous functions  $S : I \to \mathbb{R}$  s.t.:
  - for k = 0, ..., q: the restriction of S to  $[t_k, t_{k+1}]$  is in  $\mathbb{E}_k$
  - for k = 1, ..., q, S satisfies the connection condition:  $(S'(t_k^+), ..., S^{(n-m_k)}(t_k^+))^T = (S'(t_k^-), ..., S^{(n-m_k)}(t_k^-))^T$

### Piecewise Chebyshevian splines

- Choose:
  - ▶ interior knots  $t_1 < \cdots < t_q$  knots interior to  $I := [t_0, t_{q+1}]$  and their multiplicities  $m_1, \ldots, m_q, 0 \leq m_k \leq n$
  - ► a sequence E<sub>k</sub>, k = 0,..., q of section spaces: ∀k, E<sub>k</sub> is (n + 1)-dimensional, contains constants, and DE<sub>k</sub> is a EC on [t<sub>k</sub>, t<sub>k+1</sub>]
- Chebyshevian spline space S := set of all continuous functions  $S : I \to \mathbb{R}$  s.t.:
  - for k = 0, ..., q: the restriction of S to  $[t_k, t_{k+1}]$  is in  $\mathbb{E}_k$

► for k = 1, ..., q, S satisfies the connection condition:  $(S'(t_k^+), ..., S^{(n-m_k)}(t_k^+))^T = M_k (S'(t_k^-), ..., S^{(n-m_k)}(t_k^-))^T$  connection matrix at  $t_k$ :

lower-triangular, of order  $(n - m_k)$ , positive diagonal elements

### Piecewise Chebyshevian splines

- Choose:
  - ▶ interior knots  $t_1 < \cdots < t_q$  knots interior to  $I := [t_0, t_{q+1}]$  and their multiplicities  $m_1, \ldots, m_q, 0 \leq m_k \leq n$
  - ► a sequence E<sub>k</sub>, k = 0,..., q of section spaces: ∀k, E<sub>k</sub> is (n + 1)-dimensional, contains constants, and DE<sub>k</sub> is a EC on [t<sub>k</sub>, t<sub>k+1</sub>]
- Chebyshevian spline space S := set of all continuous functions  $S : I \to \mathbb{R}$  s.t.:
  - for k = 0, ..., q: the restriction of S to  $[t_k, t_{k+1}]$  is in  $\mathbb{E}_k$

► for k = 1, ..., q, S satisfies the connection condition:  $(S'(t_k^+), ..., S^{(n-m_k)}(t_k^+))^T = M_k (S'(t_k^-), ..., S^{(n-m_k)}(t_k^-))^T$   $\uparrow$ connection matrix at  $t_k$ :

lower-triangular, of order  $(n - m_k)$ , positive diagonal elements

• dim $\mathbb{S} = (n+1) + m$ , with  $m := \sum_{k=1}^{q} m_k$ 

| Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|-----------------------------|-------------------------------------|------------|--------------|
|                             |                                     |            |              |

• Does refinement preserve existence of a B-spline basis, if any?

| (B-)spines remable D-spines |  | Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|-----------------------------|--|-----------------------------|-------------------------------------|------------|--------------|
|-----------------------------|--|-----------------------------|-------------------------------------|------------|--------------|

- Does refinement preserve existence of a B-spline basis, if any?
- Refinement: increase dimS by adding knots or increasing multiplicities

| Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|-----------------------------|-------------------------------------|------------|--------------|
|-----------------------------|-------------------------------------|------------|--------------|

- Does refinement preserve existence of a B-spline basis, if any?
- \* Refinement: increase dimS by adding knots or increasing multiplicities
- **Counterexample:** S with section spaces  $\mathbb{E}_k$  spanned by  $1, x, x^2, \cos x, \sin x, \forall k, C^3$  everywhere,  $D\mathbb{E}_k$  is an EC-space for  $t_{k+1} t_k < 2\pi$



uniform knot spacing  $t_{k+1} - t_k = 3.5$ 

| Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|-----------------------------|-------------------------------------|------------|--------------|
|-----------------------------|-------------------------------------|------------|--------------|

- Does refinement preserve existence of a B-spline basis, if any?
- \* Refinement: increase dimS by adding knots or increasing multiplicities
- Counterexample: S with section spaces  $\mathbb{E}_k$  spanned by  $1, x, x^2, \cos x, \sin x, \forall k, C^3$  everywhere,  $D\mathbb{E}_k$  is an EC-space for  $t_{k+1} t_k < 2\pi$



uniform knot spacing  $t_{k+1} - t_k = 3.5$ 



| Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|-----------------------------|-------------------------------------|------------|--------------|
|-----------------------------|-------------------------------------|------------|--------------|

- Does refinement preserve existence of a B-spline basis, if any?
- \* Refinement: increase dimS by adding knots or increasing multiplicities
- Counterexample: S with section spaces  $\mathbb{E}_k$  spanned by  $1, x, x^2, \cos x, \sin x, \forall k, C^3$  everywhere,  $D\mathbb{E}_k$  is an EC-space for  $t_{k+1} t_k < 2\pi$



uniform knot spacing  $t_{k+1} - t_k = 3.5$ 



• Joining a sequence of section EC-spaces  $\mathbb{E}_k \not\Longrightarrow$  Existence of a B-spline basis.

| Chebyshevian<br>(B-)splines | Existence of<br>refinable B-splines | Evaluation | Applications |
|-----------------------------|-------------------------------------|------------|--------------|
|-----------------------------|-------------------------------------|------------|--------------|

- Does refinement preserve existence of a B-spline basis, if any?
- \* Refinement: increase dimS by adding knots or increasing multiplicities
- Counterexample: S with section spaces  $\mathbb{E}_k$  spanned by  $1, x, x^2, \cos x, \sin x, \forall k, C^3$  everywhere,  $D\mathbb{E}_k$  is an EC-space for  $t_{k+1} t_k < 2\pi$



uniform knot spacing  $t_{k+1} - t_k = 3.5$ 



knot insertion at  $\hat{t} = 1/2(t_\ell + t_{\ell+1})$ 

- Joining a sequence of section EC-spaces  $\mathbb{E}_k \not\Longrightarrow$  Existence of a B-spline basis.
- One B-spline basis → Refinable B-spline basis

| Existence of<br>refinable B-splines | Evaluation | Applications |
|-------------------------------------|------------|--------------|
|-------------------------------------|------------|--------------|

#### How to determine the existence of A

### REFINABLE B-SPLINE BASIS?

### characterization of existence

#### piecewise weight functions

 $(w_1, \ldots, w_n)$ : w<sub>i</sub> is defined, positive,  $C^{n-i}$ separately on each  $[t_k^+, t_{k+1}^-]$ 

### characterization of existence

#### piecewise weight functions

 $(w_1, \ldots, w_n)$ :  $w_i$  is defined, positive,  $C^{n-i}$ separately on each  $[t_k^+, t_{k+1}^-]$ 

 associated piecewise generalized derivatives:

$$L_i F := \frac{1}{w_i} DL_{i-1} F,$$
  

$$i = 1, \dots, n$$
  
with  $L_0 F := F$ 

### Characterization of existence

- piecewise weight functions

   (w1,...,wn):
   wi is defined, positive, C<sup>n-i</sup> separately on each [t<sup>+</sup><sub>k</sub>, t<sup>-</sup><sub>k+1</sub>]
- associated piecewise generalized derivatives:

$$L_i F := \frac{1}{w_i} DL_{i-1} F,$$
  

$$i = 1, \dots, n$$
  
with  $L_0 F := F$ 

#### Theorem [Mazure 2011]

Equivalence of:

(i) ∃ Refinable B-spline basis

(ii) ∃ piecewise generalized derivatives L<sub>1</sub>,..., L<sub>n</sub> such that, for each S ∈ S and each k = 1,..., q:

$$(L_1S(t_k^+),\ldots,L_{n-m_k}S(t_k^+)) =$$

 $\left(L_1S(t_k^-),\ldots,L_{n-m_k}S(t_k^-)\right)$ 

### Characterization of existence

- piecewise weight functions

   (w1,...,wn):
   wi is defined, positive, C<sup>n-i</sup> separately on each [t<sup>+</sup><sub>k</sub>, t<sup>-</sup><sub>k+1</sub>]
- associated piecewise generalized derivatives:

$$L_i F := \frac{1}{w_i} DL_{i-1} F,$$
  

$$i = 1, \dots, n$$
  
with  $L_0 F := F$ 

#### Theorem [Mazure 2011]

Equivalence of:

(i) ∃ Refinable B-spline basis

(ii)  $\exists$  piecewise generalized derivatives  $L_1, \ldots, L_n$ such that, for each  $S \in \mathbb{S}$  and each  $k = 1, \ldots, q$ :  $(L_1S(t_k^+), \ldots, L_{n-m_k}S(t_k^+)) =$  $(L_1S(t_k^-), \ldots, L_{n-m_k}S(t_k^-))$ 



▶ numerical test for any *n* 

| Existence of        | Evaluation | Applications |
|---------------------|------------|--------------|
| refinable B-splines |            |              |

#### Numerical test of existence

### and evaluation algorithm

• (ii)  $\Longrightarrow$  (i) "easy" part, standard

w piecewise weight function  $C^n$  and >0 on each  $[t^+_k,\,t^-_{k+1}]$ 

• (ii)  $\Longrightarrow$  (i) "easy" part, standard

w piecewise weight function  $C^n$  and >0 on each  $[t^+_k,t^-_{k+1}]$ 

 $\ensuremath{\mathbb{S}}$  with ref. basis

• (ii)  $\Longrightarrow$  (i) "easy" part, standard

w piecewise weight function  $C^n$  and > 0 on each  $[t_k^+, t_{k+1}^-]$ 



```
• (ii) \implies (i) "easy" part, standard

w piecewise weight function C^n and

> 0 on each [t_k^+, t_{k+1}^-]

\widehat{\mathbb{S}} with ref. basis

continuous integration

w \mathbb{S}

multiplication by w

\mathbb{S} with ref. basis
```

• (ii)  $\implies$  (i) "easy" part, standard w piecewise weight function  $C^n$  and > 0 on each  $[t_k^+, t_{k+1}^-]$   $\widehat{\mathbb{S}}$  with ref. basis continuous integration  $w \widehat{\mathbb{S}}$ multiplication by w  $\widehat{\mathbb{S}}$  with ref. basis

 (i) ⇒ (ii) : Diminish the dimension via an appropriate generalized derivative L<sub>1</sub>?

 (i) ⇒ (ii) : Diminish the dimension via an appropriate generalized derivative L<sub>1</sub>?

 $\ensuremath{\mathbb{S}}$  with ref. basis

• (ii)  $\implies$  (i) "easy" part, standard w piecewise weight function  $C^n$  and > 0 on each  $[t_k^+, t_{k+1}^-]$   $\widehat{\mathbb{S}}$  with ref. basis continuous integration  $w \mathbb{S}$ multiplication by w  $\mathbb{S}$  with ref. basis

 (i) ⇒ (ii) : Diminish the dimension via an appropriate generalized derivative L<sub>1</sub>?

 $\mathbb{S} \text{ with ref. basis} \\ \downarrow \\ D\mathbb{S} \\ \downarrow \\ L_1\mathbb{S} := \frac{1}{w_1}\mathbb{S} \quad \text{with ref. basis?}$
### key ideas

 (ii) ⇒ (i) "easy" part, standard w piecewise weight function  $C^n$  and > 0 on each  $[t_{k}^{+}, t_{k+1}^{-}]$  $\widehat{\mathbb{S}}$  with ref. basis continuous integration wS multipli cation by w S with ref. basis

 (i) ⇒ (ii) : Diminish the dimension via an appropriate generalized derivative L<sub>1</sub>?

S with ref. basis DS  $L_1 \mathbb{S} \coloneqq \frac{1}{2} \mathbb{S}$  with ref. basis? Theorem Let  $U = \sum_{j=1}^{m} u_j N_j$ ,  $w_1 = DU$ . Are equivalent: i = -n(a)  $(u_i)$  strictly increasing sequence (b)  $w_1 > 0$  on each  $[t_k^+, t_{k+1}^-] + L_1 \mathbb{S} = \frac{1}{w_k} D\mathbb{S}$ is a space of continuous piecewise Cheb. splines with a refinable B-spline basis

### key ideas

• (ii)  $\implies$  (i) "easy" part, standard w piecewise weight function  $C^n$  and > 0 on each  $[t_{k}^{+}, t_{k+1}^{-}]$  $\widehat{\mathbb{S}}$  with ref. basis continuous integration wS multipli cation by w S with ref. basis  $\bigstar$   $w_1 = \sum (u_j - u_{j-1})Q_j$ j = -n + 1 $Q_i := DN_i^{\star}$  B-spline like basis (non normalized)  $N_j^\star := \sum N_p$  transition functions

 (i) ⇒ (ii) : Diminish the dimension via an appropriate generalized derivative L<sub>1</sub>?

S with ref. basis DS  $L_1 \mathbb{S} \coloneqq \frac{1}{m} \mathbb{S}$  with ref. basis? Theorem Let  $U = \sum_{j=1}^{m} u_j N_j$ ,  $w_1 = DU$ . Are equivalent: i = -n(a)  $(u_i)$  strictly increasing sequence (b)  $w_1 > 0$  on each  $[t_k^+, t_{k+1}^-] + L_1 \mathbb{S} = \frac{1}{w_k} D\mathbb{S}$ is a space of continuous piecewise Cheb. splines with a refinable B-spline basis

Not knowing a priori whether S has a ref. B-spline basis:

Not knowing a priori whether S has a ref. B-spline basis:

attempt to compute candidate transition functions N<sup>\*</sup><sub>ℓ</sub> ∈ S satisfying (Hermite) interpolation conditions;

Not knowing a priori whether S has a ref. B-spline basis:

- attempt to compute candidate transition functions N<sup>\*</sup><sub>ℓ</sub> ∈ S satisfying (Hermite) interpolation conditions;
- 2) if such a sequence exists

Not knowing a priori whether S has a ref. B-spline basis:

- attempt to compute candidate transition functions N<sup>\*</sup><sub>ℓ</sub> ∈ S satisfying (Hermite) interpolation conditions;
- 2) if such a sequence exists, compute  $Q_{\ell} := DN_{\ell}^{\star} \in DS$
- 3) if, for all  $\ell$ , " $Q_{\ell}$  is positive  $+ \dots$ ", compute  $w_1 \coloneqq \sum_{\ell} Q_{\ell}$  and  $\bar{N}_{\ell} \coloneqq \frac{Q_{\ell}}{w_1} \in L_1 \mathbb{S}$

4) compute  $\bar{N}_{\ell}^{\star} := \sum_{\rho \ge \ell} \bar{N}_{\rho}$  and  $\bar{Q}_{\ell} = D\bar{N}_{\ell}^{\star} \in DL_1 \mathbb{S}$ 

Not knowing a priori whether S has a ref. B-spline basis:

- attempt to compute candidate transition functions N<sup>\*</sup><sub>ℓ</sub> ∈ S satisfying (Hermite) interpolation conditions;
- 2) if such a sequence exists, compute  $Q_{\ell} := DN_{\ell}^{\star} \in DS$

$$\begin{array}{c} \checkmark 3) \text{ if, for all } \ell, \quad ``Q_{\ell} \text{ is positive } + \dots ``, \text{ compute } w_{1} \coloneqq \sum_{\ell} Q_{\ell} \text{ and } \bar{N}_{\ell} \coloneqq \frac{Q_{\ell}}{w_{1}} \in L_{1} \mathbb{S} \\ \hline Q_{\ell} \leftarrow \bar{Q}_{\ell} \\ \hline -4) \text{ compute } \bar{N}_{\ell}^{\star} \coloneqq \sum_{\rho \ge \ell} \bar{N}_{\rho} \text{ and } \bar{Q}_{\ell} = D\bar{N}_{\ell}^{\star} \in DL_{1} \mathbb{S} \end{array}$$

Not knowing a priori whether S has a ref. B-spline basis:

- attempt to compute candidate transition functions N<sup>\*</sup><sub>ℓ</sub> ∈ S satisfying (Hermite) interpolation conditions;
- 2) if such a sequence exists, compute  $Q_{\ell} := DN_{\ell}^{\star} \in DS$

$$\begin{array}{c} \Rightarrow 3 \ \text{if, for all } \ell, \ "Q_{\ell} \text{ is positive } + \dots ", \text{ compute } w_{1} \coloneqq \sum_{\ell} Q_{\ell} \text{ and } \bar{N}_{\ell} \coloneqq \frac{Q_{\ell}}{w_{1}} \in L_{1} \mathbb{S} \\ \hline Q_{\ell} \leftarrow \bar{Q}_{\ell} \\ \hline -4 \ \text{ compute } \bar{N}_{\ell}^{\star} \coloneqq \sum_{p \geqslant \ell} \bar{N}_{p} \text{ and } \bar{Q}_{\ell} = D\bar{N}_{\ell}^{\star} \in DL_{1} \mathbb{S} \end{array}$$

 $\bigcirc$  If we can get to the end (i.e. local dimension 2)  $\Rightarrow$  S has ref. basis

Not knowing a priori whether S has a ref. B-spline basis:

- attempt to compute candidate transition functions N<sup>\*</sup><sub>ℓ</sub> ∈ S satisfying (Hermite) interpolation conditions;
- 2) if such a sequence exists, compute  $Q_{\ell} := DN_{\ell}^{\star} \in DS$

$$\begin{array}{c} \Rightarrow 3 ) \text{ if, for all } \ell, \ "Q_{\ell} \text{ is positive } + \dots ", \text{ compute } w_1 \coloneqq \sum_{\ell} Q_{\ell} \text{ and } \bar{N}_{\ell} \coloneqq \frac{Q_{\ell}}{w_1} \in L_1 \mathbb{S} \\ \hline Q_{\ell} \longleftarrow \bar{Q}_{\ell} \\ \hline -4 ) \text{ compute } \bar{N}_{\ell}^{\star} \coloneqq \sum_{p \geqslant \ell} \bar{N}_p \text{ and } \bar{Q}_{\ell} = D\bar{N}_{\ell}^{\star} \in DL_1 \mathbb{S} \\ \end{array}$$

 $\bigcirc$  If we can get to the end (i.e. local dimension 2)  $\Rightarrow$  S has ref. basis

In case any of the above if statements has a negative answer: STOP, S does not have a refinable B-spline basis.





# More on the evaluation of the B-spline basis & computational aspects

#### Evaluation by transition functions

Recall:

$$N_{\ell}^{\star} := \sum_{\rho \geqslant \ell} N_{
ho} \qquad \longleftrightarrow \qquad \Lambda$$

$$N_\ell = N_\ell^\star - N_{\ell+1}^\star$$



### Evaluation by transition functions

Recall:

$$V_{\ell}^{\star} \coloneqq \sum_{p \ge \ell} N_p \qquad \longleftrightarrow \qquad N_{\ell} = N_{\ell}^{\star} - N_{\ell+1}^{\star}$$

• From the properties of the B-spline basis (simple knots): (i)  $N_{\ell}^{\star} = \begin{cases} 0 & x \leq t_{\ell} \\ 1 & x \geq t_{\ell+n} \end{cases}$ 



(ii)  $N_{\ell}^*$  vanishes exactly *n* times at  $t_{\ell}$  and  $1 - N_{\ell}^*$  vanishes exactly *n* times at  $t_{\ell+n}$ 



### Evaluation by transition functions

Recall:

$$N_{\ell}^{\star} \coloneqq \sum_{p \ge \ell} N_p \qquad \longleftrightarrow \qquad \qquad N_{\ell} = N_{\ell}^{\star} - N_{\ell+1}^{\star}$$

• From the properties of the B-spline basis (simple knots): (i)  $N_{\ell}^{\star} = \begin{cases} 0 & x \leq t_{\ell} \\ 1 & x \geq t_{\ell+n} \end{cases}$ 



(ii)  $N_\ell^*$  vanishes exactly *n* times at  $t_\ell$  and  $1 - N_\ell^*$  vanishes exactly *n* times at  $t_{\ell+n}$ 

• (i) + (ii)  $\rightsquigarrow$  each  $N_{\ell}^{\star}$  is the *unique solution* of an Hermite interpolation problem of size  $n^2 + n$  at most  $1_{\uparrow}$ 

$$\begin{cases} D^{r} N_{\ell}^{\star}(t_{\ell}) = 0 \\ D_{-}^{r} N_{\ell}^{\star}(t_{j}) = D_{+}^{r} N_{\ell}^{\star}(t_{j}), & j = \ell + 1, \dots, \ell + n - 1 \\ D^{r} N_{\ell}^{\star}(t_{\ell}) = \delta_{r,0} & r = 0, \dots, n - 1 \end{cases}$$



#### A comparison of computational procedures

#### Evaluation by Transition Functions

B., Casciola, Romani, 2022

**TF1** for each k = 0, ..., q, evaluate the Wronskian matrices of the given basis in  $\mathbb{E}_k$  at  $t_k$  and  $t_{k+1}$ ;

**TF2** solve as many linear systems  $\bigstar$  as dim $(\mathbb{S}) - 1$ , to determine all the  $N_{\ell}^{\star}$ .

### A comparison of computational procedures

#### Evaluation by Transition Functions

B., Casciola, Romani, 2022

**TF1** for each k = 0, ..., q, evaluate the Wronskian matrices of the given basis in  $\mathbb{E}_k$  at  $t_k$  and  $t_{k+1}$ ;

**TF2** solve as many linear systems  $\bigstar$  as dim $(\mathbb{S}) - 1$ , to determine all the  $N_{\ell}^{\star}$ .

Evaluation by Extraction C perator I Hiemstra, Hughes, Manni, Speleers, Toshniwal, 2020; Speleers, 2022

EO1 = TF1;

- **EO2** for each k, compute the BB in  $\mathbb{E}_k$  by solving (n+1) linear systems of size (n+1);
- **EO3** for each k, evaluate the Wronskian matrices of the BB at  $t_k$  and  $t_{k+1}$  and construct the matrix that stores the continuity conditions of S;
- EO4 compute the Extraction Operator → determine (for each break-point and each continuity order) the null space of a suitable vector.

### A comparison of computational procedures

#### Evaluation by Transition Functions

B., Casciola, Romani, 2022

**TF1** for each k = 0, ..., q, evaluate the Wronskian matrices of the given basis in  $\mathbb{E}_k$  at  $t_k$  and  $t_{k+1}$ ;

**TF2** solve as many linear systems  $\bigstar$  as dim $(\mathbb{S}) - 1$ , to determine all the  $N_{\ell}^{\star}$ .

Evaluation by Extraction C perator I Hiemstra, Hughes, Manni, Speleers, Toshniwal, 2020; Speleers, 2022

EO1 = TF1;

- **EO2** for each k, compute the BB in  $\mathbb{E}_k$  by solving (n+1) linear systems of size (n+1);
- **EO3** for each k, evaluate the Wronskian matrices of the BB at  $t_k$  and  $t_{k+1}$  and construct the matrix that stores the continuity conditions of S;
- EO4 compute the Extraction Operator → determine (for each break-point and each continuity order) the null space of a suitable vector.

| Qualitative comparison of step 2:                                                         |     |           |                     |  |
|-------------------------------------------------------------------------------------------|-----|-----------|---------------------|--|
| Quantative companion of step 21                                                           |     | # systems | size                |  |
| $n = 6$ , 4 intervals, simple knots $\Rightarrow \dim(\mathbb{S}) = 10  \rightsquigarrow$ | TF2 | 9         | $\leq 28 \times 28$ |  |
|                                                                                           | EO2 | 28        | 7 × 7               |  |
| Numerical methods for piecewise Chebyshevian splines & applications Carolina Beccari      |     |           | 1                   |  |

Apply TF and EO to the computation of the Bernstein basis in  $\mathbb{E}$  spanned by  $1, \ldots, x^n$ ,  $\cosh(10x)$ ,  $\sinh(10x)$ , on [a, b]



Apply TF and EO to the computation of the Bernstein basis in  $\mathbb{E}$  spanned by  $1, \ldots, x^n$ ,  $\cosh(10x)$ ,  $\sinh(10x)$ , on [a, b]



Apply TF and EO to the computation of the Bernstein basis in  ${\mathbb E}$  spanned by

 $1, \ldots, x^n, \cosh(10x), \sinh(10x), n = 13$ 

Symbolic error test

| Bi | TF          | EO          |
|----|-------------|-------------|
| 0  | 6.66134e-16 | 9.63072e-07 |
| 1  | 3.89433e-12 | 2.60750e-01 |
| 2  | 2.63505e-11 | 1.82676e-03 |
| 3  | 1.68028e-10 | 1.06772e-03 |
| 4  | 3.09308e-10 | 5.95284e-05 |
| 5  | 3.49708e-10 | 7.39515e-06 |
| 6  | 2.91161e-10 | 7.17741e-07 |
| 7  | 1.49372e-10 | 8.07312e-08 |
| 8  | 4.63247e-11 | 4.78432e-09 |
| 9  | 6.89226e-12 | 5.24595e-10 |
| 10 | 1.89137e-12 | 3.09941e-11 |
| 11 | 5.37847e-13 | 4.54567e-12 |
| 12 | 1.27044e-13 | 1.51379e-13 |
| 13 | 6.84730e-14 | 6.10623e-15 |
| 14 | 3.21965e-15 | 9.99201e-16 |
| 15 | 5.55111e-17 | 4.13590e-25 |

Symmetry check

| $(B_i, B_{15-i})$ | TF          | EO          |
|-------------------|-------------|-------------|
| 0,15              | 2.10942e-15 | 9.62666e-07 |
| 1,14              | 3.89667e-12 | 2.60741e-01 |
| 2,13              | 2.64075e-11 | 1.82279e-03 |
| 3,12              | 1.68133e-10 | 1.06728e-03 |
| 4,11              | 3.09746e-10 | 5.94964e-05 |
| 5,10              | 3.49886e-10 | 7.39387e-06 |
| 6,9               | 2.94925e-10 | 7.17135e-07 |
| 7,8               | 1.82598e-10 | 8.54473e-08 |

 $C^6$  spline with n = 7 and:  $\mathbb{E}_0 = \mathbb{E}_3$  spanned by  $1, x, \ldots, x^5, \cos x, \sin x$  $\mathbb{E}_1 = \mathbb{E}_2$  spanned by  $1, x, \ldots, x^5$ ,  $\cosh x, \sinh x$  $t_1 - t_0 = 1 - w$ ,  $t_2 - t_1 = w$ ,  $t_3 - t_2 = w$ ,  $t_4 - t_3 = 1 - w$ Symbolic error test 10-2 ΈO 10-4 10-6



Symmetry check, w = 0.998

| N <sub>i,11</sub> | TF          | EO          |
|-------------------|-------------|-------------|
| 1,11              | 2.73836e-13 | 1.50357e-12 |
| 2,10              | 2.73337e-13 | 1.91716e-12 |
| 3,9               | 2.20102e-14 | 9.11726e-12 |
| 4,8               | 5.15490e-14 | 3.23910e-02 |
| 5,7               | 6.73439e-14 | 3.12476e-02 |
| 6,6               | 3.02536e-14 | 2.54093e-06 |

#### Applications and examples

# cardinal, symmetric, C<sup>2</sup> quintic splines

 $C^2$  quintic splines, equispaced knots, everywhere  $M_k = M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & b & 1 & 0 \\ 0 & \frac{bc}{2} & c & 1 \end{bmatrix}$ 

Numerical characterization [B., Casciola, Mazure, 2019] S has a refinable B-spline basis  $\iff b > -6$  and c > -4



Interpolation in S with c = 0 and, left to right, b = -5.99; 0 (ordinary  $C^4$  splines);10; 100

#### cardinal mixed trigonometric-hyperbolic splines

 $C^5$  splines with  $t_{k+1} - t_k = h$  and all  $\mathbb{E}_k$  spanned by:

1,  $\cosh ax \cos x$ ,  $\cosh ax \sin x$ ,  $\sinh ax \cos x$ ,  $\sinh ax \sin x$ ,  $\cosh ax$ ,  $\sinh ax$ 





h = 3, left to right: a = 0.01; 0.7; 1.5; 3.

#### 1509eometric analysis with Piecewise Chebyshevian splines

NURBS [Hughes et al. 2005] and generalized splines [Manni et al. 2011] (classical tools in IgA) are examples of Piecewise Chebyshevian splines with refinable B-spline bases

#### 1509eometric analysis with Piecewise Chebyshevian splines

- NURBS [Hughes et al. 2005] and generalized splines [Manni et al. 2011] (classical tools in IgA) are examples of Piecewise Chebyshevian splines with refinable B-spline bases
- Now we have many more such PC spaces . . .

#### 1509eometric analysis with piecewise Chebyshevian splines

- NURBS [Hughes et al. 2005] and generalized splines [Manni et al. 2011] (classical tools in IgA) are examples of Piecewise Chebyshevian splines with refinable B-spline bases
- Now we have many more such PC spaces . . .

Ex:  

$$\begin{cases}
-u''(x) + -2u'(x) + e^{x}u(x) = f(x), & x \in [-\pi, \pi] \\
u(-\pi) = -e^{-\pi}, & u(\pi) = -e^{\pi}
\end{cases}$$

with solution  $u_{ex}(x) = e^x \sin(x) + e^{-x} \cos(x)$ 

 IGA collocation by spline space S with C<sup>4</sup> cont nuity, uniform knots and all sections E<sub>k</sub> in:

**A)** 1, x,  $x^2$ ,  $x^3$ ,  $x^4$ ,  $x^5$ 

- B)  $1, x, x^2, x^3, \cos x, \sin x$ , [Manni et al. 2015] ref. basis for  $h < \pi$
- C)  $1, x, \cosh x \cos x, \cosh x \sin x,$  ref. basis for  $\sinh x \cos x, \sinh x \sin x$   $h < \pi$



#### 1509eometric analysis with Piecewise Chebyshevian splines

$$\begin{cases} -\Delta u + u = f, \quad (x, y) \in \Omega := [0, 4]^2 \\ u|_{\delta\Omega} = 0 \end{cases}$$

with exact solution

 $u_{ex}(x, y) = (x^2 + y^2 - 1)\sin(\pi x)\sin(\pi y)$ 



• IGA collocation in local dimension 6 with  $C^4$  splines,  $t_{k+1} - t_k = h$  and all  $\mathbb{E}_k$  spanned by:

A)  $1, x, ..., x^5$ B)  $1, x, x^2, x^3, \cos \pi x, \sin \pi x$ , ref. basis for h < 1C)  $1, x, \cos \pi x, \sin \pi x, x \cos \pi x, x \sin \pi x$ , ref. basis for h < 1

Relative errors in  $W^{2,\infty}$  norm for  $h = 2^{-j}$ :

| j  | 1        | 2        | 3        | 4        | 5        |
|----|----------|----------|----------|----------|----------|
| A) | 1.65e-02 | 6.29e-04 | 4.70e-05 | 2.90e-06 | 1.89e-07 |
| B) | 4.77e-03 | 1.60e-04 | 6.67e-06 | 3.83e-07 | 2.79e-08 |
| C) | 8.17e-04 | 2.95e-05 | 1.50e-06 | 8.88e-08 | 5.64e-09 |



#### Advection-diffusion problem on a quarter of annulus

$$\begin{cases} -\Delta u + \frac{\delta u}{\delta x} + \frac{\delta u}{\delta y} = f, & \text{in } \Omega\\ u|_{\delta\Omega} = 0 \end{cases}$$

with exact solution

$$u_{ex}(x, y) = e^{x} xy(x^{2} + y^{2} - 1)(x^{2} + y^{2} - 16)$$

- IGA collocation in local dimension 6 with  $C^4$  splines,  $t_{k+1} - t_k = h$  and all  $\mathbb{E}_k$  spanned by:
  - A)  $1, x, \dots, x^5$ B)  $1, x, x^2, x^3, \cos \frac{\pi}{2}x, \sin \frac{\pi}{2}x$ , ref. basis for h < 2C)  $1, x, \cosh x, \sinh x, x \cosh x, x \sinh x$ , ref. basis  $\forall h$ D)  $1, x, \sin \frac{\pi}{2}x, \cos \frac{\pi}{2}x, e^x, xe^x$ , ref. basis for h < 2

Relative errors in  $W^{2,\infty}$  norm for  $h = 2^{-j}$ :

| j  | 1        | 2        | 3        | 4        | 5        |
|----|----------|----------|----------|----------|----------|
| A) | 1.36e-01 | 1.66e-02 | 1.18e-03 | 1.08e-04 | 8.46e-05 |
| B) | 1.46e-01 | 2.13e-02 | 1.90e-03 | 1.25e-04 | 7.49e-06 |
| C) | 1.29e-01 | 1.33e-02 | 6.93e-04 | 1.37e-04 | 1.67e-04 |
| D) | 1.09e-01 | 8.54e-03 | 4.15e-04 | 3.25e-05 | 1.74e-06 |

Numerical methods for piecewise Chebyshevian splines & applications







Carolina Beccari

### concluding remarks...

- Piecewise Chebyshevian splines offer efficient shape parameters
- The main difficulty lies in the fact that they do not always have refinable B-spline bases
- ... but we can numerically answer this question with high accuracy and efficiency and with effective evaluation of the basis
- When such bases exist, we can use them just as we use polynomial splines
- Not only for design and interpolation, but also multiresolution analysis and subdivision, approximation by Schoenberg-type operators, image processing, isogeometric analysis . . .



#### \* Examples of mixed hyperbolic-trigometric interpolating splines

Numerical methods for piecewise Chebyshevian splines & applications

Carolina Beccari 29/33

- I.J. Schoenberg, A. Whitney, On Pólya frequency functions III. The positivity of translation determinants with applications to the interpolation problem by spline curves, Trans. Amer. Math. Soc., 74 (1953), 246–259
- H. Spath, Exponential spline interpolation, Computing, 4 (1969), 225–233
- L.L. Schumaker, Spline Functions, Wiley Interscience, N.Y., 1981
- P. de Casteljau, Formes à Pôles, Mathématiques et CAO, Volume 2. Hermès, Paris, Londres, Lausanne.
- P. Costantini, On monotone and convex spline interpolation, Math. Comp., 46 (1986), 203–214
- T.N.T. Goodman, Properties of *beta*-splines, J. Approx. Theory, 44 (1985), 132–153
- N. Dyn, C.A. Micchelli, Piecewise polynomial spaces and geometric continuity of curves, Num. Math., 54 (1988), 319–337
- L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom. Design, 6 (1989), 323–358
- P.D. Kaklis, D.G. Pandelis, Convexity preserving polynomial splines of non-uniform degree, IMA J. Numerical Analysis, 10 (1990), 223–234
- H.-P. Seidel, New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree, Math. Model. Num. Anal., 26 (1992), 149–176
- M.-L. Mazure, P.-J. Laurent, Affine and Non-affine Blossoms, in Computational Geometry, World Scientific Pub. Singapore, (1993), 201–230
- H. Pottmann, The geometry of Tchebycheffian splines, Comput. Aided Geom. Design, 10 (1993), 181–210
- P.J. Barry, R.N. Goldman, C.A. Micchelli, Knot insertion algorithms for piecewise polynomial spaces determined by connection matrices, Adv. Comp. Math., 1 (1993), 139–171
- P.J. Barry, de Boor-Fix dual functionals and algorithms for Tchebycheffian B-splines curves, Constr. Approx., 12 (1996), 385–408
- M.-L. Mazure, H. Pottmann, Tchebycheff splines, in Total positivity and its applications, 1996, 187–218
- T. Lyche, L.L. Schumaker, Total positivity properties of LB-splines, in Total Positivity and its Applications, 1996, 35–46
- M.-L. Mazure, Blossoming: a geometrical approach, Constr. Approx., 15 (1999), 33–68
- M.-L. Mazure, P.-J. Laurent, Piecewise smooth spaces in duality: application to blossoming, J. Approx. Theory, 98 (1999), 316–353
- M.-L. Mazure, Chebyshev splines beyond total positivity, Adv. Comp. Math. 14 (2001), 129–156

- T.N.T. Goodman, M.-L. Mazure, Blossoming beyond extended Chebyshev spaces, J. Approx. Theory, 109 (2001), 48–81
- M.-L. Mazure, Quasi-Chebyshev splines with connection matrices. Application to variable degree polynomial splines, Comput. Aided Geom. Design, 18 (2001), 287–298
- B. Buchwald, G. Mühlbach, Construction of B-splines for generalized spline spaces generated from local ECT-systems, J. Comput. Applied Math., 159 (2003), 249–267
- M.-L. Mazure, Blossoms and optimal bases, Adv. Comp. Math., 20 (2004), 177–203
- M.-L. Mazure, On the equivalence between existence of B-spline bases and existence of blossoms, Constr. Approx., 20 (2004), 603–624
- P. Costantini, T. Lyche, C. Manni, On a class of weak Tchebycheff systems, Numer. Math., 101 (2005), 333–354
- M.-L. Mazure, Chebyshev spaces and Bernstein bases, Constr. Approx., 22 (2005), 347–363
- T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comp. Methods Appl. Mech. Engrg., 194 (2005), 4135–4195
- M.-L. Mazure, Ready-to-blossom bases in Chebyshev spaces, in Topics Multivariate Approx. Interpol., Elsevier, 12, 2006, 109–148
- T. Bosner, Knot insertion algorithms for Chebyshev splines, PhD thesis, Univ. Zagreb, 2006
- M.-L. Mazure, Choosing spline spaces for interpolation, Proc. Transgressive Computing Conference, Granada, 2006, 311–326
- G. Mühlbach, One sided Hermite interpolation by piecewise different generalized polynomials, J. Comput. Applied Math., 196 (2006), 285–298
- M.-L. Mazure, Extended Chebyshev Piecewise spaces characterised via weight functions, J. Approx. Theory, 145 (2007), 33–54
- A. Kayumov, M.-L. Mazure, Chebyshevian splines: interpolation and blossoms, CRAS, 344 (2007), 65-70, 2007
- M.-L. Mazure, Which spaces for design?, Num. Math., 110 (2008), 357–392
- M.-L. Mazure, On differentiation formulæ for Chebyshevian Bernstein and B-spline bases, Jaén J. Approx., 1 (2009), 111–143
- M.-L. Mazure, Ready-to-blossom bases and the existence of geometrically continuous piecewise Chebyshevian B-splines, CRAS, 347 (2009), 829–834

- M.-L. Mazure, On a general new class of quasi-Chebyshevian splines, Num. Algorithms, 58 (2011), 399-438
- M.-L. Mazure, Finding all systems of weight functions associated with a given Extended Chebyshev space, J. Approx. Theory, 163 (2011), 363–376
- M.-L. Mazure, How to build all Chebyshevian spline spaces good for Geometric Design, Num. Math., 119 (2011), 517–556
- C. Manni, F. Pelosi, M.-L. Sampoli, Generalized B-splines as a tool in isogeometric analysis, Comp. Methods Appl. Mech. Engrg., 200 (2011), 867–881
- C. Manni, F. Pelosi, M.-L. Sampoli, Isogeometric analysis in advection-diffusion problems: Tension splines approximation, J. Comp. Appl. Math., 236 (2011), 511–528
- T. Lyche, M.-L. Mazure, Piecewise Chebyshevian Multiresolution Analysis, East J. Approx., 17 (2012), 419–435
- M.-L. Mazure, Polynomial splines as examples of Chebyshevian splines, Num. Algorithms, 60 (2012), 241–262
- M.-L. Mazure, Piecewise Chebyshev-Schoenberg operators: shape preservation, approximation and space embedding, J. Approx. Theory, 166 (2013), 106–135
- R. Ait-Haddou, Y. Sakane, T. Nomura, Chebyshev blossoming in Müntz spaces: Toward shaping with Young diagrams, J. Comp. Appl. Math., 247 (2013), 172–208
- M. Brilleaud, M.-L. Mazure, Design with L-splines, Num. Algorithms, 65 (2014), 91-124
- M.-L. Mazure, Which spline spaces for design?, CRAS, 353 (2015), 761–765
- M.-L. Mazure, Lagrange interpolatory subdivision schemes in Chebyshev spaces, J. Found. Comp. Math., 15 (2015), 1035–1068.
- R. Ait-Haddou, M.-L. Mazure, Approximation by Chebyshevian Bernstein Operators versus Convergence of Dimension Elevation, Constr. Approx., 43 (2016), 425-461
- M.-L. Mazure, Design with Quasi Extended Chebyshev Piecewise Spaces, Comp. Aided Geom. Design, 47 (2016), 3–28
- C.-V. Beccari, G. Casciola, M.-L. Mazure, Piecewise Extended Chebyshev Spaces: a numerical test for design, Applied Math. Comp., 296 (2017), 239–256
- T. Bosner, M. Rogina, Quadratic convergence for CCC-Schoenberg operators, Num. Math., 135 (2017), 1253–1287

- M.-L. Mazure, Piecewise Chebyshevian Splines: Interpolation versus Design, Num. Algorithms, 77 (2018), 1213–1247
- M.-L. Mazure, Constructing totally positive piecewise Chebyhevian B-splines, J. Comp. Appl. Math., 342 (2018), 550–586
- C.-V. Beccari, G. Casciola, M.-L. Mazure, Design or not design? A numerical characterisation for piecewise Chebyshevian splines, Num. Algorithms, 81 (2019), 1–31
- M.-L. Mazure, Geometrically continuous Piecewise Chebyshevian NU(R)BS, BIT, 60 (2020), 687–714
- C.-V. Beccari, G. Casciola, M.-L. Mazure, Critical length: an alternative approach, J. Comp. Appl. Math., 370 (2020)
- T. Bosner, B. Crnkovic, J. Skific, Application of CCC-Schoenberg operators on image resampling, BIT, 60 (2020), 129–155
- C.-V. Beccari, G. Casciola, M.-L. Mazure, Dimension elevation is not always corner-cutting, Applied Math. Letters, 109 (2020), article 106529.
- C.-V. Beccari, G. Casciola, L. Romani, A practical method for computing with piecewise Chebyshevian splines, J. Comp. Appl. Math., 406 (2022) article 114051.