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@ From polynomial splines to. ..

@ ... piecewise Chebyshevian splines

@ Existence of B-spline bases and refinability
@ Evaluation and computational aspects

@ Applications: design, interpolation and isogeometric
analysis
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From polynomial Chebyshevian Existence of Evaluation Applications

splines to . .. i refinable B-splines

PolynoMial splines

* Given | = [a, b] C R, P, polynomials of deg. n, choose:

> t; <--- < tq € [a, b]: interior knots

> positive integers my, ..., mqg : knot multiplicities, with 1 < my < nfor1 <k <gq

¢ Spline space S:= set of all functions S : [to, tg41] := [a, b] = R s.t.
> for 0 < k < g, there exists Fy € P, such that S(x) = Fi(x) for all x € [t, txt1]

> Sis C"" Mk at t;
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From polynomial Chebyshevian Existence of Evaluation Applications

splines to . .. i refinable B-splines

PolynoMial splines

* Given | = [a, b] C R, P, polynomials of deg. n, choose:

> t; <--- < tq € [a, b]: interior knots

> positive integers my, ..., mqg : knot multiplicities, with 1 < my < nfor1 <k <gq

¢ Spline space S:= set of all functions S : [to, tg41] := [a, b] = R s.t.
> for 0 < k < g, there exists Fy € P, such that S(x) = Fi(x) for all x € [t, txt1]

> Sis C"" Mk at t;

q
¢ dimS = n-+ 1+ m, with m::ka

k=1
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From polynomial Chebyshevian Existence of Evaluation Applications

splines to . .. i refinable B-splines

B-spline poses

¢ Forany S€S: S(x)= Z N/ (x)P;, x € [a, b]

where (N_,, ..., Nn) is the B-spline basis. For simple knots it satisfies :
— Support property:  Supp(N]') = [ti, titnt1]
— Positivity property: N[(x) > 0 for x €]t;, titnt1]

q '
— Normalisation property: Z N =1 o |

i=—n |
— optimal basis for shape preservation
and numerical behavior m

with AV
tpi=t p1:=---=t1:=a of /

tgy2 =+ = lg4n 1= tgny1 = b
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From polynomial Chebyshevian Existence of Evaluation Applications

splines to . .. i refinable B-splines

B-spline poses

¢ Forany S€S: S(x)= Z N/ (x)P;, x € [a, b]

where (N_,, ..., Nn) is the B-spline basis. For simple knots it satisfies :
— Support property:  Supp(N]') = [ti, titnt1]
— Positivity property: N[(x) > 0 for x €]t;, titnt1]

q '
— Normalisation property: Z N =1 o |

i=—n |
— optimal basis for shape preservation
and numerical behavior m

with AV
tpi=t p1:=---=t1:=a of /

tgy2 =+ = lg4n 1= tgny1 = b

* When g = 0 (no interior knot) = Bernstein basis
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From polynomial Chebyshevian Existence of Evaluation Applications
splines to . .. i refinable B-splines

cubic splines with 19 control points

@ Excellent mimicking, local control

@ Need to change control points to

improve the curve
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From polynomial Chebyshevian Existence of Evaluation Applications
splines to . .. i refinable B-splines

cubic splines with 19 control points interpolating cubic splines

@ Excellent mimicking, local control @ Unique solution under interlacing
conditions [Schoenberg-Whitney 53]

@ Need to change control points to
@ Undesired oscillations

improve the curve
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

d possible solution:

iNtroduce skp.fe parameters
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Chebyshevian Existence of Evaluation Applications

B- i refinable B-splines

Extended ChepyYsheV (EC) sfaces

¢ E (n+ 1)-dimensional space contained in C"(/).
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

Extended ChepyYsheV (EC) sfaces

¢ E (n+ 1)-dimensional space contained in C"(/).

¢ . .is an Extended Chebyshev (EC) spaces on [ if Z,.1(F) < n for any nonzero
F € E C C"(I) *> behaves like a polynomial space but with inherent parameters!
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

Extended ChepyYsheV (EC) sfaces

¢ E (n+ 1)-dimensional space contained in C"(/).

¢ . .is an Extended Chebyshev (EC) spaces on [ if Z,.1(F) < n for any nonzero
F € E C C"(I) *> behaves like a polynomial space but with inherent parameters!

EXAMPLES: the spaces spanned by

> 1,x,...,x"2

,cosh x, sinh x (on I = R) "hyperbolic spaces"
> 1,x,...,x"2 cosx,sinx (on |I] < 27 for n > 3) “trigonometric spaces"

> 1, XK xR with k>0 (on 1 =]0,+00[) ...
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

Extended ChepyYsheV (EC) sfaces

¢ E (n+ 1)-dimensional space contained in C"(/).

¢ . .is an Extended Chebyshev (EC) spaces on [ if Z,.1(F) < n for any nonzero
F € E C C"(I) *> behaves like a polynomial space but with inherent parameters!

EXAMPLES: the spaces spanned by

n—2

> 1,x,...,x ,cosh x, sinh x (on I = R) "hyperbolic spaces"

> 1,x,...,x"2 cosx,sinx (on |I] < 27 for n > 3) “trigonometric spaces"

> 1, XK xR with k>0 (on 1 =]0,+00[) ...

¢ [E contains constants.

Numerical methods for piecewise Chebysheviaw splives & applications Caroliva Beccari IRVik]



Chebyshevian Existence of Evaluation Applications

refinable B-splines

Extended ChepyYsheV (EC) sfaces
¢ E (n+ 1)-dimensional space contained in C"(/).

¢ . .is an Extended Chebyshev (EC) spaces on [ if Z,.1(F) < n for any nonzero
F € E C C"(I) *> behaves like a polynomial space but with inherent parameters!

EXAMPLES: the spaces spanned by

> 1,x,...,x"2

,cosh x, sinh x (on I = R) "hyperbolic spaces"
> 1,x,...,x"2 cosx,sinx (on |I] < 27 for n > 3) “trigonometric spaces"

> 1, XK xR with k>0 (on 1 =]0,+00[) ...

¢ [E contains constants.

Design in E <= Interpolation in DE
i.e. 3 Bernstein bases in E i.e. DE is an EC-space on | *

“ DE EC-space on | = [E EC-space on /
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

viecewise Chebyshevian splines

¢ Choose:

> interior knots t; < --- < tg knots interior to | := [to, tq+1] and their multiplicities
my,...,mg, 0 < me < n

> asequence Ey, k =0,..., q of section spaces: Vk, E is (n+ 1)-dimensional,
contains constants, and DEy is a EC on [tx, tx+1]

¢ Chebyshevian spline space S :=set of all continuous functions S : | — R s.t.:
> for k=0,...,q: the restriction of S to [ty, txr1] is in Ex

> for k=1,...,q, S satisfies the connection condition:

(S'(t5), ..., S = (St ), ..., STm(e)) T
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

viecewise Chebyshevian splines

¢ Choose:
> interior knots t; < --- < tg knots interior to | := [to, tq+1] and their multiplicities
my,...,mg, 0 < me < n
> asequence Ey, k =0,..., q of section spaces: Vk, E is (n+ 1)-dimensional,

contains constants, and DEy is a EC on [tx, tx+1]

¢ Chebyshevian spline space S :=set of all continuous functions S : | — R s.t.:
> for k=0,...,q: the restriction of S to [ty, txr1] is in Ex

> for k=1,...,q, S satisfies the connection condition:
(S'(£), .., S=mI(50)) T= My (S (¢ ), ..., S=m(e)) T

connection matrix at t;:
lower-triangular, of order (n — my), positive diagonal elements
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

viecewise Chebyshevian splines

¢ Choose:
> interior knots t; < --- < tg knots interior to | := [to, tq+1] and their multiplicities
my,...,mg, 0 < me < n
> asequence Ey, k =0,..., q of section spaces: Vk, E is (n+ 1)-dimensional,

contains constants, and DEy is a EC on [tx, tx+1]

¢ Chebyshevian spline space S :=set of all continuous functions S : | — R s.t.:
> for k=0,...,q: the restriction of S to [ty, txr1] is in Ex

> for k=1,...,q, S satisfies the connection condition:
(S'(£), .., S=mI(50)) T= My (S (¢ ), ..., S=m(e)) T

connection matrix at t;:
lower-triangular, of order (n — my), positive diagonal elements

q
¢ dimS=(n+1)+ m, with m ::ka
k=1
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Chebyshevian Existence of Evaluation Applications

B- i refinable B-splines

Existence 0f a \refinaple) B-spline pasis?

¢ Does refinement preserve existence of a B-spline basis, if any?
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

Existence 0f a \refinaple) B-spline poasis?

¢ Does refinement preserve existence of a B-spline basis, if any?

¢ Refinement: increase dimS by adding knots or increasing multiplicities
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

Existence 0f a \refinaple) B-spline poasis?

¢ Does refinement preserve existence of a B-spline basis, if any?
¢ Refinement: increase dimS by adding knots or increasing multiplicities

¢ Counterexample: S with section spaces Ey spanned by 1, x, x>, cos x, sin x, Vk,
c? everywhere, DE, is an EC-space for txi1 — tx < 27

\ my@

uniform knot spacing

tyt1 — tk = 3.5
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

Existence 0f a \refinaple) B-spline pasis?

¢ Does refinement preserve existence of a B-spline basis, if any?
¢ Refinement: increase dimS by adding knots or increasing multiplicities

¢ Counterexample: S with section spaces Ey spanned by 1, x, x>, cos x, sin x, Vk,
c? everywhere, DE, is an EC-space for txi1 — tx < 27

\my@ \

uniform knot spacing

thy1 — tk = 3.5 knot insertion at £ = 1/2(t, + tpy1)
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

Existence 0f a \refinaple) B-spline pasis?

¢ Does refinement preserve existence of a B-spline basis, if any?
¢ Refinement: increase dimS by adding knots or increasing multiplicities

¢ Counterexample: S with section spaces Ey spanned by 1, x, x>, cos x, sin x, Vk,
c? everywhere, DE, is an EC-space for txi1 — tx < 27

\my@ \

uniform knot spacing

thy1 — tk = 3.5 knot insertion at £ = 1/2(t, + tpy1)

¢ Joining a sequence of section EC-spaces Ex =% Existence of a B-spline basis.
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Chebyshevian Existence of Evaluation Applications

refinable B-splines

Existence 0f a \refinaple) B-spline pasis?

¢ Does refinement preserve existence of a B-spline basis, if any?
¢ Refinement: increase dimS by adding knots or increasing multiplicities

¢ Counterexample: S with section spaces Ey spanned by 1, x, x>, cos x, sin x, Vk,
c? everywhere, DE, is an EC-space for txi1 — tx < 27

\my@ \

uniform knot spacing

thy1 — tk = 3.5 knot insertion at £ = 1/2(t, + tpy1)

¢ Joining a sequence of section EC-spaces Ex =% Existence of a B-spline basis.
¢ One B-spline basis == Refinable B-spline basis
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Existence of Evaluation Applications
refinable B-splines

How to determive the existevce of a

REFINABLE B-SPLINE RASIS?
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Existence of Evaluation Applications
refinable B-splines

characterization 0f existence

¢ piecewise weight functions
(wa, ..., wy):
w; is defined, positive, C"'
separately on each [t;, t, 4]
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Existence of Evaluation Applications
refinable B-splines

characterization 0f existence

¢ piecewise weight functions
(wa, ..., wy):
w; is defined, positive, C"'
separately on each [t;, t, 4]

® associated piecewise

generalized derivatives:

LiF = iDL,;lF,
wi

i=1,...,n
with LoF = F
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Existence of Evaluation Applications
refinable B-splines

characterization 0f existence

¢ piecewise weight functions \

(wa, ..., wy): Equivalence of:
w; is defined, positive, C"' . : ) )
separately on each [t:’, tea (i) 3 Refinable B-spline basis
(ii) 3 piecewise generalized derivatives Ly, ..., L,
such that, for each S € S and each

® associated piecewise k=1,...,q:

generalized derivatives: (LiS(E) - Lo m () =

LF=LDL F (LIS(t;), L Ln_mkS(t;)>
Wi
i=1,...,n S g

with LoF = F
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Existence of Evaluation Applications
refinable B-splines

characterization 0f existence

¢ piecewise weight functions \

(wa, ..., wy): Equivalence of:
w; is defined, positive, C"' . : ) )
separately on each [t:’, tea (i) 3 Refinable B-spline basis
(ii) 3 piecewise generalized derivatives Ly, ..., L,
such that, for each S € S and each

® associated piecewise k=1,...,q:

generalized derivatives: (LiS(E) - Lo m () =

LF=LDL F (LIS(t;), L Ln_mkS(t;)>
Wi
i=1,...,n S g

with LoF = F

explicit necessary and sufficient
conditions for (i) if n < 4

leads to

numerical test for any n
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Existence of Evaluation Applications
refinable B-splines

Numerical test of existewee

and evaluation algorithm
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Existence of Evaluation Applications
refinable B-splines

Key deas

¢ (ii) = (i) “easy” part, standard

w piecewise weight function C" and
> 0 on each [t} tial
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Existence of Evaluation Applications
refinable B-splines

Key deas

¢ (ii) = (i) “easy” part, standard

w piecewise weight function C" and
> 0 on each [t} tial

S with ref. basis
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Existence of Evaluation Applications
refinable B-splines

Key deas

¢ (ii) = (i) “easy” part, standard

w piecewise weight function C" and
> 0 on each [t} tial

wS
multipliTcation by w

S with ref. basis

Numerical methods for piecewise Chebysheviaw splives & applications Caroliva Beccari ¥k



Existence of Evaluation Applications
refinable B-splines

Key deas

¢ (ii) = (i) “easy” part, standard
w piecewise weight function C" and

> 0 on each [t} tial

S with ref. basis

continuousT integration
wS
multipliTcation by w

S with ref. basis
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Existence of Evaluation Applications
refinable B-splines

Key deas

¢ (ii) = (i) “easy” part, standard ¢ (i) = (ii) : Diminish the dimension via
w piecewise weight function C" and an appropriate generalized derivative L17
> 0 on each [t} tial

S with ref. basis
continuousT integration
wS
multipliTcation by w

S with ref. basis
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Existence of Evaluation Applications
refinable B-splines

Key deas

¢ (ii) = (i) “easy” part, standard ¢ (i) = (ii) : Diminish the dimension via
w piecewise weight function C" and an appropriate generalized derivative L17
> 0 on each [t} tial

S with ref. basis
§ with ref. basis
continuousT integration
wS

multipliTcation by w

S with ref. basis

Numerical methods for piecewise Chebysheviaw splives & applications Caroliva Beccari ¥k



Existence of Evaluation Applications
refinable B-splines

Key deas

¢ (i) = (i) “easy” part, standard ¢ (i) = (ii) : Diminish the dimension via
w piecewise weight function C" and an appropriate generalized derivative L17
> 0 on each [t], t]
[t teal S with ref. basis

§ with ref. basis l

. . . DS

contmuousT integration l
wS

1
L1S .= —S with ref. basis?
multipliTcation by w wi

S with ref. basis
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Existence of Evaluation Applications
refinable B-splines

Key deas

¢ (i) = (i) “easy” part, standard ¢ (i) = (ii) : Diminish the dimension via
w piecewise weight function C" and an appropriate generalized derivative L17
> 0 on each [t], t]
[t teal S with ref. basis

§ with ref. basis l

. . . DS

contmuousT integration l
wS

1
L1S .= —S with ref. basis?
multipl:Tcation by w wi

S with ref. basis w

m
Let U = Z ujNj, wi = DU.  Are equivalent:

j=n

(a) (uj) strictly increasing sequence

1
(b) w1 >0 on each [t], tiq] + LiS=—DS
wi
is a space of continuous piecewise Cheb.

L splines with a refinable B-spline basis
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Existence of Evaluation Applications
refinable B-splines

Key deas

(ii) = (i) “easy” part, standard

w piecewise weight function C" and
> 0 on each [t} tial

S with ref. basis

continuousT integration
wS
multipl:Tcation by w

S with ref. basis

W owi = Z(UJ uj—1)Q

j=—n+1
Qj = DN B-spline like basis
(non normalized)

i = E N,  transition functions
p2j

(i) = (ii) : Diminish the dimension via
an appropriate generalized derivative L17

S with ref. basis

!

DS
!

1
L1S .= —S with ref. basis?
w1

’_M )

m
Let U = Z ujN;, wi = DU. Y Are equivalent:
j=—n

(a) (uj) strictly increasing sequence

1
(b) w1 >0 on each [t tiq] + LiS=—DS
wi
is a space of continuous piecewise Cheb.

splines with a refinable B-spline basis

\. J
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Existence of Evaluation Applications
refinable B-splines

A test Of existence

Not knowing a priori whether S has a ref. B-spline basis:
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Existence of Evaluation Applications
refinable B-splines

A test Of existence

Not knowing a priori whether S has a ref. B-spline basis:

1) attempt to compute candidate transition functions N € S satisfying (Hermite)
interpolation conditions;
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Existence of Evaluation Applications
refinable B-splines

A test Of existence

Not knowing a priori whether S has a ref. B-spline basis:

1) attempt to compute candidate transition functions N € S satisfying (Hermite)
interpolation conditions;

2) if such a sequence exists
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Existence of Evaluation Applications
refinable B-splines

A test Of existence

Not knowing a priori whether S has a ref. B-spline basis:

1) attempt to compute candidate transition functions N € S satisfying (Hermite)
interpolation conditions;

2) if such a sequence exists, compute Q; := DN; € DS

3) if, for all £, “Qy is positive 4+ ..."”, compute wy = Z Qp and N, == @ € LS
w1
I

4) compute N} = Z N, and @, = DN} € DL;S
p=t
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Existence of Evaluation Applications
refinable B-splines

A test Of existence

Not knowing a priori whether S has a ref. B-spline basis:

1) attempt to compute candidate transition functions N € S satisfying (Hermite)
interpolation conditions;

2) if such a sequence exists, compute Q; := DN; € DS

3) if, for all £, “Qy is positive 4+ ..."”, compute wy = Z Qp and N, == @ € L1S
wi
- I
Qe +— Q¢
4) compute N} = Z N, and @, = DN} € DL;S
p=t
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Existence of Evaluation Applications
refinable B-splines

A test Of existence

Not knowing a priori whether S has a ref. B-spline basis:

1) attempt to compute candidate transition functions N € S satisfying (Hermite)
interpolation conditions;

2) if such a sequence exists, compute Q; := DN; € DS

3) if, for all £, “Qy is positive 4+ ..."”, compute wy = Z Qp and N, == @ € L1S
wi
- I
Qe +— Q¢
4) compute N} = Z N, and @, = DN} € DL;S
p=t

@ If we can get to the end (i.e. local dimension 2) = S has ref. basis
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Existence of Evaluation Applications
refinable B-splines

A test Of existence

Not knowing a priori whether S has a ref. B-spline basis:

1) attempt to compute candidate transition functions N € S satisfying (Hermite)
interpolation conditions;

2) if such a sequence exists, compute Q; := DN; € DS

3) if, for all £, “Qy is positive 4+ ..."”, compute wy = Z Qp and N, == @ € L1S
wi
- I
Qe +— Q¢
4) compute N} = Z N, and @, = DN} € DL;S
p=t

@ If we can get to the end (i.e. local dimension 2) = S has ref. basis

@ In case any of the above if statements has a negative answer:
STOP, S does not have a refinable B-spline basis.
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Existence of Evaluation Applications
refinable B-splines

A nyMerical test and an evalyation Method

[B., Casciola, Mazure, 2017-19-20]
section EC-spaces [
knots to < - -+ < tgq

matrices M

No
B-s. basis
or non

refinabl

)

Refinable
B-s. basis
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Existence of
refinable B-splines

Evaluation

Applications

A nyMerical test and an evalyation Method

[B., Casciola, Mazure, 2017-19-20]

section EC-spaces [
knots tg < - < tg

matrices M

Compute NE,
L=—n+1..m

NO

YES

Compute coeffs of
the local
decompositions 's|

n=n-—1

Positi-

vity property

of all v's
?

(=

Caroliva Beccari I
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Evaluation Applications

More on the evaluation of the B-splive basis

g computatioval aspects
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Evaluation Applications

EValyationy bY ransitidn fynchons

' Recall o Ne= N N
p=L
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Evaluation Applications

EValyationy bY transSitdn fynchons

¢ Recall:

¢ From the properties of the B-spline basis (simple knots):

W Ny —{

0 x<t
1 x2toyn

(Y Nj vanishes exactly n times at t; and 1 — N vanishes exactly n times at t;y,

te topa tern—1  tegn
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Evaluation Applications

EValyationy bY transSitdn fynchons

¢ Recall:

¢ From the properties of the B-spline basis (simple knots):

<
W N,j:_{o xSt

1 x2toyn

(Y Nj vanishes exactly n times at t; and 1 — N vanishes exactly n times at t;y,

¢ (N + (DN ~ each Ny is the unique solution of an Hermite interpolation
problem of size n® + n at most 1

DN} () =0
Y { DENE() = DLNE(t), j=€+1,...0+n—1

—0....n-1
DN (te) = 610 r "

te tota teyn—1 tegn
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Evaluation Applications

A <omparison Of <ompytational procedyres

T F B., Casciola, Romani, 2022

TF1 for each k=0,..., g, evaluate the Wronskian matrices of the given basis in Ey
at tx and txy1;

TF2 solve as many linear systems ¢ as dim(S) — 1, to determine all the N}.
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Evaluation Applications

A <omparison Of <ompytational procedyres

T F B., Casciola, Romani, 2022

TF1 for each k =0,..., g, evaluate the Wronskian matrices of the given basis in Ej
at tx and txy1;

TF2 solve as many linear systems ¢ as dim(S) — 1, to determine all the N}.

Evaluation by xtraction  perator ® Hiemstra, Hughes, Manni, Speleers,

20; @ Speleers, 2022
EO1 = TF1;
EO2 for each k, compute the BB in E; by solving (n+1) linear systems of size (n+ 1);

EO3 for each k, evaluate the Wronskian matrices of the BB at t, and tx4; and construct
the matrix that stores the continuity conditions of S;

EO4 compute the Extraction Operator ~» determine (for each break-point and each
continuity order) the null space of a suitable vector.
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Evaluation Applications

A <omparison Of <ompytational procedyres

T F B., Casciola, Romani, 2022

TF1 for each k =0,..., g, evaluate the Wronskian matrices of the given basis in Ej
at tx and txy1;

TF2 solve as many linear systems ¢ as dim(S) — 1, to determine all the N}.

Evaluation by xtraction  perator ® Hiemstra, Hughes, Manni, Speleers,

Toshniwal, 2020; & Speleers, 2022

EO1 = TF1,;
EO2 for each k, compute the BB in E; by solving (n+1) linear systems of size (n+ 1);

EO3 for each k, evaluate the Wronskian matrices of the BB at t, and tx4; and construct
the matrix that stores the continuity conditions of S;

EO4 compute the Extraction Operator ~» determine (for each break-point and each
continuity order) the null space of a suitable vector.

Qualitative comparison of step 2: # systems size
n =6, 4 intervals, simple knots = dim(S) =10 ~» TF2 9 < 28 x 28
EO2 28 7TxX7
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Evaluation Applications

Numerical experiments 1

Apply TF and EO to the computation of the Bernstein basis in E spanned by
1,...,x" cosh(10x),sinh(10x), on |[a, b]

Syweolic error test: EO EO
max abs err on Bernstein
basis functions (16-digits
decimal precision) w.r.t.
symbolic computation

TF TF

4 b—a—4  n=5(dim(E)=8)on [0,b],
be{1073,..., 2%}
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Evaluation Applications

Numerical experiments 1

Apply TF and EO to the computation of the Bernstein basis in E spanned by
1,...,x" cosh(10x),sinh(10x), on |[a, b]

Symeolic error test: EO EO
max abs err on Bernstein
basis functions (16-digits
decimal precision) w.r.t.
symbolic computation

TF TF

4 b—a—4  n=5(dim(E)=8)on [0,b],
be{1073,..., 2%}

TF
Sywvimetry check:

max abs err distance of
symmetric functions

+—— n=13

[ | / \
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Evaluation Applications

Numerical experiments 1

Apply TF and EO to the computation of the Bernstein basis in E spanned by
1,...,x" cosh(10x),sinh(10x), n =13

Sywealic error test

B; TF EO
0  6.66134e-16 _ 9.63072¢-07
1 3.80433¢-12  2.60750e-01 Symmetry check
2 2.63505e-11  1.82676e-03
3 1.68028e-10  1.06772e-03 (Bi, Bis—i) TF EO
4 3.09308e-10  5.95284e-05 0,15 2.10042¢-15  9.62666-07
5 3.49708e-10  7.39515e-06 1,14 3.80667e-12  2.60741e-01
6 2.91161e-10 7.17741e-07 2,13 2.64075e-11 1.82279e-03
7 1.49372e-10  8.07312e-08 3,12 1.68133e-10  1.06728e-03
8  4.63247e-11  4.78432e-09 4,11 3.00746e-10  5.94964e-05
9  6.89226e-12  5.24595¢-10 5,10 3.49886e-10  7.39387¢-06
10  1.89137e-12  3.09941le-11 6,9 2.04925e-10  7.17135e-07
11  5.37847e-13  4.54567e-12 7.8 1.82508e-10  8.54473e-08

12 1.27044e-13 1.51379e-13
13 6.84730e-14 6.10623e-15
14 3.21965e-15 9.99201e-16
15  5.5511le-17 4.13590e-25
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Evaluation Applications

Numerical experiments 1

C® spline with n = 7 and:
Eo =Es spanned by 1,x,...,x° cosx,sinx

E; =E> spanned by 1,x,...,x°, coshx,sinhx

th —to=1—w, th —t1 = w, t3 — th = w, ty —tz3=1—w

Symeolic error test

Syvimetry check, w = 0.998

N1 TF EO

T,11  2.73836e-13  1.50357e-12
2,10  2.73337e-13  1.91716e-12
39 22010214  9.11726e-12
48  5.15400e-14  3.23910e-02
57  6.73430e-14  3.12476e-02
6,6  3.02536e-14  2.54093e-06

w=20.5,...,0.998
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Applications

Applications and examples
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Applications

cardinal, symmetric, C° quintic splines

1 0 0 O
0 1 0 O
C? quintic splines, equispaced knots, everywhere Mi =M= g p 1 0
0 be c 1

2

Numerical characterization

S has a refinable B-spline basis <= b > —6 and ¢ > —4

RER RN

Interpolation in S with ¢ = 0 and, left to right, b = —5.99; 0 (ordinary c* splines);10; 100
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Applications

cavrdinal Mixed trigonoMetric-kyperpolic splines

C® splines with tiy1 — tx = h and all Ey spanned by:

1, cosh ax cos x, cosh ax sin x, sinh ax cos x, sinh ax sin x, cosh ax, sinh ax

Numerical characterization

S has a refinable B-spline basis <= h < 7

h = 3, left to right: a =0.01; 0.7; 1.5; 3.
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Applications

1s09eoMetric analyYSis With fiecewise ChepYShevian splines
# NURBS [Hughes et al. 2005] and generalized splines [Manni et al. 2011] (classical

tools in IgA) are examples of Piecewise Chebyshevian splines with refinable
B-spline bases
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Applications

1s09eoMetric analyYSis With fiecewise ChepYShevian splines

# NURBS [Hughes et al. 2005] and generalized splines [Manni et al. 2011] (classical
tools in IgA) are examples of Piecewise Chebyshevian splines with refinable
B-spline bases

¢ Now we have many more such PC spaces ...
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Applications

1s09eoMetric analyYSis With fiecewise ChepYShevian splines

NURBS [Hughes et al. 2005] and generalized splines [Manni et al. 2011] (classical
tools in IgA) are examples of Piecewise Chebyshevian splines with refinable
B-spline bases

Now we have many more such PC spaces ...

Ex: " ’ X _
—u"(x) + —2u'(x) + e u(x) = f(x), x € [—m, 7]
u(-m)=—e"", u(m) = —€"

with solution ue(x) = €*sin(x) + e~ cos(x) .

IGA collocation by spline space S with C* cont
nuity, uniform knots and all sections Ey in: S

unll

2
A) 1, x,x2, x3, x* x° Y

Logyy(u

B) 1,x, x2, x3, cos x, sin x, [Manni et al. 2015]
ref. basis for h < “

C) 1,x,coshx cos x, coshxsinx, ref. basis for O M e ot e
sinh x cos x, sinh x sin x h<m
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Applications

1500e0Metric analysSis With giecewise ChebYshevian solines
{Au+u_f, (xy)eQ:=1[04> - A ] .

U‘(SQ =0 : vV v
-

@
with exact solution
Uex(x,y) = (x2 +y? - 1) sin(mx) sin(wy) AN <
* |GA collocation in local dimension 6 with C* splines, tiy1 — & = h and all E,
spanned by:

A) 1,%,...,x°
B) 1,x,x2 x3, cosmx,sinmx, ref. basis for h < 1
C) 1,x,cosmx,sinmx, x cosmx, xsinmx, ref. basis for -
h<1 1,
Relative errors in W?** norm for h =27/:
il 1 2 3 4 5 : N
A) | 1.65e-02 6.29e-04 4.70e-05 2.90e-06 1.89e-07 ¢ \\g

e 2

B) | 4.77e-03 1.60e-04 6.67e-06 3.83e-07  2.79e-08 o e
C) | 8.17e-04 2.95e-05 1.50e-06 8.88e-08 5.64e-09
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Applications

Advection-dit{usion proplet on a quarter of annylys

du  du
—Au+—+ =,
u+ 5 +5y
ulsg =0

with exact solution

Uex(x,y) = exxy(x2 +y%— 1)(x2 +y?— 16)

* |GA collocation in local dimension 6 with C* splines,
tyr1 — tx = h and all E spanned by:

A) 1,%,...,x°

B) 1,x, x2,x3, cos gx,sin gx, ref. basis for h < 2

C) 1, x, cosh x, sinh x, x cosh x, xsinh x, ref. basis Vh

D) 1,x,sin Ex, cos T
2 2

Relative errors in W2 norm for h = 27J:

x, e*, xe*, ref. basis for h < 2

i1 2 3 4 5

A) | 1.36e-01 1.66e-02  1.18e-03  1.08¢-04  8.46e-05
B) | 1.46e-01 2.13e-02  1.00e-03  1.25¢-04  7.49¢-06
C) | 1.29e-01  1.33e-02  6.93e-04  1.37e-04  1.67e-04
D) | 1.09e-01 8.54e-03 4.15e-04 3.25e-05 1.74e-06
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conclydng remarss, | .

¢ Piecewise Chebyshevian splines offer efficient shape parameters

¢ The main difficulty lies in the fact that they do not always have refinable
B-spline bases

¢ . but we can numerically answer this question with high accuracy and
efficiency and with effective evaluation of the basis

¢ When such bases exist, we can use them just as we use polynomial splines

¢ Not only for design and interpolation, but also multiresolution analysis and
subdivision, approximation by Schoenberg-type operators, image processing,
isogeometric analysis . . .
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* Examples of mixed hyperbolic-trigometric interpolating splines
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