Forward-backward methods for convex and nonconvex optimization in imaging

Silvia Bonettini

Dipartimento di Scienze Fisiche, Informatiche e Matematiche Università di Modena e Reggio Emilia

Optimization Algorithms and Software for Inverse problemS www.oasis.unimore.it

CALCOLO SCIENTIFICO E MODELLI MATEMATICI: alla ricerca delle cose nascoste attraverso le cose manifeste

Roma, 6-9 Aprile 2022

Contents: theoretical convergence analysis and acceleration strategies for ForwardBackward methods.

Collaborators:

UNIVERSITA' di MODENA e REGGIO EMLIA	UNIVERSITA' di FERRARA	UNIVERSITA' di FIRENZE	UNIVERSITE' LIBRE de BRUXELLES
Luca Zanni	Valeria Ruggiero	Simone Rebegoldi	Ignace Loris
Marco Prato	Gaetano Zanighirati		
Federica Porta			

Main references:

- S. B., I. Loris, F. Porta, M. Prato 2016, Variable metric inexact line-search based methods for nonsmooth optimization, SIAM J. Optim., 26(2), 891-921
- S. B., I. Loris, F. Porta, M. Prato, S. Rebegoldi 2017, On the convergence of a line-search base proximal-gradient method for nonconvex optimization, Inverse Probl., 33(5), 055005
- S. B., M. Prato, S. Rebegoldi 2020, Convergence of inexact forward-backward algorithms using the forward-backward envelope, SIAM J. Optim., 30(4), 3069-3097
- S. B., M. Prato, S. Rebegoldi 2021, New convergence results for the inexact variable metric forward-backward method, Applied Mathematics and Computation, 392, 125719
- S. B., F. Porta, V. Ruggiero, L. Zanni, 2021, Variable metric techniques for forward-backward methods in imaging, Journal of Computational and Applied Mathematics, 385, 113192

Direct discrete model

- $d(H x, g)$ expresses the data discrepancy
- $\mathcal{R}(x)$ is a regularization term, enforcing some desired property on x^{*}

Some examples in image restoration problems

$$
x^{\text {true }} \simeq x^{*} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} d(H x, g)+\mathcal{R}(x)
$$

$$
x^{\text {true }} \simeq x^{*} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} d(H x, g)+\mathcal{R}(x)
$$

Data discrepancy functions $d(t, g)$ - likelihood functions

Least squares (Gaussian noise)	Convex, quadratic	$\frac{1}{2}\\|t-g\\|^{2}$
Kullback-Leibler (Poisson noise)	Convex, nonlinear	$\sum_{i=1}^{n} \log \left(\frac{g_{i}}{t_{i}}\right)+t_{i}-g_{i}$
	Convex, nonsmooth	$\\|t-g\\|_{1}$
Impulse noise	Nonconvex, nonlinear	$\sum_{i=1}^{n} \log \left(\rho^{2}+\left(t_{i}-g_{i}\right)^{2}\right)$

$$
x^{\text {true }} \simeq x^{*} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} d(H x, g)+\mathcal{R}(x)
$$

Data discrepancy functions $d(t, g)$ - likelihood functions

Reference problem and main assumptions

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \equiv d(H x, g)+\mathcal{R}(x)
$$

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

Reference problem and main assumptions

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \equiv d(H x, g)+\mathcal{R}(x)
$$

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

$$
\min _{x \in \mathbb{R}^{n}} f(x) \equiv f_{0}(x)+f_{1}(x)
$$

f_{0} is smooth
f_{1} is closed and convex

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \equiv d(H x, g)+\mathcal{R}(x)
$$

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

$$
\min _{x \in \mathbb{R}^{n}} f(x) \equiv f_{0}(x)+f_{1}(x)
$$

f_{0} is smooth
f_{1} is closed and convex
we have the gradient

$$
\nabla f_{0}(x)
$$

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \equiv d(H x, g)+\mathcal{R}(x)
$$

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

$$
\min _{x \in \mathbb{R}^{n}} f(x) \equiv f_{0}(x)+f_{1}(x)
$$

f_{0} is smooth

we have the gradient

$$
\nabla f_{0}(x)
$$

f_{1} is closed and convex

we have the proximity (or resolvent) operator:

$$
\operatorname{prox}_{f_{1}}(z)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f_{1}(x)+\frac{1}{2}\|x-z\|^{2}
$$

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \equiv d(H x, g)+\mathcal{R}(x)
$$

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

$$
\min _{x \in \mathbb{R}^{n}} f(x) \equiv f_{0}(x)+f_{1}(x)
$$

f_{0} is smooth

we have the gradient

$$
\nabla f_{0}(x)
$$

f_{1} is closed and convex

we have the proximity (or resolvent) operator:

$$
\operatorname{prox}_{f_{1}}(z)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f_{1}(x)+\frac{1}{2}\|x-z\|^{2}
$$

Remark: The proximity operator of the indicator function of a closed convex set $\Omega \subset \mathbb{R}^{n}$ consists in the orthogonal projection operator onto Ω

$$
\iota_{\Omega}(x)=\left\{\begin{array}{ll}
0 & \text { if } x \in \Omega \\
+\infty & \text { otherwise }
\end{array} \Rightarrow \operatorname{prox}_{\iota_{\Omega}}(z)=\Pi_{\Omega}(z)\right.
$$

Forward-backward iteration

$$
\begin{aligned}
z^{(k)} & =x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right) \leftarrow \text { Forward step steepest descent point } \\
y^{(k)} & =\operatorname{prox}_{\alpha_{k} f_{1}}\left(z^{(k)}\right) \leftarrow \text { Backward step proximal gradient point } \\
d^{(k)} & =y^{(k)}-x^{(k)} \\
x^{(k+1)} & =x^{(k)}+\lambda_{k} d^{(k)}
\end{aligned}
$$

- two steplength parameters $\alpha_{k}, \lambda_{k} \in \mathbb{R}_{>0}$

Forward-backward iteration

$$
\begin{aligned}
z^{(k)} & =x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right) \leftarrow \text { Forward step steepest descent point } \\
y^{(k)} & =\operatorname{prox}_{\alpha_{k} f_{1}}\left(z^{(k)}\right) \leftarrow \text { Backward step proximal gradient point } \\
d^{(k)} & =y^{(k)}-x^{(k)} \\
x^{(k+1)} & =x^{(k)}+\lambda_{k} d^{(k)}
\end{aligned}
$$

- two steplength parameters $\alpha_{k}, \lambda_{k} \in \mathbb{R}_{>0}$

Classical FB settings:

- Convexity assumptions;
- Proximity operator available in closed form;
- Lipschitz continuity of ∇f_{0} (for steplength computation).

Forward-backward iteration

$$
\begin{aligned}
z^{(k)} & =x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right) \leftarrow \text { Forward step steepest descent point } \\
y^{(k)} & =\operatorname{prox}_{\alpha_{k} f_{1}}\left(z^{(k)}\right) \leftarrow \text { Backward step proximal gradient point } \\
d^{(k)} & =y^{(k)}-x^{(k)} \\
x^{(k+1)} & =x^{(k)}+\lambda_{k} d^{(k)}
\end{aligned}
$$

- two steplength parameters $\alpha_{k}, \lambda_{k} \in \mathbb{R}_{>0}$

Classical FB settings:

- Convexity assumptions;
- Proximity operator available in closed form;
- Lipschitz continuity of ∇f_{0} (for steplength computation).

Challenges in FB methods:

- Nonconvexity;
- Proximity operator not available in closed form;
- Lack of Lipschitz continuity of ∇f_{0};
- Implementation complying with theoretical prescriptions;
- Acceleration strategies.

$$
\begin{aligned}
y^{(k)} & =\operatorname{prox}_{\alpha_{k} f_{1}}\left(x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right)\right) \\
d^{(k)} & =y^{(k)}-x^{(k)} \\
x^{(k+1)} & =x^{(k)}+\lambda_{k} d^{(k)}
\end{aligned}
$$

Assume that $\alpha_{k}>0$ is given.

- The vector $d^{(k)}$ is a descent direction for $f(x)$ at the point $x^{(k)}$, i.e.

$$
f^{\prime}\left(x^{(k)} ; d^{(k)}\right)<0 \Rightarrow f\left(x^{(k)}+\lambda d^{(k)}\right)<f\left(x^{(k)}\right)+\lambda f^{\prime}\left(x^{(k)} ; d^{(k)}\right)<f\left(x^{(k)}\right)
$$

for all sufficiently small $\lambda>0$.

$$
\begin{aligned}
y^{(k)} & =\operatorname{prox}_{\alpha_{k} f_{1}}\left(x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right)\right) \\
d^{(k)} & =y^{(k)}-x^{(k)} \\
x^{(k+1)} & =x^{(k)}+\lambda_{k} d^{(k)}
\end{aligned}
$$

Assume that $\alpha_{k}>0$ is given.

- The vector $d^{(k)}$ is a descent direction for $f(x)$ at the point $x^{(k)}$, i.e.

$$
f^{\prime}\left(x^{(k)} ; d^{(k)}\right)<0 \Rightarrow f\left(x^{(k)}+\lambda d^{(k)}\right)<f\left(x^{(k)}\right)+\lambda f^{\prime}\left(x^{(k)} ; d^{(k)}\right)<f\left(x^{(k)}\right)
$$

for all sufficiently small $\lambda>0$.

- The steplength λ_{k} can be computed with a backtracking line-search loop along $d^{(k)}$, starting from 1 , with successive reductions until

$$
f\left(x^{(k)}+\lambda_{k} d^{(k)}\right) \leq f\left(x^{(k)}\right)+\lambda_{k} \Delta_{k}
$$

where Δ_{k} is a given negative quantity representing the sufficient decrease

Sufficient decrease and line-search

Define the following function:

$$
h^{(k)}(y)=\nabla f_{0}\left(x^{(k)}\right)^{T}\left(y-x^{(k)}\right)+\frac{1}{2 \alpha_{k}}\left\|y-x^{(k)}\right\|^{2}+f_{1}(y)-f_{1}\left(x^{(k)}\right)
$$

It holds that

$$
y^{(k)}=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} h^{(k)}(y)
$$

Sufficient decrease and line-search

Define the following function:

$$
h^{(k)}(y)=\nabla f_{0}\left(x^{(k)}\right)^{T}\left(y-x^{(k)}\right)+\frac{1}{2 \alpha_{k}}\left\|y-x^{(k)}\right\|^{2}+f_{1}(y)-f_{1}\left(x^{(k)}\right)
$$

It holds that

$$
y^{(k)}=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} h^{(k)}(y)
$$

and

$$
f^{\prime}\left(x^{(k)} ; d^{(k)}\right) \leq h^{(k)}\left(y^{(k)}\right)<0
$$

Sufficient decrease and line-search

Define the following function:

$$
h^{(k)}(y)=\nabla f_{0}\left(x^{(k)}\right)^{T}\left(y-x^{(k)}\right)+\frac{1}{2 \alpha_{k}}\left\|y-x^{(k)}\right\|^{2}+f_{1}(y)-f_{1}\left(x^{(k)}\right)
$$

It holds that

$$
y^{(k)}=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} h^{(k)}(y)
$$

and

$$
f^{\prime}\left(x^{(k)} ; d^{(k)}\right) \leq h^{(k)}\left(y^{(k)}\right)<0
$$

Generalized Armijo rule [Tseng-Yun, 2009, Porta-Loris, 2015, B. et al., 2016]

$$
f\left(x^{(k)}+\lambda_{k} d^{(k)}\right) \leq f\left(x^{(k)}\right)+\beta \lambda_{k} h^{(k)}\left(y^{(k)}\right)
$$

where $\beta \in(0,1)$.
NB: For $f_{1} \equiv 0$, dropping the quadratic term gives the standard Armijo rule for smooth optimization.

Define the following function:

$$
h^{(k)}(y)=\nabla f_{0}\left(x^{(k)}\right)^{T}\left(y-x^{(k)}\right)+\frac{1}{2 \alpha_{k}}\left\|y-x^{(k)}\right\|^{2}+f_{1}(y)-f_{1}\left(x^{(k)}\right)
$$

It holds that

$$
y^{(k)}=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} h^{(k)}(y)
$$

and

$$
f^{\prime}\left(x^{(k)} ; d^{(k)}\right) \leq h^{(k)}\left(y^{(k)}\right)<0
$$

Generalized Armijo rule [Tseng-Yun, 2009, Porta-Loris, 2015, B. et al., 2016]

$$
f\left(x^{(k)}+\lambda_{k} d^{(k)}\right) \leq f\left(x^{(k)}\right)+\beta \lambda_{k} h^{(k)}\left(y^{(k)}\right)
$$

where $\beta \in(0,1)$.
NB: For $f_{1} \equiv 0$, dropping the quadratic term gives the standard Armijo rule for smooth optimization.

- No Lipschitz assumption

Pros: - Adaptive selection of λ_{k} (no user provided parameter)

- Only one proximity operator evaluation per iteration.

Inexact computation of the proximity operator - State of the art

$$
\tilde{y}^{(k)} \simeq y^{(k)}=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} h^{(k)}(y)=\operatorname{prox}_{\alpha_{k} f_{1}}\left(x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right)\right)
$$

Common strategies:

$$
\tilde{y}^{(k)} \simeq y^{(k)}=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} h^{(k)}(y)=\operatorname{prox}_{\alpha_{k} f_{1}}\left(x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right)\right)
$$

Common strategies:

Empirical approach

Apply an iterative optimization method to $\min _{y \in \mathbb{R}^{n}} h^{(k)}(y)$
(1) Pros:

- Easy to implement.
- Cons:
- Theoretical convergence not guaranteed.

$$
\tilde{y}^{(k)} \simeq y^{(k)}=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} h^{(k)}(y)=\operatorname{prox}_{\alpha_{k} f_{1}}\left(x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right)\right)
$$

Common strategies:

Empirical approach

Apply an iterative optimization method to $\min _{y \in \mathbb{R}^{n}} h^{(k)}(y)$
(1) Pros:

- Easy to implement.

\because Cons:

- Theoretical convergence not guaranteed.

Theoretical conditions

Relative error condition:

$$
\exists v^{(k)} \in \partial f\left(\tilde{y}^{(k)}\right) \text { s.t. }\left\|v^{(k)}\right\| \leq b\left\|\tilde{y}^{(k)}-x^{(k)}\right\|
$$

[Bolte et al. 2014, Ochs 2019]
(1) Pros:

- Theoretical convergence guaranteed.

Inexact computation of the proximity operator

$$
\tilde{y}^{(k)} \simeq y^{(k)}=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} h^{(k)}(y)=\operatorname{prox}_{\alpha_{k} f_{1}}\left(x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right)\right)
$$

Borrowing the ideas in [Salzo,Villa 2012], [Villa et al. 2013]

$$
\text { replace } 0 \in \partial h^{(k)}\left(y^{(k)}\right) \text { with } 0 \in \partial_{\epsilon_{k}} h^{(k)}\left(\tilde{y}^{(k)}\right)
$$

$$
\partial_{\epsilon_{k}} h^{(k)}\left(\tilde{y}^{(k)}\right)=\left\{w \in \mathbb{R}^{n}: h^{(k)}(z) \geq h^{(k)}\left(\tilde{y}^{(k)}\right)+w^{T}\left(z-\tilde{y}^{(k)}\right)-\epsilon_{k}, \quad \forall z \in \mathbb{R}^{n}\right\}
$$

Inexact computation of the proximity operator

$$
\tilde{y}^{(k)} \simeq y^{(k)}=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} h^{(k)}(y)=\operatorname{prox}_{\alpha_{k} f_{1}}\left(x^{(k)}-\alpha_{k} \nabla f_{0}\left(x^{(k)}\right)\right)
$$

Borrowing the ideas in [Salzo,Villa 2012], [Villa et al. 2013]

$$
\text { replace } 0 \in \partial h^{(k)}\left(y^{(k)}\right) \text { with } 0 \in \partial_{\epsilon_{k}} h^{(k)}\left(\tilde{y}^{(k)}\right)
$$

$$
\partial_{\epsilon_{k}} h^{(k)}\left(\tilde{y}^{(k)}\right)=\left\{w \in \mathbb{R}^{n}: h^{(k)}(z) \geq h^{(k)}\left(\tilde{y}^{(k)}\right)+w^{T}\left(z-\tilde{y}^{(k)}\right)-\epsilon_{k}, \quad \forall z \in \mathbb{R}^{n}\right\}
$$

- It satisfies $\left\|\tilde{y}^{(k)}-y^{(k)}\right\|^{2} \leq \epsilon_{k}$.
- If, in addition, $h^{(k)}\left(\tilde{y}^{(k)}\right)<0$, the vector $d^{(k)}=\tilde{y}^{(k)}-x^{(k)}$ is still a descent direction for f at $x^{(k)}$.
- It can be realized in practice.

It guarantees both theoretical convergence and practical implementation.

Inexact computation of the proximity operator (2)

A well defined primal-dual procedure

Assume that $f_{1}(x)=\phi(A x), A \in \mathbb{R}^{m \times n}$ (easy generalization to $f_{1}(x)=\sum_{i=1}^{p} \phi_{i}\left(A_{i} x\right)$).

$$
\min _{x \in \mathbb{R}^{n}} h^{(k)}(x)=\max _{v \in \mathbb{R}^{m}} \Psi^{(k)}(v) \equiv-\frac{1}{2 \alpha_{k}}\left\|\alpha_{k} A^{T} v-z^{(k)}\right\|^{2}-\phi^{*}(v)+C_{k}
$$

where ϕ^{*} is the Fenchel convex conjugate of ϕ.

Inexact computation of the proximity operator (2)

A well defined primal-dual procedure

Assume that $f_{1}(x)=\phi(A x), A \in \mathbb{R}^{m \times n}$ (easy generalization to $f_{1}(x)=\sum_{i=1}^{p} \phi_{i}\left(A_{i} x\right)$).

$$
\min _{x \in \mathbb{R}^{n}} h^{(k)}(x)=\max _{v \in \mathbb{R}^{m}} \Psi^{(k)}(v) \equiv-\frac{1}{2 \alpha_{k}}\left\|\alpha_{k} A^{T} v-z^{(k)}\right\|^{2}-\phi^{*}(v)+C_{k}
$$

where ϕ^{*} is the Fenchel convex conjugate of ϕ.

Assume that $f_{1}(x)=\phi(A x), A \in \mathbb{R}^{m \times n}$ (easy generalization to $f_{1}(x)=\sum_{i=1}^{p} \phi_{i}\left(A_{i} x\right)$).

$$
\min _{x \in \mathbb{R}^{n}} h^{(k)}(x)=\max _{v \in \mathbb{R}^{m}} \Psi^{(k)}(v) \equiv-\frac{1}{2 \alpha_{k}}\left\|\alpha_{k} A^{T} v-z^{(k)}\right\|^{2}-\phi^{*}(v)+C_{k}
$$

where ϕ^{*} is the Fenchel convex conjugate of ϕ. Compute $\tilde{y}^{(k)}$ as follows:

- apply an iterative maximization method to the dual problem, generating the dual sequence $\left\{v^{(k, \ell)}\right\}_{\ell \in \mathbb{N}}$ converging to a dual solution
- stop the inner iterations when

$$
h^{(k)}\left(z^{(k)}-\alpha_{k} A^{T} v^{(k, \bar{\ell})}\right)-\Psi^{(k)}\left(v^{(k, \bar{\ell})}\right) \leq \epsilon_{k}
$$

- define

$$
\tilde{y}^{(k)}=z^{(k)}-\alpha_{k} A^{T} v^{(k, \bar{\ell})} \Rightarrow 0 \in \partial_{\epsilon_{k}} h^{(k)}\left(\tilde{y}^{(k)}\right)
$$

Add a new parameter, a s.p.d. scaling matrix D_{k} which determines a different metric at each iterate:

$$
\text { replace }\|x\| \text { with }\|x\|_{D_{k}}=x^{T} D_{k} x
$$

Variable Metric Inexact Line-Search Algorithm (VMILA)

$$
\begin{aligned}
z^{(k)} & =x^{(k)}-\alpha_{k} D_{k} \nabla f_{0}\left(x^{(k)}\right) \leftarrow \text { Scaled Forward step } \\
\tilde{y}^{(k)} & \left.\approx \operatorname{prox}_{\alpha_{k} f_{1}\left(z^{-1}\right.}^{D^{-1}}\right) \leftarrow \text { Scaled Inexact Backward step (loop) } \\
d^{(k)} & =\tilde{y}^{(k)}-x^{(k)} \\
x^{(k+1)} & =x^{(k)}+\lambda_{k} d^{(k)} \leftarrow \text { Armijo-like line-search (loop) }
\end{aligned}
$$

- Inexact proximal gradient point: $\tilde{y}^{(k)}$ s.t. $0 \in \partial_{\epsilon_{k}} h^{(k)}\left(\tilde{y}^{(k)}\right)$ and $h^{(k)}\left(\tilde{y}^{(k)}\right)<0$
- Generalized Armijo line-search: compute λ_{k} by backtracking along $d^{(k)}$ s.t.

$$
f\left(x^{(k)}+\lambda_{k} d^{(k)}\right) \leq f\left(x^{(k)}\right)+\beta \lambda_{k} h^{(k)}\left(\tilde{y}^{(k)}\right)
$$

VMILA

λ_{k} with line-search $+\epsilon_{k}$-inexact computation of the proximal gradient point
Assumptions:
$D_{k} \xrightarrow{k \rightarrow \infty} I$ like $C / k^{p}, p>1$
$\alpha_{k} \in\left[\alpha_{\min }, \alpha_{\max }\right]$
$\epsilon_{k}=\left\{\begin{array}{cll}\frac{C}{k^{q}} & \text { with } q>1 & \text { prefixed sequence choice } \\ \text { or } \\ \eta h^{(k)}\left(\tilde{y}^{(k)}\right) & \text { with } \eta \in(0,1] & \text { adaptive choice }\end{array}\right.$

- Convergence to a minimizer (without Lipschitz assumptions on $\nabla f_{0}(x)$)
- Convergence rate $f\left(x^{(k)}\right)-f^{*}=\mathcal{O}(1 / k)$ (proof with Lipschitz assumptions on $\nabla f_{0}(x)$)

Framework for then nonconvex case

[Bolte et al. 2007] and several others

Definition: Kurdyka-Łojasiewicz functions

Let $\mathcal{F}: \mathbb{R}^{n} \longrightarrow \mathbb{R} \cup\{+\infty\}$ be a proper, lower semicontinuous function. The function \mathcal{F} is said to have the KL property at $\bar{z} \in \operatorname{dom}(\partial \mathcal{F})$ if there exist $v \in(0,+\infty]$, a neighborhood U of \bar{z}, a continuous concave function $\phi:[0, v) \longrightarrow[0,+\infty)$ with $\phi(0)=0, \phi \in C^{1}(0, v), \phi^{\prime}(s)>0$ for all $s \in(0, v)$, such that the following inequality is satisfied

$$
\phi^{\prime}(\mathcal{F}(z)-\mathcal{F}(\bar{z}))\|\partial \mathcal{F}(z)\|_{-} \geq 1
$$

for all $z \in U \cap\left\{z \in \mathbb{R}^{n}: \mathcal{F}(\bar{z})<\mathcal{F}(z)<\mathcal{F}(\bar{z})+v\right\}$.
If \mathcal{F} satisfies the KL property at each point of $\operatorname{dom}(\partial \mathcal{F})$, then \mathcal{F} is called a KL function.

NB: Excludes "pathological" cases for descent methods

VMILA

λ_{k} with line-search $+\epsilon_{k}$ - inexact computation of the proximal gradient point
Assumptions:
D_{k} have bounded eigenvalues
$f(\cdot)+\|\cdot\|^{2}$ is a KL function
$\alpha_{k} \in\left[\alpha_{\text {min }}, \alpha_{\text {max }}\right] \quad \nabla f_{0}$ is Lipschitz
$\epsilon_{k}=-\eta h^{(k)}\left(\tilde{y}^{(k)}\right)$, with $\eta \in(0,1]$
(adaptive choice)

- If x^{*} is a limit point of $\left\{x^{(k)}\right\}_{k \in \mathbb{N}}$, then it is stationary and the whole sequence converges to it.

Remark:

Theoretical convergence is obtained almost independently on the choice of α_{k} and D_{k}.

The idea is to exploit these two almost free parameters to improve practical performances.

Remark:

Theoretical convergence is obtained almost independently on the choice of α_{k} and D_{k}.

The idea is to exploit these two almost free parameters to improve practical performances.

- D_{k} is chosen complying with theoretical prescriptions
- as a diagonal matrix by mimiking a Majorization-Minimization strategy [Yang, Oja, 2011], [Chouzenoux, Pesquet, 2016]
- as a LBFGS approximation of the inverse Hessian [Byrd et al., 2016], [Becker et al., 2019]

Remark:

Theoretical convergence is obtained almost independently on the choice of α_{k} and D_{k}.

The idea is to exploit these two almost free parameters to improve practical performances.

- D_{k} is chosen complying with theoretical prescriptions
- as a diagonal matrix by mimiking a Majorization-Minimization strategy [Yang, Oja, 2011], [Chouzenoux, Pesquet, 2016]
- as a LBFGS approximation of the inverse Hessian [Byrd et al., 2016], [Becker et al., 2019]
- α_{k} is computed adapting the well performing strategies for smooth optimization (Barzilai-Borwein, Ritz values [Fletcher 2012])

Remark:

Theoretical convergence is obtained almost independently on the choice of α_{k} and D_{k}.

The idea is to exploit these two almost free parameters to improve practical performances.

- D_{k} is chosen complying with theoretical prescriptions
- as a diagonal matrix by mimiking a Majorization-Minimization strategy [Yang, Oja, 2011], [Chouzenoux, Pesquet, 2016]
- as a LBFGS approximation of the inverse Hessian [Byrd et al., 2016], [Becker et al., 2019]
- α_{k} is computed adapting the well performing strategies for smooth optimization (Barzilai-Borwein, Ritz values [Fletcher 2012])

No theoretical results (same rate and lower complexity bound than nonscaled methods).
(1) Good numerical results.

Numerical results: a difficult case

- VMILA has been tested on a variety of convex and nonconvex image restoration problems.
- The numerical comparison shows that its performances are comparable with the ones of state-of-the-art methods such as: Chambolle-Pock (CP) method, preconditioned CP, ADMM, PidSplit+, iPiano, VMFB, FISTA...
Example of application: edge preserving image deblurring in presence of impulse noise.

$$
f(x)=\underbrace{\|H x-g\|_{1}+\iota \geq 0(x)}_{f_{1}(x)}+\underbrace{\rho \sum_{i=1}^{n} \log \left(1+\xi\left\|\nabla_{i} x\right\|^{2}\right)}_{f_{0}(x)}
$$

$x^{\text {true }}$

g

x^{*}

48 outer, 26 av. inner

Numerical results: a simple case - only nonnegativity constraints

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x)+\iota_{\mathbb{R}_{\geq 0}^{n}}(x) \Longleftrightarrow \min _{x \geq 0} f_{0}(x)
$$

VMILA \rightarrow Scaled Gradient Projection (SGP) method
Nonnegative image deconvolution in presence of Poisson noise with smooth TV regularization.

- confocal and STED microscopy (on GPUs) [Zanella et al. 2013], [Porta et al. 2015]

- astronomical interferometric imaging [Prato et al. 2019]

- region of interest computed tomography (ROI-CT) [Bubba et al. 2018]

- Algorithm design
- consider line-search and inexactness in combination with inertial/heavy ball/ FISTA-like acceleration strategies.
- nonconvex, nonsmooth terms
- Model design
- Combining machine learning and variational models for image restoration

Recent research developments: learning image prior with algorithm unrolling

Combining machine learning and variational models
Classical variational model for image restoration

$$
x^{\text {true }} \simeq x^{*} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} E(x, \beta)
$$

where E is a chosen energy functional containing data discrepancy and regularization, which depends on a set of parameters $\beta \in \mathbb{R}^{p}$.

[^0]
Recent research developments: learning image prior with algorithm unrolling

Combining machine learning and variational models
Classical variational model for image restoration

$$
x^{\text {true }} \simeq x^{*} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} E(x, \beta)
$$

where E is a chosen energy functional containing data discrepancy and regularization, which depends on a set of parameters $\beta \in \mathbb{R}^{p}$.

Supervised learning - bilevel optimization

Given a dataset of images $\mathcal{D}=\left\{\left(x_{s}^{\text {true }}, g_{s}\right)\right\}_{s=1}^{N}$ where g_{s} is a noisy version of $x_{s}^{\text {true }}$, compute the parameters β such that

$$
\begin{array}{ll}
\min _{\beta \in \mathbb{R}^{p},}, & \sum_{s=1}^{N}\left\|x_{s}^{*}(\beta)-x_{s}^{t r u e}\right\|^{2} \\
\text { s.t. } x_{s}^{*}(\beta)=\operatorname{argmin}_{x \in \mathbb{R}^{n}} E(x, \beta)
\end{array}
$$

[^1]
Recent research developments: learning image prior with algorithm

unrolling

Combining machine learning and variational models
Classical variational model for image restoration

$$
x^{\text {true }} \simeq x^{*} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} E(x, \beta)
$$

where E is a chosen energy functional containing data discrepancy and regularization, which depends on a set of parameters $\beta \in \mathbb{R}^{p}$.

Supervised learning - bilevel optimization

Given a dataset of images $\mathcal{D}=\left\{\left(x_{s}^{\text {true }}, g_{s}\right)\right\}_{s=1}^{N}$ where g_{s} is a noisy version of $x_{s}^{\text {true }}$, compute the parameters β such that

$$
\begin{array}{ll}
\min _{\beta \in \mathbb{R}^{p}}, & \sum_{s=1}^{N}\left\|x_{s}^{*}(\beta)-x_{s}^{\text {true }}\right\|^{2} \\
\text { s.t. } x_{s}^{*}(\beta)=\operatorname{argmin}_{x \in \mathbb{R}^{n}} E(x, \beta)
\end{array}
$$

Unrolling techniques

Replace $\operatorname{argmin}_{x \in \mathbb{R}^{n}} E(x, \beta)$ with the image obtained after m steps of an optimization algorithm applied to the variational problem $\min _{x} E(x, \beta)$, possibly learning algorithms and model parameters simultaneously.

Example: image denoising with learned model vs. Total Variation

$$
\begin{aligned}
& E(x, \beta)=\frac{1}{2}\|x-g\|^{2}+\rho \sum_{i=1}^{n}\left\|\nabla_{i} x\right\| \quad \beta \leftrightarrow \rho \\
& E(x, \beta)=\frac{1}{2}\|x-g\|^{2}+\sum_{j=1}^{q} \rho_{j} \sum_{i=1}^{n} \log \left(1+\left(\left[\kappa_{j} * x\right]_{i}\right)^{2}\right) \quad \beta \leftrightarrow \rho_{j}, \kappa_{j}, j=1, \ldots, q \\
& \text { TV restoration } \\
& \text { PSNR } 27.85 \\
& \text { learned prior restoration } \\
& \text { PSNR } 29.89
\end{aligned}
$$

Majorization-Minimization idea

If $F\left(x, x^{(k)}\right)$ is an auxiliary function for f_{0} if

$$
F\left(x^{(k)}, x^{(k)}\right)=f_{0}\left(x^{(k)}\right) \text { and } F\left(x, x^{(k)}\right) \geq f_{0}(x) \quad \forall x \in \mathbb{R}^{n}
$$

then,

$$
\bar{x}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} F\left(x, x^{(k)}\right) \Rightarrow f_{0}(\bar{x}) \leq f_{0}\left(x^{(k)}\right)
$$

For several relevant f_{0}, an auxiliary function can be build as

- Quadratic auxiliary function [Chouzenoux, Pesquet, 2016]:

$$
F\left(x, x^{(k)}\right)=f_{0}\left(x^{(k)}\right)+\left(x-x^{(k)}\right)^{T} \nabla f_{0}\left(x^{(k)}\right)+\frac{1}{2}\left(x-x^{(k)}\right)^{T} D_{k}^{-1}\left(x-x^{(k)}\right)
$$

- Non quadratic auxiliary function [Yang, Oja, 2011].

In both cases there exists a diagonal matrix D_{k} build on the component of $\nabla f_{0}\left(x^{(k)}\right)$, such that

$$
x^{(k)}-D_{k} \nabla f_{0}\left(x^{(k)}\right)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} F\left(x, x^{(k)}\right)
$$

The convergence condition $D_{k} \rightarrow I$ can be fulfilled by squeezing the elements of the diagonal matrix D_{k} to 1 as k increases.

- Choose D_{k} using the 0-memory LBFGS idea [Ochs et al., 2019]

$$
D_{k}=\tau_{k}\left(I-\rho_{k} s^{(k-1)} w^{(k-1)^{T}}\right)\left(I-\rho_{k} s^{(k-1)} w^{(k-1)^{T}}\right)^{T}+\rho_{k} s^{(k-1)} s^{(k-1)^{T}}
$$

where

$$
\begin{gathered}
s^{(k-1)}=x^{(k)}-x^{(k-1)}, \quad w^{(k-1)}=\nabla f_{0}\left(x^{(k)}\right)-\nabla f_{0}\left(x^{(k-1)}\right) \\
\rho_{k}=\frac{1}{s^{(k-1)^{T}} w^{(k-1)}}, \quad \tau_{k}=\frac{s^{(k-1)^{T}} w^{(k-1)}}{\left\|w^{(k-1)}\right\|^{2}}
\end{gathered}
$$

- Non diagonal matrix
- The scaled direction $D_{k} \nabla f_{0}\left(x^{(k)}\right)$ can be implemented via only scalar products
- Similar formula for $D_{k}{ }^{-1}$
- The bound on the eigenvalues can be checked on the coefficients τ_{k}, ρ_{k}

Given D_{k}, we would choose α_{k} such that

$$
\frac{1}{\alpha_{k}} D_{k}^{-1} \simeq \nabla^{2} f_{0}\left(x^{(k)}\right)
$$

simulating the Taylor's equality

$$
\begin{gathered}
\nabla f_{0}(x+d)=\nabla f_{0}(x)+\int_{0}^{1} \nabla^{2} f_{0}(x+t d) d d t \\
\underbrace{\nabla f_{0}\left(x^{(k)}\right)-\nabla f_{0}\left(x^{(k-1)}\right)}_{w^{(k-1)}} \simeq \frac{1}{\alpha_{k}} D_{k}^{-1}(\underbrace{x^{(k)}-x^{(k-1)}}_{s^{(k-1)}}) \\
\alpha_{k}{ }^{B B 1}=\underset{\alpha}{\operatorname{argmin}\left\|\frac{1}{\alpha} D_{k}^{-1} s^{(k-1)}-w^{(k-1)}\right\|=\frac{\left\|D_{k}^{-1} s^{(k-1)}\right\|^{2}}{s^{(k-1)^{T} D_{k}^{-1} w^{(k-1)}}}} \begin{array}{c}
\alpha_{k}{ }^{B B 2}=\underset{\alpha}{\operatorname{argmin}}\left\|s^{(k-1)}-\alpha D_{k} w^{(k-1)}\right\|=\frac{s^{(k-1)^{T}} D_{k} w^{(k-1)}}{\left\|D_{k}^{-1} w^{(k-1)}\right\|^{2}}
\end{array} .
\end{gathered}
$$

- Good results when the two values are alternated following an adaptive switching rule and projected onto a given interval $\left[\alpha_{\min }, \alpha_{\max }\right]$, with $0<\alpha_{\text {min }}<\alpha_{\text {max }}$.
- Recent developments in steplength selection rules: Ritz values [Fletcher 2012]

[^0]: Unioling ecoliniques optimization algorithm applied to the variational problem $\min _{x} E(x, \beta)$, possibly learning algorithms and model parameters simultaneously.

[^1]: Replace argmin ${ }_{x \in \mathbb{R}^{n}} E(x, \beta)$ with the image obtained after m steps of an
 optimization algorithm applied to the variational problem $\min _{x} E(x, \beta)$, possibly
 learning algorithms and model parameters simultaneously.

