Calcolo Scientifico e Modelli Matematici
Alla ricerca della cose nascoste attraverso le cose manifeste
Smooth path planning for autonomous
vehicles: perspectives from the theory of
Pythagorean-hodograph curves
Carlotta Giannelli
(University of Florence)

Calcolo Scientifico e Modelli Matematici
Alla ricerca della cose nascoste attraverso le cose manifeste
Smooth path planning for autonomous vehicles: perspectives from the theory of Pythagorean-hodograph curves

Carlotta Giannelli
(University of Florence)

joint work with
Alessandra Sestini,
Lorenzo Sacco
(University of Florence)

Planning curvilinear paths for autonomous vehicles

Path planning for autonomous or remotely operated vehicles

- Unmanned Aerial Vehicles (UAVs)
- Autonomous Underwater Vehicles (AUVs)

Planning curvilinear paths for autonomous vehicles

Feasible paths must satisfy various constraints
\checkmark bounds on the path curvature or climb angle

- avoidance of environmental obstacles
- maintenance of safe separations in vehicle swarms

Pythagorean-hodograph curves
\triangleright smooth PH spline paths

- data stream interpolation
- real test case: Zeno AUV

Pythagorean-hodograph curves

Pythagorean-hodograph

$$
r(t) \text { Pythagorean-hodograph (PH) curve }
$$

$\left|\dot{\mathbf{r}}^{\prime}(t)\right|$. polynomial function of t

PH space curves

$\mathbf{r}(t)=(x(t), y(t), z(t))$

$$
\left|\mathbf{r}^{\prime}(t)\right|^{2}=x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t)
$$

algebraic structure in its hodograph

$$
x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t) \equiv \sigma^{2}(t)
$$

for some polynomial

$$
\sigma(t)=\left|\mathbf{r}^{\prime}(t)\right|
$$

PH space curves

$$
\mathbf{r}(t)=(x(t), y(t), z(t))
$$

$$
\left|\mathbf{r}^{\prime}(t)\right|^{2}=x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t)
$$

algebraic structure in its hodograph

$$
x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t) \equiv \sigma^{2}(t)
$$

for some polynomial

$$
\sigma(t)=\left|\mathbf{r}^{\prime}(t)\right|
$$

:: polynomial arc-length function

$$
s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| \mathrm{d} \tau
$$

:: rational adapted frames
$\because \because$ rational swept surfaces parametrization

PH space curves

$$
\mathbf{r}(t)=(x(t), y(t), z(t))
$$

$$
\left|\mathbf{r}^{\prime}(t)\right|^{2}=x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t)
$$

algebraic structure in its hodograph

$$
x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t) \equiv \sigma^{2}(t)
$$

for some polynomial

$$
\sigma(t)=\left|\mathbf{r}^{\prime}(t)\right|
$$

pythagorean quadruples of polynomials

$$
\begin{aligned}
x^{\prime}(t) & =u^{2}(t)+v^{2}(t)-p^{2}(t)-q^{2}(t) \\
y^{\prime}(t) & =2[u(t) q(t)+v(t) p(t)] \\
z^{\prime}(t) & =2[v(t) q(\cdot t)-u(t) p(t)] \\
\sigma(t) & =u^{2}(t)+v^{2}(t)+p^{2}(t)+q^{2}(t)
\end{aligned}
$$

for some polynomials $u(t), v(t), p(t), q(t)$

PH space curves

$$
\mathbf{r}(t)=(x(t), y(t), z(t))
$$

$$
\left|\mathbf{r}^{\prime}(t)\right|^{2}=x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t)
$$

algebraic structure in its hodograph

$$
x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t) \equiv \sigma^{2}(t)
$$

for some polynomial

$$
\sigma(t)=\left|\mathbf{r}^{\prime}(t)\right|
$$

$$
\mathbf{r}^{\prime}(t)=\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t)
$$

quaternion polynomial
$\mathcal{A}(t):=u(t)+v(t) \mathbf{i}+p(t) \mathbf{j}+q(t) \mathbf{k}$
[Choi, Lee and Moon - ACOM, 2002]
[Dietz, Hoschek and Jüttler - CAGD, 1993]

Quaternion algebra \mathbb{H}

$$
\mathcal{A}=a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \quad \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1
$$

Quaternion algebra \mathbb{H}

$$
\mathcal{A}=a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \quad \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j}=-1
$$

$\nabla \mathcal{A}=\left(a_{0}, \mathbf{a}\right)$ where a_{0} is the scalar part and $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is the vector part;

- $\mathcal{A B}=\left(a_{0} b_{0}-\mathbf{a} \cdot \mathbf{b}, a_{0} \mathbf{b}+b_{0} \mathbf{a}+\mathbf{a} \times \mathbf{b}\right)$ is the quaternion product;
$>\mathcal{A}^{*}=\left(a_{0},-\mathbf{a}\right)$ is the conjugate of \mathcal{A} and $(\mathcal{A B})^{*}=\mathcal{B}^{*} \mathcal{A}^{*}$;
$\triangleright|\mathcal{A}|^{2}=\mathcal{A} \mathcal{A}^{*}=\mathcal{A}^{*} \mathcal{A}=a_{0}^{2}+|\mathrm{a}|^{2}$ is the square module of \mathcal{A} and $|\mathcal{A} \mathcal{B}|=|\mathcal{A}||\mathcal{B}| ;$

Quaternion algebra \mathbb{H}

$$
\mathcal{A}=a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \quad \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j}=-1
$$

- $\mathcal{A}=\left(a_{0}, \mathbf{a}\right)$ where a_{0} is the scalar part and $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is the vector part;
$>\mathcal{A} \mathcal{B}=\left(a_{0} b_{0}-\mathbf{a} \cdot \mathbf{b}, a_{0} \mathbf{b}+b_{0} \mathbf{a}+\mathbf{a} \times \mathbf{b}\right)$ is the quaternion product;
$>\mathcal{A}^{*}=\left(a_{0},-\mathbf{a}\right)$ is the conjugate of \mathcal{A} and $(\mathcal{A} \mathcal{B})^{*}=\mathcal{B}^{*} \mathcal{A}^{*}$;
$\nabla|\mathcal{A}|^{2}=\mathcal{A} \mathcal{A}^{*}=\mathcal{A}^{*} \mathcal{A}=a_{0}^{2}+|\mathbf{a}|^{2}$ is the square module of \mathcal{A} and $|\mathcal{A} \mathcal{B}|=|\mathcal{A}||\mathcal{B}| ;$

If $v_{0}=0 \Rightarrow \mathcal{V}=\left(v_{0}, \mathbf{v}\right)$ and also $\mathcal{A} \mathbf{v} \mathcal{A}^{*}$ are pure vectors
\Rightarrow the general solution of the non-unilateral quadratic quaternion equation

$$
\mathcal{A} \mathbf{u} \mathcal{A}^{*}=\mathbf{v} \quad \text { is given by } \quad \mathcal{A}=\sqrt{|\mathbf{v}|} \frac{\mathbf{u}+\mathbf{v} / \mathbf{v}}{|\mathbf{u}+\mathbf{v} / \mathbf{v}|}(\cos \phi+\sin \phi \mathbf{u})
$$

where ϕ is a free angular variable and \mathbf{u} is a unit vector.

Bézier form of spatial PH quintics

Substituting

$$
\mathcal{A}(t)=\mathcal{A}_{0} B_{0}^{2}(t)+\mathcal{A}_{1} B_{1}^{2}(t)+\mathcal{A}_{2} B_{2}^{2}(t)
$$

into

$$
\mathbf{r}^{\prime}(t)=\mathcal{A}(t) \mathbf{i} \mathcal{A}(t)
$$

and integrating yields the Bézier form

$$
\mathbf{r}(t)=\sum_{i=0}^{5} \mathbf{p}_{i} B_{i}^{5}(t)
$$

Bernestein polynomials

$$
B_{i}^{n}(t):=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

Bézier form of spatial PH quintics

Substituting

$$
\mathcal{A}(t)=\mathcal{A}_{0} B_{0}^{2}(t)+\mathcal{A}_{1} B_{1}^{2}(t)+\mathcal{A}_{2} B_{2}^{2}(t)
$$

into

$$
\mathbf{r}^{\prime}(t)=\mathcal{A}(t) \mathbf{i} \mathcal{A}(t)
$$

and integrating yields the Bézier form

$$
\mathbf{r}(t)=\sum_{i=0}^{5} \mathbf{p}_{i} B_{i}^{5}(t)
$$

with control points

$$
\begin{aligned}
& \mathbf{p}_{1}=\mathbf{p}_{0}+\frac{1}{5} \mathcal{A}_{0} \mathbf{i} \mathcal{A}_{0}^{*} \\
& \mathbf{p}_{2}=\mathbf{p}_{1}+\frac{1}{10}\left(\mathcal{A}_{0} \mathbf{i} \mathcal{A}_{1}^{*}+\mathcal{A}_{1} \mathbf{i} \mathcal{A}_{0}^{*}\right) \\
& \mathbf{p}_{3}=\mathbf{p}_{2}+\frac{1}{30}\left(\mathcal{A}_{0} \mathbf{i} \mathcal{A}_{2}^{*}+4 \mathcal{A}_{1} \mathbf{i} \mathcal{A}_{1}^{*}+\mathcal{A}_{2} \mathbf{i} \mathcal{A}_{0}^{*}\right) \\
& \mathbf{p}_{4}=\mathbf{p}_{3}+\frac{1}{10}\left(\mathcal{A}_{1} \mathbf{i} \mathcal{A}_{2}^{*}+\mathcal{A}_{2} \mathbf{i} \mathcal{A}_{1}^{*}\right) \\
& \mathbf{p}_{5}=\mathbf{p}_{4}+\frac{1}{5} \mathcal{A}_{2} \mathbf{i} \mathcal{A}_{2}^{*}
\end{aligned}
$$

Adapted frames

\qquad

2 desirable properties

- rational dependence on the curve parameter t
$\left(f_{1}, f_{2}, f_{3}\right)$ is an adapted frame on $\mathbf{r}(t)$

$$
\begin{gathered}
\Leftrightarrow \\
\mathbf{f}_{1} \equiv \mathbf{t}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
\end{gathered}
$$

- rotation-minimizing property

Adapted frames

\qquad

2 desirable properties

- rational dependence on the curve parameter t
$\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ is an adapted frame on $\mathbf{r}(t)$

$$
\begin{gathered}
\Leftrightarrow \\
\mathbf{f}_{1} \equiv \mathbf{t}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
\end{gathered}
$$

- rotation-minimizing property

Curves with rational FF

$\mathbf{r}(t)=(x(t), y(t) ; z(t))$

Frenet frame (FF) $\quad \mathbf{t}=\frac{\mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|}$

$$
\mathbf{b}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}
$$

\triangleright PH curvie $\Leftrightarrow\left|\mathbf{r}^{\prime}(t)\right|$ is a polynomial in t

Curves with rational FF

$\mathbf{r}(t)=(x(t), y(t) ; z(t))$

Frenet frame (FF) $\because \quad \mathbf{t}=\frac{\mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|}$

$$
\mathbf{b}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}
$$

\triangleright double PH curve $\Leftrightarrow\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|$ is also a polynomial in t
\Downarrow
$\mathbf{r}(t)$ is a double PH (DPH) curve $\Leftrightarrow \mathbf{r}(t)$ has a rational FF

Rotation-minimizing property

- rotation-minimizing property

Rotation-minimizing property

- rotation-minimizing property

Rotation-minimizing property

$\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ is an adapted frame on $\mathbf{r}(t)$

- $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right), \mathbf{e}_{1} \equiv \mathbf{t}$

Eulero-Rodriguez Frame (ERF)
$\mathrm{e}_{2}=\frac{\mathcal{A} \mathbf{j} \mathcal{A}^{*}}{\left|\mathbf{r}^{\prime}\right|}$
$\mathrm{e}_{3}=\frac{\mathcal{A} \mathbf{k} \mathcal{A}^{*}}{\left|\mathbf{r}^{\prime}\right|}$

- $\left(\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}\right), \mathbf{t}_{1} \equiv \mathbf{t}$

Frenet Frame (FF)
$\mathbf{t}_{2}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|} \times \mathbf{t} \quad \mathbf{t}_{3}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime \prime}\right|}$

Rotation-minimizing property

$\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ is an adapted frame on $\mathbf{r}(t)$

- $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right), \mathbf{e}_{1} \equiv \mathbf{t}$

Eulero-Rodriguez Frame (ERF)
$\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right), \mathbf{r}_{1} \equiv \mathbf{t}$

$$
\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right), \mathbf{r}_{1} \equiv \mathbf{t}
$$

$\mathbf{e}_{2}=\frac{\mathcal{A} \mathbf{j} \mathcal{A}^{*}}{\left|\mathbf{r}^{\prime}\right|} \quad \mathrm{e}_{3}=\frac{\mathcal{A} \mathbf{k} \mathcal{A}^{*}}{\left|\mathbf{r}^{\prime}\right|}$

- $\left(\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}\right), \mathbf{t}_{1} \equiv \mathbf{t}$

Frenet Frame (FF)
$\mathbf{t}_{2}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|} \times \mathbf{t} \quad \mathbf{t}_{3}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}$

$$
\mathbf{f}_{1} \equiv \mathbf{t}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

\star Rotation-Minimizing Frame (RMF)
with $\theta=-\int \tau \mathrm{ds}$
[Bishop - AMM. 1975$]$
[Guggenheimer — CAGD, 1989]
[Klok - CAGD, 1986]

RMFs on space curves

∇ the angular velocity $\boldsymbol{\omega}(t)$ specifies the variation of $\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathrm{f}_{3}\right)$ along $\mathbf{r}(t)$

$$
\boldsymbol{\omega}=\omega_{1} \mathbf{f}_{1}+\omega_{2} \mathbf{f}_{2}+\omega_{3} \mathbf{f}_{3}
$$

where $\mathbf{f}_{j}^{\prime}=\boldsymbol{\omega} \times \mathbf{f}_{j}, j=1,2,3$,

$$
\omega_{1}=\mathbf{f}_{3} \cdot \mathbf{f}_{2}^{\prime}=-\mathbf{f}_{2} \cdot \mathbf{f}_{3}^{\prime} \quad \omega_{2}=\mathbf{f}_{1} \cdot \mathbf{f}_{3}^{\prime}=-\mathbf{f}_{3} \cdot \mathbf{f}_{1}^{\prime} \quad \omega_{3}=\mathbf{f}_{2} \cdot \mathbf{f}_{1}^{\prime}=-\mathbf{f}_{1} \cdot \mathbf{f}_{2}^{\prime}
$$

frame instantaneous angular speed: $\omega=|\boldsymbol{\omega}|$
frame instantaneous rotation axis: $\mathbf{a}=\boldsymbol{\omega} /|\boldsymbol{\omega}|$

RMFs on space curves

$\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ is an RMF $\Leftrightarrow \boldsymbol{\omega}_{1}=0 \Leftrightarrow \mathbf{f}_{3} \cdot \mathbf{f}_{2}^{\prime}=0$
at every point of $\mathbf{r}(t)$, there is no instantaneous
rotation of \mathbf{f}_{2} and \mathbf{f}_{3} about \mathbf{f}_{1}
\Downarrow
polynomial curves with rational RMFs (RRMFs)
$\mathbf{r}(t)$ is an RRMF curve $\Leftrightarrow \mathbf{r}(t)$ has a rational RMF
the angular velocity $\boldsymbol{\omega}(t)$ specifies the variation of $\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ along $\mathbf{r}(t)$

$$
\boldsymbol{\omega}=\omega_{1} \mathbf{f}_{1}+\omega_{2} \mathbf{f}_{2}+\omega_{3} \mathbf{f}_{3}
$$

where $\mathbf{f}_{j}^{\prime}=\boldsymbol{\omega} \times \mathbf{f}_{j}, j=1,2,3$,

$$
\omega_{1}=\mathbf{f}_{3} \cdot \mathbf{f}_{2}^{\prime}=-\mathbf{f}_{2} \cdot \mathbf{f}_{3}^{\prime} \quad \omega_{2}=\mathbf{f}_{1} \cdot \mathbf{f}_{3}^{\prime}=-\mathbf{f}_{3} \cdot \mathbf{f}_{1}^{\prime} \quad \omega_{3}=\mathbf{f}_{2} \cdot \mathbf{f}_{1}^{\prime}=-\mathbf{f}_{1} \cdot \mathbf{f}_{2}^{\prime}
$$

frame instantaneous angular speed: $\omega=|\boldsymbol{\omega}|$
frame instantaneous rotation axis: $\mathbf{a}=\boldsymbol{\omega} /|\boldsymbol{\omega}|$

RMFs on space curves

$\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ is an RMF $\Leftrightarrow \omega_{1}=0 \Leftrightarrow \mathbf{f}_{3} \cdot \mathbf{f}_{2}^{\prime}=0$ at every point of $\mathbf{r}(t)$, there is no instantaneous rotation of $\mathbf{f}_{\mathbf{2}}$ and $\mathbf{f}_{\mathbf{3}}$ about $\mathbf{f}_{\mathbf{1}}$
\Downarrow
polynomial curves with rational RMFs (RRMFs) $\mathbf{r}(t)$ is an RRMF curve $\Leftrightarrow \mathbf{r}(t)$ has a rational RMF

RMFs on space curves

$\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ is an RMF $\Leftrightarrow \omega_{1}=0 \Leftrightarrow \mathbf{f}_{3} \cdot \mathbf{f}_{2}^{\prime}=0$ at every point of $\mathbf{r}(t)$, there is no instantaneous rotation of $\mathbf{f}_{\mathbf{2}}$ and $\mathbf{f}_{\mathbf{3}}$ about $\mathbf{f}_{\mathbf{1}}$
\Downarrow
polynomial curves with rational RMFs (RRMFs)

```
r}(t)\mathrm{ is an RRMF curve }\Leftrightarrow\mathbf{r}(t)\mathrm{ has a rational RMF
```

$\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ ERF on PH curves defined by $\mathcal{A}(t)$

$$
\mathbf{e}_{1}(t)=\frac{\mathcal{A}(t) \mathrm{i} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{2}(t)=\frac{\mathcal{A}(t) \mathrm{j} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{3}(t)=\frac{\mathcal{A}(t) \mathrm{k} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)}
$$

RMFs on space curves

$\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ is an RMF $\Leftrightarrow \omega_{1}=0 \Leftrightarrow \mathbf{f}_{3} \cdot \mathbf{f}_{2}^{\prime}=0$ at every point of $r(t)$, there is no instantaneous rotation of $\boldsymbol{f}_{\mathbf{2}}$ and \mathbf{f}_{3} about \mathbf{f}_{1}
\Downarrow
polynomial curves with rational RMFs (RRMFs)

```
r}(t)\mathrm{ is an RRMF curve }\Leftrightarrow\mathbf{r}(t)\mathrm{ has a rational RMF
```

$\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ ERF on PH curves defined by $\mathcal{A}(t)$

$$
\mathbf{e}_{1}(t)=\frac{\mathcal{A}(t) \mathrm{i} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{2}(t)=\frac{\mathcal{A}(t) \mathrm{j} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{3}(t)=\frac{\mathcal{A}(t) \mathrm{k} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)}
$$

- ERF angular velocity component:

$$
\omega_{1}(\mathrm{ERF})=2 \frac{\operatorname{scal}\left(\mathcal{A}(t) i \mathcal{A}^{\prime *}(t)\right)}{|\mathcal{A}(t)|^{2}}
$$

RMFs on space curves

$\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \boldsymbol{f}_{3}\right)$ is an RMF $\Leftrightarrow \omega_{1}=0 \Leftrightarrow \mathbf{f}_{3} \cdot \mathbf{f}_{2}^{\prime}=0$
at every point of $\mathbf{r}(t)$, there is no instantaneous
rotation of \boldsymbol{f}_{2} and \boldsymbol{f}_{3} about \boldsymbol{f}_{1}
polynomial curves with rational RMFs (RRMFs)

```
r}(t)\mathrm{ is an RRMF curve }\Leftrightarrow\mathbf{r}(t)\mathrm{ has a rational RMF
```

$\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ ERF on PH curves defined by $\mathcal{A}(t):=u(t)+v(t) \mathbf{i}+p(t) \mathbf{j}+q(t) \mathbf{k}$

$$
\mathbf{e}_{1}(t)=\frac{\mathcal{A}(t) \mathrm{i} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{2}(t)=\frac{\mathcal{A}(t) \mathrm{j} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{3}(t)=\frac{\mathcal{A}(t) \mathrm{k} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)}
$$

- ERF angular velocity component:

$$
\omega_{1}(E R F)=2 \frac{\operatorname{scal}\left(\mathcal{A}(t) \mathbf{i} \mathcal{A}^{\prime *}(t)\right)}{|\mathcal{A}(t)|^{2}}=\frac{2\left(u v^{\prime}-u^{\prime} v-p q^{\prime}+p^{\prime} q\right)}{u^{2}+v^{2}+p^{2}+q^{2}}
$$

\Rightarrow the ERF is rational but not always RM ...

ERF vs. RMF

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t) \\
\frac{\operatorname{scal}\left(\mathcal{A}(t) \mathbf{i} \mathcal{A}^{\prime *}(t)\right)}{|\mathcal{A}(t)|^{2}}=\frac{\operatorname{scal}\left(\mathcal{W}(t) \mathbf{i} \mathcal{W}^{\prime *}(t)\right)}{|\mathcal{W}(t)|^{2}} \\
\mathcal{W}(t)=a(t)+\mathbf{i} b(t) \quad \operatorname{gcd}(a(t), b(t))=\text { const. }
\end{gathered}
$$

$\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ ERF

$$
\mathbf{e}_{1}(t)=\frac{\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{2}(t)=\frac{\mathcal{A}(t) \mathbf{j} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{3}(t)=\frac{\mathcal{A}(t) \mathrm{k} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)}
$$

ERF vs. RMF

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t) \\
\frac{\operatorname{scal}\left(\mathcal{A}(t) \mathbf{i} \mathcal{A}^{\prime *}(t)\right)}{|\mathcal{A}(t)|^{2}}=\frac{\operatorname{scal}\left(\mathcal{W}(t) \mathbf{i} \mathcal{W}^{\prime *}(t)\right)}{|\mathcal{W}(t)|^{2}} \\
\mathcal{W}(t)=a(t)+\mathbf{i} b(t) \quad \operatorname{gcd}(a(t), b(t))=\text { const. }
\end{gathered}
$$

$\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ ERF

$$
\mathbf{e}_{1}(t)=\frac{\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{2}(t)=\frac{\mathcal{A}(t) \mathrm{j} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)} \quad \mathbf{e}_{3}(t)=\frac{\mathcal{A}(t) \mathbf{k} \mathcal{A}^{*}(t)}{\mathcal{A}(t) \mathcal{A}^{*}(t)}
$$

$\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right) \mathrm{RMF}$

$$
\mathbf{r}_{1}(t)=\frac{\mathcal{B}(t) \mathbf{i} \mathcal{B}^{*}(t)}{\mathcal{B}(t) \mathcal{B}^{*}(t)} \quad \mathbf{r}_{2}(t)=\frac{\mathcal{B}(t) \mathbf{j} \mathcal{B}^{*}(t)}{\mathcal{B}(t) \mathcal{B}^{*}(t)} \quad \mathbf{r}_{3}(t)=\frac{\mathcal{B}(t) \mathbf{k} \mathcal{B}^{*}(t)}{\mathcal{B}(t) \mathcal{B}^{*}(t)}
$$

where

$$
\mathcal{B}(t)=\mathcal{A}(t) \mathcal{W}^{*}(t)
$$

A recent survey [Farouki, Giannelli, Sestini - in Springer INdAM Series, 2019]

Fundamentals, specializations \& generalizations of polynomial PH curves

Rational orthonormal frames along PH curves

Algorithms for PH Curves

Surface constructions based on PH curves

Applications of PH curves

A recent survey [Farouki, Giannelli, Sestini - in Springer INdAM Series, 2019]

Fundamentals, specializations \& generalizations of polynomial PH curves

- DPH curves, rational PH Curves
- ATPH curves, MPH curves
- Pythagorean-Normal and Linear Normal surfaces, ...

Rational orthonormal frames along PH curves

- rotation-minimizing adapted, directed \& osculating frames
- RRMFs, RMTFs

Algorithms for PH Curves

- construction algorithms (local and global interpolation schemes)
- PH Curves with prescribed arc lengths, reverse engineering of PH Curves

Surface constructions based on PH curves

- rational patches bounded by lines of curvature, rational swept surface constructions
- surface patches with PH isoparametric curves

Applications of PH curves

- real-time motion control, path planning applications

Pythagorean-hodograph curves
\triangleright smooth PH spline paths

- data stream interpolation
- real test case: Zeno AUV
$>$ smooth PH spline paths

Path planning based on PH splines

Roadmap reconstruction
\downarrow admissible piecewise linear paths

Path planning
\downarrow collision-free piecewise linear path

Path smoothing
\downarrow collision-free smooth path

Trajectory planning
\downarrow suitable path traversal time
visibility graph + dual graph

- graph search algorithms
$>G^{1} / G^{2}$ PH quintic splines
- feedrate scheduling algorithm

Path planning based on PH splines

Roadmap reconstruction
\downarrow admissible piecewise linear paths

Path planning
\downarrow collision-free piecewise linear path

Path smoothing
\downarrow collision-free smooth path

Trajectory planning
\downarrow suitable path traversal time
visibility graph + dual graph

- graph search algorithms
$>G^{1} / G^{2}$ PH quintic splines
- feedrate scheduling algorithm

Path planning based on PH spline in tension

Path planning based on PH spline in tension

Path planning with scene reconstruction: C^{0} path

Path planning with scene reconstruction: G^{1} path

Path planning with scene reconstruction: G^{2} path

[Donatelli, Giannelli, Mugnaini, Sestini - CAD, 2017]

Applications to unmanned or autonomous vehicles

- maintenance of minimum safe separations within vehicle swarms
> construction of paths of different shape but identical arc length, ensuring simultaneous arrival of vehicles travelling at a constant speed
- determination of the curvature extrema of PH paths, and their modification to satisfy a given curvature bound
- construction of curvature-continuous paths of bounded curvature

a family of simultaneous-arrival paths for a swarm of six unmanned constant speed vehicles, departing and arriving in different directions from a set of corresponding equidistant points on an initial and final target circle

Curve vs. frame construction

The construction of an RMF on a pre-defined curve is an initial value problem...
... the orientation of the normal-plane vectors at any curve point determine their orientation at every other point
. . . it is not possible to construct RMFs along pre-defined curves with prescribed initial and final orientations
\rightarrow the curve is an outcome of the construction algorithm

Curve vs. frame construction

The construction of an RMF on a pre-defined curve is an initial value problem...
... the orientation of the normal-plane vectors at any curve point determine their orientation at every other point
. . . it is not possible to construct RMFs along pre-defined curves with prescribed initial and final orientations
\rightarrow the curve is an outcome of the construction algorithm

> To independently specify a curve and a rational frame along it, we consider a Minimal Twist Frame (MTF) associated with a pre-defined curve and initial/final orientations.
> [Farouki and Moon - ACOM, 2018]
\rightarrow the construction of an MTF on a pre-defined curve is a boundary value problem.

Minimal twist frames

- the angular velocity $\omega(t)$ specifies the variation of ($\left.f_{1}, f_{2}, f_{3}\right)$ along $\mathbf{r}(t)$

$$
\omega=\omega_{1} f_{1}+\omega_{2} f_{2}+\omega_{3} f_{3}
$$

Minimal twist frames

the angular velocity $\boldsymbol{\omega}(t)$ specifies the variation of $\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ along $r(t)$

$$
\boldsymbol{\omega}=\omega_{1} \mathbf{f}_{1}+\omega_{2} \mathbf{f}_{2}+\omega_{3} \mathbf{f}_{3}
$$

Definition:
> the twist of the framed curve is the integral of the component ω_{1} with respect to arc length

- an MTF has the least possible twist value, subject to prescribed initial and final orientations

Minimal twist frames

the angular velocity $\omega(t)$ specifies the variation of $\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ along $\mathbf{r}(t)$

$$
\boldsymbol{\omega}=\omega_{1} \mathbf{f}_{1}+\omega_{2} \mathbf{f}_{2}+\omega_{3} \mathbf{f}_{3}
$$

MTF:
> the angular velocity component $\boldsymbol{\omega} \cdot \mathrm{f}_{1}$ in the tangent direction does not change sign
> the total amount of rotation of the normal-plane vector about the tangent is minimized
(A constant $\omega \cdot \mathbf{f}_{1}$ can only be approximately achieved for a rational MTF)

RMFs vs. MTFs

RMF

no end-frame interpolation on a fixed curve the curve is an outcome of the algorithm

RMFs vs. MTFs

RMF

no end-frame interpolation on a fixed curve the curve is an outcome of the algorithm

MTF
end-frame interpolation on a fixed curve different MTFs on a fixed curve

[Farouki, Giannelli, Sestini - JCAM, 2019]

Pythagorean-hodograph curves
\triangleright smooth PH spline paths

- data stream interpolation
- real test case: Zeno AUV
- data stream interpolation

The local interpolation problem

Construction of

$$
\mathbf{x}(u), u \in\left[u_{i}, u_{f}\right]
$$

so that

$$
\begin{array}{ll}
\mathrm{x}\left(u_{i}\right)=\mathbf{p}_{i}, & \mathrm{x}\left(u_{f}\right)=\mathbf{p}_{f} \\
\mathbf{x}^{\prime}\left(u_{i}\right)=\mathbf{v}_{i}, & \mathbf{x}^{\prime}\left(u_{f}\right)=\mathbf{v}_{f} \\
\mathbf{x}^{\prime \prime}\left(u_{i}\right)=\mathbf{w}_{i} .
\end{array}
$$

The local interpolation problem

Construction of

$$
x(u), u \in\left[u_{i}, u_{f}\right]
$$

so that

$$
\begin{array}{ll}
\mathbf{x}\left(u_{i}\right)=\mathbf{p}_{i}, & \mathbf{x}\left(u_{f}\right)=\mathbf{p}_{f} \\
\mathbf{x}^{\prime}\left(u_{i}\right)=\mathbf{v}_{i}, & \mathbf{x}^{\prime}\left(u_{f}\right)=\mathbf{v}_{f} \\
\mathbf{x}^{\prime \prime}\left(u_{i}\right)=\mathbf{w}_{i} .
\end{array}
$$

We consider the PH quintic biarc composed by 2 PH quintics joining at u_{m}
$\mathbf{x}(u)=\left\{\begin{array}{ll}\mathbf{x}_{i}(u) & \text { for } u \in\left[u_{i}, u_{m}\right], \\ \mathbf{x}_{f}(u) & \text { for } u \in\left[u_{m}, u_{f}\right] .\end{array} \quad \frac{d \mathbf{x}_{i}}{d \tau}(\tau)=\mathcal{A}(\tau) \mathbf{i} \mathcal{A}^{*}(\tau), \quad \frac{d \mathbf{x}_{f}}{d \eta}(\eta)=\mathcal{B}(\eta) \mathbf{i} \mathcal{B}^{*}(\eta)\right.$,
where the quadratic quaternion polynomials

$$
\mathcal{A}(\tau):=\sum_{j=0}^{2} \mathcal{A}_{j} B_{j}^{2}(\tau), \quad \mathcal{B}(\eta):=\sum_{j=0}^{2} \mathcal{B}_{j} B_{j}^{2}(\eta)
$$

define the pre-image of x_{i} and x_{f}, in the Bernstein basis,

Data stream interpolation: spline extension

Local shape parameters

- 6 quaternion coefficients $\rightarrow 24$ scalar degrees of freedom
- $6 \cdot 3 \rightarrow 18$ interpolation conditions
- 6 free parameters \rightarrow reduced to 4 shape parameters by imposing C^{1} joint between the quaternion pre-images of x_{i} and x_{f} (\rightarrow construction of just one PH quintic whenever possible) ($\rightarrow C^{1}$ continuity of the ERF at the joint point)

Local shape parameters

- 6 quaternion coefficients $\rightarrow 24$ scalar degrees of freedom
- $6 \cdot 3 \rightarrow 18$ interpolation conditions
- 6 free parameters \rightarrow reduced to 4 shape parameters by imposing C^{1} joint between the quaternion pre-images of x_{i} and x_{f} (\rightarrow construction of just one PH quintic whenever possible)
($\rightarrow C^{1}$ continuity of the ERF at the joint point)

Selection of free parameters

Biarc representation of CC $C^{1} \mathrm{PH}$ quintic interpolant
[Farouki, Giannelli, Manni, Sestini - CAGD 2008]

$$
\mathbf{x}^{H}(t)=\left\{\begin{array}{ll}
\mathbf{x}_{i}^{H}(t) & \text { for } t \in[0, \hat{t}] \\
\mathbf{x}_{f}^{H}(t) & \text { for } t \in[\hat{t}, 1]
\end{array} \quad \frac{d \mathbf{x}_{i}^{H}}{d \tau}=\mathcal{A}^{H}(\tau) \mathbf{i} \mathcal{A}^{H *}(\tau) \quad \frac{d \mathbf{x}_{f}^{H}}{d \eta}=\mathcal{B}^{H}(\eta) i \mathcal{B}^{H *}(\eta)\right.
$$

where

$$
\mathcal{A}^{H}(\tau)=\sum_{j=0}^{2} \mathcal{A}_{j}^{H} B_{j}^{2}(\tau), \quad \mathcal{B}^{H}(\eta)=\sum_{j=0}^{2} \mathcal{B}_{j}^{H} B_{j}^{2}(\eta)
$$

Parameter selection strategy for the biarc

- $\mathcal{A}_{0}=\mathcal{A}_{0}^{H} \rightarrow$ angular parameter
$>\min \left|\mathcal{A}_{1}-\mathcal{A}_{1}^{H}\right|^{2} \rightarrow$ real parameter
$>\min \left|\mathcal{A}_{2}-\mathcal{A}_{2}^{H}\right|^{2} \rightarrow$ angular parameter
- $\mathcal{B}_{2}=\mathcal{B}_{2}^{H} \rightarrow$ angular parameter

Selection of free parameters

Biarc representation of CC $C^{1} \mathrm{PH}$ quintic interpolant
[Farouki, Giannelli, Manni, Sestini - CAGD 2008]

$$
\mathbf{x}^{H}(t)=\left\{\begin{array}{ll}
\mathbf{x}_{i}^{H}(t) & \text { for } t \in[0, \hat{t}] \\
\mathbf{x}_{f}^{H}(t) & \text { for } t \in[\hat{t}, 1]
\end{array} \quad \frac{d \mathbf{x}_{i}^{H}}{d \tau}=\mathcal{A}^{H}(\tau) \mathbf{i} \mathcal{A}^{H *}(\tau) \quad \frac{d \mathbf{x}_{f}^{H}}{d \eta}=\mathcal{B}^{H}(\eta) \mathbf{i} \mathcal{B}^{H *}(\eta)\right.
$$

where

$$
\mathcal{A}^{H}(\tau)=\sum_{j=0}^{2} \mathcal{A}_{j}^{H} B_{j}^{2}(\tau), \quad \mathcal{B}^{H}(\eta)=\sum_{j=0}^{2} \mathcal{B}_{j}^{H} B_{j}^{2}(\eta)
$$

Parameter selection strategy for the biarc

- $\mathcal{A}_{0}=\mathcal{A}_{0}^{H} \rightarrow$ angular parameter
$>\min \left|\mathcal{A}_{1}-\mathcal{A}_{1}^{H}\right|^{2} \rightarrow$ real parameter
$>\min \left|\mathcal{A}_{2}-\mathcal{A}_{2}^{H}\right|^{2} \rightarrow$ angular parameter
- $\mathcal{B}_{2}=\mathcal{B}_{2}^{H} \rightarrow$ angular parameter

Approximation order

C^{2} PH quintic spline reconstruction (solid line) of a circular helix (dashed line) from first order Hermite data - 3 (left), 5 (center), and 9 (right) sampled locations

$r(s)$: sufficiently smooth arc length parameterized curve, $s \in[0, \Delta s]$ $\mathrm{x}(t)$: PH biarc interpolant

$$
\|\mathbf{x}(t)-\mathbf{r}(t \Delta s)\|=O\left(s^{4}\right) \quad \forall t \in[0,1]
$$

Numerical approximation order

	curve \#1		curve \#2		p_{k}	E_{k}
k	E_{k}	p_{k}	E_{k}	$1.1459 \mathrm{e}+01$	3.76	$2.7103 \mathrm{e}+00$
2	$1.6891 \mathrm{e}-01$	5.00	$2.1602 \mathrm{e}-01$	2.77	$3.9744 \mathrm{e}-01$	5.73
3	$1.2229 \mathrm{e}-02$	3.79	$2.3278 \mathrm{e}-02$	3.32	$3.9717 \mathrm{e}-02$	3.21
4	$1.0656 \mathrm{e}-03$	3.52	$2.6217 \mathrm{e}-03$	4.42	$1.8504 \mathrm{e}-03$	3.15
5	$8.0828 \mathrm{e}-05$	3.72	$2.1238 \mathrm{e}-04$	3.01	$2.3004 \mathrm{e}-04$	3.63
6	$5.5547 \mathrm{e}-06$	3.86	3.93	$1.4952 \mathrm{e}-05$	3.78	$1.6709 \mathrm{e}-05$
7	$3.6361 \mathrm{e}-07$	3.97	$9.8900 \mathrm{e}-07$	3.94	3.83	
8	$2.3249 \mathrm{e}-08$	3.98	$6.3543 \mathrm{e}-08$	3.98	$3.0883 \mathrm{e}-06$	3.92
9	$1.4695 \mathrm{e}-09$	$3.9957 \mathrm{e}-08$	3.96			

Numerical approximation order

	curve \#1		curve \#2		curve \#3	
k	E_{k}	p_{k}	E_{k}	p_{k}	E_{k}	p_{k}
2	$1.6891 \mathrm{e}-01$	5.00	$1.1459 \mathrm{e}+01$	3.76	$2.7103 \mathrm{e}+00$	2.78
3	$1.2229 \mathrm{e}-02$	3.79	$2.1602 \mathrm{e}-01$	2.77	$3.9744 \mathrm{e}-01$	5.73
4	$1.0656 \mathrm{e}-03$	3.52	$2.3278 \mathrm{e}-02$	3.32	$3.9717 \mathrm{e}-02$	3.21
5	$8.0828 \mathrm{e}-05$	3.72	$2.6217 \mathrm{e}-03$	4.42	$1.8504 \mathrm{e}-03$	3.15
6	$5.5547 \mathrm{e}-06$	3.86	$2.1238 \mathrm{e}-04$	3.01	$2.3004 \mathrm{e}-04$	3.63
7	$3.6361 \mathrm{e}-07$	3.93	$1.4952 \mathrm{e}-05$	3.78	$1.6709 \mathrm{e}-05$	3.83
8	$2.3249 \mathrm{e}-08$	3.97	$9.8900 \mathrm{e}-07$	3.94	$1.0883 \mathrm{e}-06$	3.92
9	$1.4695 \mathrm{e}-09$	3.98	$6.3543 \mathrm{e}-08$	3.98	$6.8957 \mathrm{e}-08$	3.96

3D point stream interpolation

PH quintic splines

curvature plots

$C^{2} \mathrm{PH}$ biarc (solid line) vs. $C^{1} \mathrm{CC} \mathrm{PH}$ quintic (dashed line)

Pythagorean-hodograph curves
\triangleright smooth PH spline paths

- data stream interpolation
- real test case: Zeno AUV
- real test case: Zeno AUV

Guidance, navigation \& control

Guidance

- responsible of providing kinematics reference to follow

2 main approaches:
trajectory traking (TT) \& path following (PF)

- TT: requires that the vehicle must track 42 both time and kinematics states: the vehicle should be at a certain time in a certain configuration (position/orientation)
- PF: a software module is responsible of generating a suitable velocity profile to follow so that the vehicle moves along a desired geometric path without any particular time constraint

Navigation

- estimates the kinematic state of the vehicle (geodetic location and high order differential states)

Control

- combine the results of the previous ones and allocate forces

Path following scheme

- Goal: prescribe the vehicle velocity commands to achieve motion control objectives $\eta(t)$: vehicle position, $\quad \eta_{p}(t): \mathrm{PH}$ spline path, $\quad \epsilon^{p}=(s, e, h)$: track error

$\left(\mathbf{i}_{n}, \mathbf{i}_{n}, \mathbf{i}_{n}\right)$: navigation frame, $\quad\left(\mathbf{i}_{n}, \mathbf{i}_{n}, \mathbf{i}_{n}\right)$: path reference frame

Kinematic simulations: $C^{1} \mathrm{PH}$ spline path

path to be followed (dashed line) \& path of the vehicle solid line

GL without current

GL with current

EGL with current

Kinematic simulations: $C^{1} \mathrm{PH}$ spline path

track errors (top) \& vehicle speed (bottom)

GL without current

GL with current

EGL with current

Kinematic simulations: $C^{2} \mathrm{PH}$ spline path

Zeno UAV

Dynamic simulations

Pythagorean-hodograph curves
\triangleright smooth PH spline paths

- data stream interpolation
- real test case: Zeno AUV

$>$ smooth PH spline paths
- data stream interpolation
- real test case: Zeno AUV

