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Mathematical notation for Data Analysis

Given data («individuals», «snapshots»), via collected features:

✓ Discrete output:

• Classificator - In Supervised Classification a set of «labelled» samples is available.

• Clustering - in Unsupervised Classification all samples are unlabled.

✓ The analogous regression/approximation problems are:

• Supervised case: Features are divided into input (or independent) variables and outcomes. The
objective is to find a model: predictive statistics, approximation function, regression modeling,
parameters detection in inverse problems.

• Unsupervised case: Find a way to describe the data in terms of some new variables so that the main
behavior is preserved: principal components, reduced models, projection techniques, feature
selection, manifold learning, association rules.



Interpolation properties: over-fitting?

Over-parametrized NN <--> Underdeterminated interpolation

• Belkin, M., Hsu, D., Ma, S., & Mandal, 
S. (2019). Reconciling modern machine-
learning practice and the classical bias–
variance trade-off. Proceedings of the 
National Academy of Sciences, 116(32), 
15849-15854.



Some properties of Neural Networks



                                                                                     



                                                                                     







Deep NN vs Single Layer NN

                                                                                     

                                                  











The use of NN for the 
resolution of PDEs
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✓ We use Extreme Learning Machine random projection networks as discrete space. 

✓ Free paramenters are fixed via collocation equations.

✓ We underdeterminate the collocation equations.

✓ In the parabolic case: semidiscretize in time and solve the elliptic PDEs. 

Extreme learning machine collocation method

Calabrò, F., Fabiani, G., & Siettos, C. (2021). Extreme learning machine

collocation for the numerical solution of elliptic PDEs with sharp

gradients. Computer Methods in Applied Mechanics and Engineering, 387,

114188.

Fabiani, G., Calabrò, F., Russo, L. & Siettos, C. (2021). Numerical solution and

bifurcation analysis of nonlinear partial differential equations with extreme learning

machines. J Sci Comput 89, 44

Calabrò, F., Cuomo, S., di Serafino, D., Izzo, G. & Messina, E. (2022). The effect

of time discretization on the solution of parabolic PDEs with ANNs, in preparation

→ Liner elliptic PDEs.

→ Nonlinear elliptic PDEs: tuning points of

bifurcation diagrams.

→ Linear Parabolic PDEs. (W.I.P.)



Extreme learning machine collocation method
Problem formulation: the collocation equations (1/2)



Extreme learning machine collocation method
Problem formulation: the collocation equations (2/2)



Extreme learning machine collocation method
The discrete space: Sigmoidal transfer functions

Basis functions:

Parameters α are chosen randomly with respect 
to a uniform distribution. Then β are computed 
so that the inflection points are uniformly spaced. 

The approximation space takes advantage of 
these different shapes. Then the solution is a 
linear combination of such sigmoidal functions:



Extreme learning machine collocation method
Ex1: High order polynomial problem

Example 1) 
The linear problem:

With exact solution:

For comparison, we take the 7-
points centered-stencil FD 
solution. L2 norm is used for 
the evaluation of the error.



Extreme learning machine collocation method
Ex2: Boundary layer problem: linear diffusion-reaction

Example 2) 
The linear steady-state one-
dimensional ellpitic PDE that
exhibits steep gradient: µ<<λ



Extreme learning machine collocation method
Ex3: Nonlinear Burgers equation



Extreme learning machine collocation method
Ex4: Nonlinear Bratu problem, bifurcation diagram



Extreme learning machine collocation method
Ex4: Nonlinear Bratu problem, convergence



Extreme learning machine collocation method
Ex5: Parabolic problem



Extreme learning machine collocation method



Extreme learning machine collocation method
Main advantages / open questions

Collocation solution is Physic based, directly a global solution, no post processing is needed for evaluation of the solution.
Data can be given in user-specified sites and/or can be given by the application.
The least square solution is capable of automatically selecting the important features, i.e. the functions in the space that
are more influent for the solution. This leads to a one-shot automatic method and there is no need for adaptive
procedures, such as those related to a-posteriori error estimates.

Achieved:
✓ No need for mesh generation.
✓ No need for a regular distribution of the collocation points.
✓ No problems related to difficult geometries.
✓ Good adaptivity. 
✓ Good accuracy.
✓ BDF methods for tme marching.

Needs more investigation:
➢ Convergence properties are unavailable because usually, these are related to polynomial reproduction.
➢ Advantages, when used in variational formulations, are not clear (quadrature?).
➢ Treatment of local behaviors such as boundary conditions should be clarified: in the actual computations, many points 

on the boundaries are needed.
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