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From polynomial
splines to . . .

Chebyshevian
(B-)splines

Existence of
refinable B-splines

Evaluation Applications Final

Polynomial splines

. Given I = [a, b] ⊂ R, Pn polynomials of deg. n, choose:

I t1 < · · · < tq ∈ [a, b]: interior knots

I positive integers m1, . . . ,mq : knot multiplicities, with 1 6 mk 6 n for 1 6 k 6 q

. Spline space S:= set of all functions S : [t0, tq+1] := [a, b]→ R s.t.

I for 0 6 k 6 q, there exists Fk ∈ Pn such that S(x) = Fk (x) for all x ∈ [tk , tk+1]

I S is Cn−mk at tk

. dimS = n + 1 + m, with m :=

q∑
k=1

mk
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B-spline bases

. For any S ∈ S: S(x) =
m∑

i=−n

Nn
i (x)Pi , x ∈ [a, b]

where (N−n, . . . ,Nm) is the B-spline basis. For simple knots it satisfies :

– Support property: Supp(Nn
i ) = [ti , ti+n+1]

– Positivity property: Nn
i (x) > 0 for x ∈]ti , ti+n+1[

– Normalisation property:
q∑

i=−n

Nn
i = 1I

−→ optimal basis for shape preservation
and numerical behavior

with
t−n := t−n+1 := · · · = t−1 := a

tq+2 := · · · = tq+n := tq+n+1 := b
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.6

0.7
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0.9

1

. When q = 0 (no interior knot) ⇒ Bernstein basis
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From polynomial
splines to . . .

Chebyshevian
(B-)splines

Existence of
refinable B-splines

Evaluation Applications Final

Polynomial splines and design

cubic splines with 19 control points

Excellent mimicking, local control

Need to change control points to
improve the curve

interpolating cubic splines

Unique solution under interlacing
conditions [Schoenberg-Whitney 53]

Undesired oscillations
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A possible solution:

introduce shape parameters
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Extended Chebyshev (EC) spaces
. E (n + 1)-dimensional space contained in C n(I ).

. . . . is an Extended Chebyshev (EC) spaces on I if Zn+1(F ) 6 n for any nonzero
F ∈ E ⊂ Cn(I ) > behaves like a polynomial space but with inherent parameters!

EXAMPLES: the spaces spanned by

I 1, x , . . . , xn−2, cosh x , sinh x (on I = R) “hyperbolic spaces"

I 1, x , . . . , xn−2, cos x , sin x (on |I | < 2π for n > 3) “trigonometric spaces"

I 1, xk+1, . . . , xk+n with k > 0 (on I =]0, +∞[) . . .

. E contains constants.

Design in E
i.e. ∃ Bernstein bases in E

⇐⇒ Interpolation in DE
i.e. DE is an EC-space on I ∗

Theorem [Mazure 2005, 2006]

∗ DE EC-space on I ⇒ E EC-space on I
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Piecewise Chebyshevian splines
. Choose:

I interior knots t1 < · · · < tq knots interior to I := [t0, tq+1] and their multiplicities
m1, . . . ,mq , 0 6 mk 6 n

I a sequence Ek , k = 0, . . . , q of section spaces: ∀k, Ek is (n + 1)-dimensional,
contains constants, and DEk is a EC on [tk , tk+1]

. Chebyshevian spline space S :=set of all continuous functions S : I → R s.t.:

I for k = 0, . . . , q: the restriction of S to [tk , tk+1] is in Ek

I for k = 1, . . . , q, S satisfies the connection condition:(
S ′(t+

k ), . . . , S(n−mk )(t+
k )
)T

=

Mk

(
S ′(t−k ), . . . , S(n−mk )(t−k )

)T

↑
connection matrix at tk :

lower-triangular, of order (n −mk ), positive diagonal elements

. dimS = (n + 1) + m, with m :=

q∑
k=1

mk
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Chebyshevian
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Existence of a (refinable) B-spline basis?
. Does refinement preserve existence of a B-spline basis, if any?

. Refinement: increase dimS by adding knots or increasing multiplicities

. Counterexample: S with section spaces Ek spanned by 1, x , x2, cos x , sin x , ∀k,
C 3 everywhere, DEk is an EC-space for tk+1 − tk < 2π

uniform knot spacing
tk+1 − tk = 3.5

↑
knot insertion at t̂ = 1/2(t` + t`+1)

. Joining a sequence of section EC-spaces Ek 6=⇒ Existence of a B-spline basis.

. One B-spline basis 6=⇒ Refinable B-spline basis
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How to determine the existence of a

REFINABLE B-SPLINE BASIS?
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Characterization of existence

. piecewise weight functions
(w1, . . . ,wn):

wi is defined, positive, C n−i

separately on each [t+
k , t−k+1]

. associated piecewise
generalized derivatives:

LiF :=
1
wi

DLi−1F ,

i = 1, . . . , n

with L0F := F

Equivalence of:

(i) ∃ Refinable B-spline basis

(ii) ∃ piecewise generalized derivatives L1, . . . , Ln
such that, for each S ∈ S and each
k = 1, . . . , q:(

L1S(t+
k ), . . . , Ln−mkS(t+

k )
)
=(

L1S(t−k ), . . . , Ln−mkS(t−k )
)

Theorem [Mazure 2011]

leads to

explicit necessary and sufficient
conditions for (i) if n 6 4

numerical test for any n
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Numerical test of existence

and evaluation algorithm
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Key ideas
. (ii) =⇒ (i) “easy” part, standard

w piecewise weight function Cn and
> 0 on each [t+

k , t−k+1]

Ŝ with ref. basis

w S

S with ref. basis

continuous integration

multipli cation by w

w1 =
m∑

j=−n+1

(uj − uj−1)Qj

Qj := DN?j B-spline like basis
(non normalized)

N?j :=
∑
p>j

Np transition functions

. (i) =⇒ (ii) : Diminish the dimension via
an appropriate generalized derivative L1?

Let U =
m∑

j=−n

ujNj , w1 = DU. Are equivalent:

(a) (uj ) strictly increasing sequence

(b) w1 > 0 on each [t+
k , t−k+1] + L1S =

1
w1

DS

is a space of continuous piecewise Cheb.
splines with a refinable B-spline basis

Theorem
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A test of existence

Not knowing a priori whether S has a ref. B-spline basis:

1) attempt to compute candidate transition functions N?` ∈ S satisfying (Hermite)
interpolation conditions;

2) if such a sequence exists, compute Q` := DN?` ∈ DS

3) if, for all `, “Q` is positive + . . . ” , compute w1 :=
∑
`

Q` and N̄` :=
Q`

w1
∈ L1S

4) compute N̄?` :=
∑
p>`

N̄p and Q̄` = DN̄?` ∈ DL1S

Q` ←− Q̄`

If we can get to the end (i.e. local dimension 2) ⇒ S has ref. basis

In case any of the above if statements has a negative answer:
STOP, S does not have a refinable B-spline basis.
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A numerical test and an evaluation method
[B., Casciola, Mazure, 2017-19-20]

Start

section EC-spaces Ek
knots t0 < · · · < tq

matrices Mk

Compute N?
` ,

` = −n + 1, ..., m

∃ N?
` , ∀`
?

Compute coeffs of
the local

decompositions γ’s

n := n − 1

Positi-
vity property
of all γ’s

?

n > 2? Refinable
B-s. basis

No
B-s. basis
or non
refinable

Stop
YES

NO NO

YES

YES NO
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More on the evaluation of the B-spline basis

& computational aspects
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Evaluation by transition functions

. Recall: N?` :=
∑
p>`

Np ←→ N` = N?` − N?`+1

. From the properties of the B-spline basis (simple knots):

(i) N?` =

{
0 x 6 t`
1 x > t`+n

(ii) N∗` vanishes exactly n times at t` and 1− N?` vanishes exactly n times at t`+n

4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N`

N?
` N?

`+1

. (i) + (ii) ; each N?` is the unique solution of an Hermite interpolation
problem of size n2 + n at most

DrN?` (t`) = 0

Dr
−N

?
` (tj ) = Dr

+N?` (tj ), j = `+ 1, . . . , `+ n − 1
r = 0, . . . , n − 1

DrN?` (t`) = δr ,0
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A comparison of computational procedures
Evaluation by Transition Functions B., Casciola, Romani, 2022

TF1 for each k = 0, . . . , q, evaluate the Wronskian matrices of the given basis in Ek

at tk and tk+1;

TF2 solve as many linear systems as dim(S)− 1, to determine all the N?` .

Evaluation by Extraction Operator Hiemstra, Hughes, Manni, Speleers,
Toshniwal, 2020; Speleers, 2022

EO1 = TF1;

EO2 for each k, compute the BB in Ek by solving (n+1) linear systems of size (n + 1);

EO3 for each k, evaluate the Wronskian matrices of the BB at tk and tk+1 and construct
the matrix that stores the continuity conditions of S;

EO4 compute the Extraction Operator ; determine (for each break-point and each
continuity order) the null space of a suitable vector.

Qualitative comparison of step 2:

n = 6, 4 intervals, simple knots⇒ dim(S) = 10 ;

# systems size
TF2 9 6 28× 28
EO2 28 7× 7
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Numerical experiments I
Apply TF and EO to the computation of the Bernstein basis in E spanned by

1, . . . , xn, cosh(10x), sinh(10x), on [a, b]

Symbolic error test:

max abs err on Bernstein
basis functions (16-digits
decimal precision) w.r.t.
symbolic computation

0 2 4 6 8 10 12 14
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

n = 1, . . . , 14, b − a = 4
1 2 3 4 5 6 7 8 9 10

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

n = 5 (dim(E)=8) on [0, b],

b ∈ {10−3, . . . , 26}

TF

EO

TF

EO

0 1 2 3 4

0

1

0 1 2 3 4

0

1

Symmetry check:

max abs err distance of
symmetric functions

←− n = 13

TF EO
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Numerical experiments I
Apply TF and EO to the computation of the Bernstein basis in E spanned by

1, . . . , xn, cosh(10x), sinh(10x), n = 13

Symbolic error test

Bi TF EO
0 6.66134e-16 9.63072e-07
1 3.89433e-12 2.60750e-01
2 2.63505e-11 1.82676e-03
3 1.68028e-10 1.06772e-03
4 3.09308e-10 5.95284e-05
5 3.49708e-10 7.39515e-06
6 2.91161e-10 7.17741e-07
7 1.49372e-10 8.07312e-08
8 4.63247e-11 4.78432e-09
9 6.89226e-12 5.24595e-10

10 1.89137e-12 3.09941e-11
11 5.37847e-13 4.54567e-12
12 1.27044e-13 1.51379e-13
13 6.84730e-14 6.10623e-15
14 3.21965e-15 9.99201e-16
15 5.55111e-17 4.13590e-25

Symmetry check

(Bi , B15−i ) TF EO
0,15 2.10942e-15 9.62666e-07
1,14 3.89667e-12 2.60741e-01
2,13 2.64075e-11 1.82279e-03
3,12 1.68133e-10 1.06728e-03
4,11 3.09746e-10 5.94964e-05
5,10 3.49886e-10 7.39387e-06
6,9 2.94925e-10 7.17135e-07
7,8 1.82598e-10 8.54473e-08

Numerical methods for piecewise Chebyshevian splines & applications Carolina Beccari 20/33



Evaluation Applications Final

Numerical experiments II
C 6 spline with n = 7 and:

E0 = E3 spanned by 1, x , . . . , x5, cos x , sin x

E1 = E2 spanned by 1, x , . . . , x5, cosh x , sinh x

t1 − t0 = 1− w , t2 − t1 = w , t3 − t2 = w , t4 − t3 = 1− w

Symbolic error test

1 2 3 4 5 6 7 8 9 10 11
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

w = 0.5, . . . , 0.998

Symmetry check, w = 0.998

Ni ,11 TF EO
1,11 2.73836e-13 1.50357e-12
2,10 2.73337e-13 1.91716e-12
3,9 2.20102e-14 9.11726e-12
4,8 5.15490e-14 3.23910e-02
5,7 6.73439e-14 3.12476e-02
6,6 3.02536e-14 2.54093e-06TF

EO
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Applications and examples
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Applications Final

Cardinal, symmetric, C 2 quintic splines

C 2 quintic splines, equispaced knots, everywhere Mk = M =


1 0 0 0
0 1 0 0
0 b 1 0

0
bc

2
c 1



S has a refinable B-spline basis ⇐⇒ b > −6 and c > −4
Numerical characterization [B., Casciola, Mazure, 2019]

Interpolation in S with c = 0 and, left to right, b = −5.99; 0 (ordinary C4 splines);10; 100
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Applications Final

Cardinal mixed trigonometric-hyperbolic splines

C 5 splines with tk+1 − tk = h and all Ek spanned by:

1, cosh ax cos x , cosh ax sin x , sinh ax cos x , sinh ax sin x , cosh ax , sinh ax

S has a refinable B-spline basis ⇐⇒ h < π

Numerical characterization [B., Casciola, Mazure, 2019]

h = 3, left to right: a = 0.01; 0.7; 1.5; 3.

Numerical methods for piecewise Chebyshevian splines & applications Carolina Beccari 24/33



Applications Final

Isogeometric analysis with piecewise Chebyshevian splines

. NURBS [Hughes et al. 2005] and generalized splines [Manni et al. 2011] (classical
tools in IgA) are examples of Piecewise Chebyshevian splines with refinable
B-spline bases

. Now we have many more such PC spaces . . .

. Ex: {
−u′′(x) +−2u′(x) + exu(x) = f (x), x ∈ [−π,π]

u(−π) = −e−π, u(π) = −eπ

with solution uex(x) = ex sin(x) + e−x cos(x)

. IGA collocation by spline space S with C 4 conti-
nuity, uniform knots and all sections Ek in:

A) 1, x , x2, x3, x4, x5

B) 1, x , x2, x3, cos x , sin x , [Manni et al. 2015]
ref. basis for h < π

C) 1, x , cosh x cos x , cosh x sin x , ref. basis for
sinh x cos x , sinh x sin x h < π

0.8 1 1.2 1.4 1.6 1.8 2 2.2

-16

-14

-12

-10

-8

-6

-4

-2

M−4
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Applications Final

Isogeometric analysis with piecewise Chebyshevian splines

{
−∆u + u = f , (x , y) ∈ Ω := [0, 4]2

u|δΩ = 0

with exact solution
uex(x , y) = (x2 + y2 − 1) sin(πx) sin(πy)

. IGA collocation in local dimension 6 with C 4 splines, tk+1 − tk = h and all Ek

spanned by:

A) 1, x , . . . , x5

B) 1, x , x2, x3, cosπx , sinπx , ref. basis for h < 1

C) 1, x , cosπx , sinπx , x cosπx , x sinπx , ref. basis for
h < 1

Relative errors in W 2,∞ norm for h = 2−j :
j 1 2 3 4 5
A) 1.65e-02 6.29e-04 4.70e-05 2.90e-06 1.89e-07
B) 4.77e-03 1.60e-04 6.67e-06 3.83e-07 2.79e-08
C) 8.17e-04 2.95e-05 1.50e-06 8.88e-08 5.64e-09

1 1.2 1.4 1.6 1.8 2 2.2

-9

-8

-7

-6
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Advection-diffusion problem on a quarter of annulus−∆u +
δu

δx
+
δu

δy
= f , in Ω

u|δΩ = 0

with exact solution

uex (x , y) = exxy(x2 + y2 − 1)(x2 + y2 − 16)

. IGA collocation in local dimension 6 with C4 splines,
tk+1 − tk = h and all Ek spanned by:

A) 1, x , . . . , x5

B) 1, x , x2, x3, cos
π

2
x , sin

π

2
x , ref. basis for h < 2

C) 1, x , cosh x , sinh x , x cosh x , x sinh x , ref. basis ∀h

D) 1, x , sin
π

2
x , cos

π

2
x , ex , xex , ref. basis for h < 2

Relative errors in W 2,∞ norm for h = 2−j :
j 1 2 3 4 5
A) 1.36e-01 1.66e-02 1.18e-03 1.08e-04 8.46e-05
B) 1.46e-01 2.13e-02 1.90e-03 1.25e-04 7.49e-06
C) 1.29e-01 1.33e-02 6.93e-04 1.37e-04 1.67e-04
D) 1.09e-01 8.54e-03 4.15e-04 3.25e-05 1.74e-06

0 0.5 1 1.5 2 2.5 3 3.5 4
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0.5

1
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Concluding remarks. . .

. Piecewise Chebyshevian splines offer efficient shape parameters

. The main difficulty lies in the fact that they do not always have refinable
B-spline bases

. . . . but we can numerically answer this question with high accuracy and
efficiency and with effective evaluation of the basis

. When such bases exist, we can use them just as we use polynomial splines

. Not only for design and interpolation, but also multiresolution analysis and
subdivision, approximation by Schoenberg-type operators, image processing,
isogeometric analysis . . .
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Thank

you!

∗

∗ Examples of mixed hyperbolic-trigometric interpolating splines
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