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Mathematical notation for Data Analysis

Given data («individuals», «snapshots»), via collected features:

v’ Discrete output:
 Classificator - In Supervised Classification a set of «labelled» samples is available.
* Clustering - in Unsupervised Classification all samples are unlabled.

v' The analogous regression/approximation problems are:

* Supervised case: Features are divided into input (or independent) variables and outcomes. The
objective is to find a model: predictive statistics, approximation function, regression modeling,
parameters detection in inverse problems.

* Unsupervised case: Find a way to describe the data in terms of some new variables so that the main
behavior is preserved: principal components, reduced models, projection techniques, feature
selection, manifold learning, association rules.



Interpolation properties: over-fitting? . ok M. Hsu o, Ma. 5. & Mandal,

S. (2019). Reconciling modern machine-
learning practice and the classical bias—

Over-parametrized NN <--> Underdeterminated interpolation variance trade-off. Proceedings of the
National Academy of Sciences, 116(32),
15849-15854.
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Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A4) The classical U-shaped risk curve arising from the bias-variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the "modern” Interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.



Some properties of Neural Networks

The Modern Mathematics of Deep Learning*
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Abstract

We describe the new field of mathematical analysis of deep learning. This field emerged around a list
of research questions that were not answered within the classical framework of learning theory. These
questions concern: the outstanding generalization power of overparametrized neural networks, the role of
depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful
optimization performance despite the non-convexity of the problem, understanding what features are
learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects
of an architecture affect the behavior of a learning task in which way. We present an overview of modern
approaches that yield partial answers to these questions. For selected approaches, we describe the main
ideas in more detail.
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Feed—Forward Neural networks
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FFNs: A set of connected units/nodes
(neurons) that take from multiple input a
real valued output by a transfer (activation)
function.

Neurons are stored in layers: the input
layer, hidden layers and the output layer.
Each layer consist of neurons, that are fully
connected with nodes of the previous by
weighted edges. Weights between layer and
vector of biases describe the connection
between layers.

Roma - CNR - 2022




Combining input data in the activation function: the case of

additive nodes.
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Each i-th neuron in the /-th (hidden) layer
has AE” (weights) and ,ﬁ,.m (bias) as
parameters. |t uses the input values and an
activation function 1&'!}{” to compute it's
output x": X\ = (z\") where

20 5 M p0) (D g0
Most common choices for activation
functions are:

e Logistic Sigmoid (LS):

f _ 1
w(x) — 1texp(—x)

@ Rectified Linear Unit (ReLU):
P(x) = xT = max{x, 0}

Roma - CNR - 2022




The effect of deep structure: feature space vs function
composition

All together, hidden layers encode the input in Nz new coordinates (feature space),
acting thus as a filter. We conside the (univariate) case, where N, ; = 1, and denote
u = x“*1) Then, matrix A“*! reduce to a vector w = (wy, wa, . .., wy,) € RNz that

we denote as external weigths.
In this case, the whole network is a map F : x(? ¢ RM — 4 € R between the input

domain and the output domain that can be expressed by composition:
;:(X{GJ) — ) 5.0 ¢[1J(x[ﬂ})

Usually the final output is taken as linear combination of evaluations done at the last
hidden layer, so that transfer functions L{ 1) of the last layer are the identity functions:

ZA[;:H {L} {,{: ZW’

Francesoo Calabrt Roma - CNR - 2022



Universal approximation theorem for FNN with additive nodes

Consider FFN with the same transfer function ¢ in all internal layers, with ¢ € C(R).
Then the space M (1) generated by linear combination of the last hidden layer output

x(£) i.e. defined by:

:jzl,...:N,,:‘zl,...:ﬁ+1}

is dense in C(RM0), in the topology of uniform convergence on compacta, if and only if
1’ is not a polynomial.
No need to consider a deep structure!

Francesoo Calabrt Roma - CNR - 2022
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Single layer case / Extreme Learning Machine

In the single layer case one obtains: .
& Y We refer to such functions as:

N N
Z wjij(2) - v(x; A, Biw) = Z wj (o - x + ;)
J=1 =1
where _N are the: number of neurons. If we fix a-priori both internal weights A
Exploring explicitly z; we have: and bias J according to a continuous
N No sampling distribution probability and keep
Z w1 (_ﬁj n Z ﬂ'gx,f{n}) _ only the external_weightslw as trainable
i s parameters the single - hidden - layer -

feedforward network is referred as Extreme
Moreover, we take the same activation Learning Machine (ELM).
function v; = .

Francesoo Calabrt Roma - CNR - 2022



Universal Approximation theorem for ELM

Universal approximation

Let the coefficients a;, f; in the function sequence {(a; - x + §;)}}L; be randomly
generated according to any continuous sampling distribution and call

7" € span{(a; -x+B;), j=1...N}

the ELM function determined by ordinary least square solution of ||f(x) — #"(x)|

where f is a continuous function.
Then, if M(2)) spans L2, this implies that limy_,.. | — #"||, = 0 with probability 1.

Francesoo Calabrt Roma - CNR - 2022



Interpolation / Collocation equations with ELM

Within the ELM framework, the interpolation problem leads to a system of linear
equations, where the only unknowns are the external weights w. Consider M points x;
such that y; = f(x;) for i =1,..., M. Then the interpolation problem reads:

Here N is the number of neurons and ;(x) is used to denote ¥'(a; - x + [3;).

Thus, this is a linear system of M equations and N unknowns.

Francesoo Calabrt Roma - CNR - 2022



Interpolation with ELM, univariate case

Approximation of discrete data - Interpolation

Let (x;,y;), i=1,..., M be a set of points such that x; < x;,;, and take the ELM
network with N neurons ii(x; w) such that the internal weights a and the biases 3 are
randomly generated independently from the data according to any continuous
probability distribution. Then, V= > 0, there exists N < M and a choice of w such that

|(@(x;; w) — yi)ill < . Here || - || denotes the L? Euclidean norm of vectors, the
analogous of the Frobenius norm. Moreover, if N > M then w can be found such that

|((xi; w) — yi)ill = 0.

Francesoo Calabrt Roma - CNR - 2022



The use of NN for the
resolution of PDEs
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Extreme learning machine collocation method

v We use Extreme Learning Machine random projection networks as discrete space.

v’ Free paramenters are fixed via collocation equations.

v' We underdeterminate the collocation equations.

v" In the parabolic case: semidiscretize in time and solve the elliptic PDEs.

Calabro, F., Fabiani, G., & Siettos, C. (2021). Extreme learning machine
collocation for the numerical solution of elliptic PDEs with sharp
gradients. Computer Methods in Applied Mechanics and Engineering, 387,
114188.

Fabiani, G., Calabro, F., Russo, L. & Siettos, C. (2021). Numerical solution and
bifurcation analysis of nonlinear partial differential equations with extreme learning
machines. J Sci Comput 89, 44

Calabro, F., Cuomo, S., di Serafino, D., 1zzo, G. & Messina, E. (2022). The effect
of time discretization on the solution of parabolic PDEs with ANNSs, in preparation

— Liner elliptic PDEs.

— Nonlinear elliptic PDESs: tuning points of
bifurcation diagrams.

— Linear Parabolic PDEs. (W.I.P.)



Extreme learning machine collocation method
Problem formulation: the collocation equations (1/2)

The general problem is: In the stationary case:
Oeu = L(u) + £(t, x) L(u(x)) = f(x), B(u(x)) = g(x)
Numerical solution at fixed time will be: And for the sﬁlutinn
i(x;w) =3 iy witi(x)
il"(x) = Z ol (x), we ask exactness on points {x } € Q,
r' {&p} € 6Q:
Ad example, with the #-method it solves: L(d(x)) = f(x;), B(ii(¢s)) = g(ép)
_ﬁﬂrﬁ(ﬂ-’[”]) + il (x) = By linearity,
" (x) + OAtf(t,, x)+ ) , |
1 — 0)At [£(gln—1 f+ { E(E(W)]:Ein:l Wr":(?.*'";'r’(xj))
(1= )AL [L(E") + F(ta1,)] B(ii(%)) = 1y wiB(ti(s))

Roma - CNR - 2022



Extreme learning machine collocation method
Problem formulation: the collocation equations (2/2)

To present the approach, we have chose a steady-state one-dimensional ellpitic PDE.
—pu”(x) + yu'(x) + Au(x) = f(x),

where 11, v and A are the diffusion, advection and reaction terms, respectively.
The approximate solution i(x; w) &~ u(x), d(x;w) = SN, wi;(x).
Collocating the equations on M points, we have that the approximate solution solves:

—pd"(x;) + v (x;) + Adi(x;) — f(x) =0 .
By linearity:

—p Y wit (g) + 7> witj(g) + A Y witi() — F(x) =0

The previous is a j—th row (out of N) of a matrix problem $w — f = 0 where
;i = —pdi(x;) + yUi(x;) + Abi(x) We choose to overparametrize the problem /
underdeterminate the system (N > M) and solve it by Least Square procedure. This

gives that the functions, constructed in a random way, can be “selected” by the LS
method.

Francesoo Calabrt Roma - CNR - 2022



Extreme learning machine collocation method
The discrete space: Sigmoidal transfer functions
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Fig. 1. The functions o; of (2.2) with varying parameters. On the top left panel, we have set oy = 100, on the top right. @; = 1. On the
bottom left panel we show functions with a fixed center C; = 1/2. On the bottom right panel, a set of 10 functions obtained by varying
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Extreme learning machine collocation method
Ex1: High order polynomial problem

Example 1)
The linear problem:

l ' =22Pp(l —x)P2xP2(—14+2x —2x2+ p(1 —4x +4x?), 0 <x < |

w(0)=0, u(l)=0

With exact solution:

u(x) = 22PxP(1 — x)?

For comparison, we take the 7-
points centered-stencil FD
solution. L2 norm is used for
the evaluation of the error.
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Fig. 5. Numerical tests for the solution of problem (5.2) with p = 10. On the top panel are depicted the exact-analytical (5.3) and the ELM
numerical solutions with n = 40, 80; the number of collocation points M was set to n/2. On the bottom panels are shown the error and
residual convergence: on the left panel, we have fixed M = n/2 and varied n and on the right panel we have fixed n = 80 and varied M.



Extreme learning machine collocation method
Ex2: Boundary layer problem: linear diffusion-reaction
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Fig. 7. Numerical tests for the solution of the problem (3.1) with 4 = 1,y = 0,4 = 300. In this case, the Péclet number is Fe, = 50,
the boundary layer is of the order of 1071, On the top panel are shown the exact-analytical (5.6) and the ELM numerical solutions for
n = 40, 80; the number of collocation points was set to M = n/2. On the bottom panels are depicted the error and the residual convergence:
on the left panel we have fixed M = n/2 and varied n and on the right panel we have fixed n = 80 and varied M.



Extreme learning machine collocation method
Ex3: Nonlinear Burgers equation

g,
d-u du
v — H— = [l
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Fig. 1 Numerical solution and accuracy of the FD, FEM and the proposed machine learning (ELM) schemes
for the one-dimensional viscous Burgers problem with Dirichlet boundary conditions (18), (19), (a.b) with
viscosity v = 0.1: (a) Solutions for a fixed problem size N = 40; (b) Ly-norm of differences with respect
to the exact solution (21) for various problem sizes. (c.d) with viscosity v = 0.007: (c) Solutions for a fixed
problem size N = 40; (d) Lo-norm errors with respect to the exact solution for various problem sizes



Extreme learning machine collocation method
Ex4: Nonlinear Bratu problem, bifurcation diagram

Au(x) + 1" =0 x € 2.
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Fig.7 a Bifurcation diagram for the one-dimensional Bratu problem (37), with a fixed problem size N = 400.
b Zoom near the turning point




Extreme learning machine collocation method
Ex4: Nonlinear Bratu problem, convergence

Au(x) + 1" =0 x € 2.
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Fig. 6 Fixed point iterations: L--norm of the difference errors for the low and up branch Liouville-Bratu—
Gelfand solution (39) for A = 2: a L, errors with respect to N of the low branch solution, b L, errors with
respect to N of the upper branch



Extreme learning machine collocation method
Ex5: Parabolic problem u_

Friale: x €[0,1], t €]0,1]
u(x,0) = sin(mx) + sin(3mx) u(0,t) = u(2,t) =0

u(t,x) = e ™ tsin(mx) + e > T sin(37x)
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Extreme learning machine collocation method

Remarks:

@ The LS solution, in principle, can give some non zero residual on the collocation

points. Nevertheless, we consider L? errors for the global solution and obtain good
accuracy with very reasonable computational costs.

@ Boundary terms can be penalized as usually done in collocation.

@ (i(x;w) is a physics-informed neural network (PINN) that minimizes a strong-form
loss function. Because we are using ELMs such problem is a linear
underdeterminated problem.

@ In the case of general NN, the function v(x; A, 3; w) depends non linearly by its
parameters, so that some optimization procedure has to be performed.

Francesco Calabré Firenze 2022




Extreme learning machine collocation method
Main advantages / open questions

Collocation solution is Physic based, directly a global solution, no post processing is needed for evaluation of the solution.
Data can be given in user-specified sites and/or can be given by the application.

The least square solution is capable of automatically selecting the important features, i.e. the functions in the space that
are more influent for the solution. This leads to a one-shot automatic method and there is no need for adaptive
procedures, such as those related to a-posteriori error estimates.

Achieved:

v" No need for mesh generation.

v" No need for a regular distribution of the collocation points.
v" No problems related to difficult gecometries.

v" Good adaptivity.

v" Good accuracy.

v" BDF methods for tme marching.

Needs more investigation:

» Convergence properties are unavailable because usually, these are related to polynomial reproduction.

» Advantages, when used in variational formulations, are not clear (quadrature?).

» Treatment of local behaviors such as boundary conditions should be clarified: in the actual computations, many points
on the boundaries are needed.
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