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Planning curvilinear paths for autonomous vehicles

Path planning for autonomous or remotely operated vehicles

I Unmanned Aerial Vehicles (UAVs)
I Autonomous Underwater Vehicles (AUVs)
I . . .
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Planning curvilinear paths for autonomous vehicles

Feasible paths must satisfy various constraints

I bounds on the path curvature or climb angle
I avoidance of environmental obstacles
I maintenance of safe separations in vehicle swarms
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Pythagorean–hodograph curves

I smooth PH spline paths
I data stream interpolation
I real test case: Zeno AUV
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Pythagorean–hodograph

r(t) Pythagorean–hodograph (PH) curve

⇔

|r′(t)| polynomial function of t

[Farouki and Sakkalis — IBMJRD, 1990]
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PH space curves

r(t) = (x(t), y(t), z(t))

PH space curve iff
|r′(t)| is a polynomial
function of t

|r′(t)|2 = x ′ 2(t) + y ′ 2(t) + z ′ 2(t)

algebraic structure in its hodograph
x ′ 2(t) + y ′ 2(t) + z ′ 2(t) ≡ σ2(t)

for some polynomial
σ(t) = |r′(t)|

:: polynomial arc–length function
s(t) =

∫ t

0 |r
′(τ)|dτ

:: rational adapted frames

:: rational swept surfaces
parametrization
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r(t) = (x(t), y(t), z(t))

PH space curve iff
|r′(t)| is a polynomial
function of t

|r′(t)|2 = x ′ 2(t) + y ′ 2(t) + z ′ 2(t)

algebraic structure in its hodograph
x ′ 2(t) + y ′ 2(t) + z ′ 2(t) ≡ σ2(t)

for some polynomial
σ(t) = |r′(t)|

pythagorean quadruples of polynomials

x ′(t) = u2(t) + v2(t)− p2(t)− q2(t)
y ′(t) = 2 [u(t)q(t) + v(t)p(t)]
z ′(t) = 2 [v(t)q(t)− u(t)p(t)]
σ(t) = u2(t) + v2(t) + p2(t) + q2(t)

for some polynomials u(t), v(t), p(t), q(t)
[Dietz, Hoschek and Jüttler — CAGD, 1993]
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Quaternion algebra H

A = a0 + a1 i + a2 j + a3 k i2 = j2 = k2 = i j k = −1

I A = (a0, a) where a0 is the scalar part and a = (a1, a2, a3) is the vector part;

I AB = (a0 b0 − a · b, a0 b + b0 a + a× b) is the quaternion product;

I A∗ = (a0,− a) is the conjugate of A and (AB)∗ = B∗A∗;

I |A|2 = AA∗ = A∗A = a20 + |a|2 is the square module of A and |AB| = |A| |B|;

If v0 = 0 ⇒ V = (v0, v) and also A vA∗ are pure vectors

⇒ the general solution of the non–unilateral quadratic quaternion equation

A uA∗ = v is given by A =
√
|v| u + v/v
|u + v/v| (cosφ+ sinφ u)

where φ is a free angular variable and u is a unit vector.
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4Bézier form of spatial PH quintics

Substituting

A(t) = A0B
2
0 (t) +A1B

2
1 (t) +A2B

2
2 (t)

into
r′(t) = A(t) iA(t)

and integrating yields the Bézier form Bernestein polynomials

r(t) =
5∑

i=0

piB
5
i (t) Bn

i (t) :=

(
n
i

)
t i (1−t)n−i

with control points

p1 = p0 +
1
5
A0 iA∗0

p2 = p1 +
1
10

(A0 iA∗1 +A1 iA∗0)

p3 = p2 +
1
30

(A0 iA∗2 + 4A1 iA∗1 +A2 iA∗0)

p4 = p3 +
1
10

(A1 iA∗2 +A2 iA∗1)

p5 = p4 +
1
5
A2 iA∗2

p0 =

p0 =
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4Adapted frames

r(t)

f1

(f1, f2, f3) is an adapted frame on r(t)

⇔

f1 ≡ t =
r′(t)

|r′(t)|

f2
2 desirable properties

rational dependence on the curve
parameter t f3
rotation–minimizing property
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Curves with rational FF

r(t) = (x(t), y(t), z(t))

Frenet frame (FF): t =
r′

|r′| n = t× b b =
r′ × r′′

|r′ × r′′|

. PH curve ⇔ |r′(t)|
is a polynomial in t

. double PH curve ⇔ |r′(t)× r′′(t)|
is also a polynomial in t

⇓

r(t) is a double PH (DPH) curve ⇔ r(t) has a rational FF
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4Rotation-minimizing property

r(t)

f1

(f1, f2, f3) is an adapted frame on r(t)

⇔

f1 ≡ t =
r′(t)

|r′(t)|

f2
2 desirable properties

rational dependence on the curve
parameter t f3
rotation–minimizing property
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4Rotation-minimizing property

(e1, e2, e3), e1 ≡ t

Eulero–Rodriguez Frame (ERF)

e2 =
A jA∗

|r′| e3 =
A kA∗

|r′|

(t1, t2, t3), t1 ≡ t

Frenet Frame (FF)

t2 =
r′ × r′′

|r′ × r′′|×t t3 =
r′ × r′′

|r′ × r′′|

(f1, f2, f3) is an adapted frame on r(t)

⇔

f1 ≡ t =
r′(t)

|r′(t)|

(r1, r2, r3), r1 ≡ t

? Rotation–Minimizing Frame (RMF)(
r2
r3

)
=

(
cos θ sin θ
− sin θ cos θ

)(
t2
t3

)
with θ = −

∫
τds

[Bishop — AMM, 1975]

[Guggenheimer — CAGD, 1989]

[Klok — CAGD, 1986]
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RMFs on space curves
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Rotation−minimizing frame

FF ERF RMF

I the angular velocity ω(t) specifies the variation of (f1, f2, f3) along r(t)

ω = ω1 f1 + ω2 f2 + ω3 f3

where f ′j = ω × fj , j = 1, 2, 3,

ω1 = f3 · f ′2 = −f2 · f ′3 ω2 = f1 · f ′3 = −f3 · f ′1 ω3 = f2 · f ′1 = −f1 · f ′2

frame instantaneous
angular speed: ω = |ω|

frame instantaneous
rotation axis: a = ω/|ω|
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RMFs on space curves

(f1, f2, f3) is an RMF ⇔ ω1 = 0 ⇔ f3 · f ′2 = 0
at every point of r(t), there is no instantaneous

rotation of f2 and f3 about f1

⇓
polynomial curves with rational RMFs (RRMFs)

r(t) is an RRMF curve ⇔ r(t) has a rational RMF

I the angular velocity ω(t) specifies the variation of (f1, f2, f3) along r(t)

ω = ω1 f1 + ω2 f2 + ω3 f3
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(f1, f2, f3) is an RMF ⇔ ω1 = 0 ⇔ f3 · f ′2 = 0
at every point of r(t), there is no instantaneous

rotation of f2 and f3 about f1

⇓
polynomial curves with rational RMFs (RRMFs)

r(t) is an RRMF curve ⇔ r(t) has a rational RMF

(e1, e2, e3) ERF on PH curves defined by A(t)

e1(t) =
A(t) iA∗(t)

A(t)A∗(t)
e2(t) =

A(t) jA∗(t)

A(t)A∗(t)
e3(t) =

A(t) kA∗(t)

A(t)A∗(t)

I ERF angular velocity component:

ω1(ERF) = 2
scal (A(t) iA′∗(t))

|A(t)|2 =
2(uv ′ − u′v − pq′ + p′q)

u2 + v2 + p2 + q2

⇒ the ERF is rational but not always RM ...
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ERF vs. RMF

PH

RRMF

r′(t) = A(t) iA∗(t)

scal (A(t) iA′∗(t))

|A(t)|2 =
scal (W(t) iW ′∗(t))

|W(t)|2

W(t) = a(t) + i b(t) gcd(a(t), b(t)) = const.

(e1, e2, e3) ERF

e1(t) =
A(t) iA∗(t)

A(t)A∗(t)
e2(t) =

A(t) jA∗(t)

A(t)A∗(t)
e3(t) =

A(t) kA∗(t)

A(t)A∗(t)

(r1, r2, r3) RMF

r1(t) =
B(t) iB∗(t)

B(t)B∗(t)
r2(t) =

B(t) jB∗(t)

B(t)B∗(t)
r3(t) =

B(t) kB∗(t)

B(t)B∗(t)

where
B(t) = A(t)W∗(t)
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A recent survey [Farouki, Giannelli, Sestini — in Springer INdAM Series, 2019]

Fundamentals, specializations & generalizations of polynomial PH curves
DPH curves, rational PH Curves
ATPH curves, MPH curves
Pythagorean-Normal and Linear Normal surfaces, . . .

Rational orthonormal frames along PH curves

RRMFs, RMTFs,
rotation-minimizing osculating frames, RMDFs

Algorithms for PH Curves

construction algorithms (local & global interpolation schemes)
PH Curves with prescribed arc lengths, reverse engineering of PH Curves

Surface constructions based on PH curves
rational patches bounded by lines of curvature, rational swept surface constructions,
surface patches with PH isoparametric curves

Applications of PH curves

real-time motion control, path planning applications
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I smooth PH spline paths
I data stream interpolation
I real test case: Zeno AUV
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I smooth PH spline paths
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Path planning based on PH splines

Roadmap reconstruction I visibility graph + dual graph

↓ admissible piecewise linear paths

Path planning I graph search algorithms

↓ collision-free piecewise linear path

Path smoothing I G 1/G 2 PH quintic splines

↓ collision-free smooth path

Trajectory planning I feedrate scheduling algorithm

↓ suitable path traversal time
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Path planning based on PH spline in tension

tension parameters

I collision avoidance

asymptotic analysis

I automatic choice of the
tension parameters

[Giannelli, Mugnaini, Sestini — CAD, 2016]
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Path planning with scene reconstruction: C 0 path

[Donatelli, Giannelli, Mugnaini, Sestini — CAD, 2017] 17/37



Path planning with scene reconstruction: G 1 path

[Donatelli, Giannelli, Mugnaini, Sestini — CAD, 2017]
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Path planning with scene reconstruction: G 2 path

[Donatelli, Giannelli, Mugnaini, Sestini — CAD, 2017]
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Applications to unmanned or autonomous vehicles

I maintenance of minimum safe separations within vehicle swarms

I construction of paths of different shape but identical arc length, ensuring
simultaneous arrival of vehicles travelling at a constant speed

I determination of the curvature extrema of PH paths, and their modification to
satisfy a given curvature bound

I construction of curvature-continuous paths of bounded curvature

a family of simultaneous-arrival paths for a swarm of six unmanned
constant speed vehicles, departing and arriving in different directions from a set

of corresponding equidistant points on an initial and final target circle

[Farouki, Giannelli, Mugnaini, Sestini — JAE, 2018] 18/37



Curve vs. frame construction

The construction of an RMF on a pre–defined curve is an initial value problem. . .

. . . the orientation of the normal-plane vectors at any curve point
determine their orientation at every other point

. . . it is not possible to construct RMFs along pre–defined curves
with prescribed initial and final orientations

→ the curve is an outcome of the construction algorithm

To independently specify a curve and a rational frame along it,

we consider a Minimal Twist Frame (MTF) associated with

a pre–defined curve and initial/final orientations.
[Farouki and Moon — ACOM, 2018]

→ the construction of an MTF on a pre–defined curve is a boundary value problem.
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Minimal twist frames

I the angular velocity ω(t) specifies the variation of (f1, f2, f3) along r(t)

ω = ω1 f1 + ω2 f2 + ω3 f3

Definition:

I the twist of the framed
curve is the integral of
the component ω1 with
respect to arc length

I an MTF has the least
possible twist value, sub-
ject to prescribed initial
and final orientations

(A constant ω · f1 can only be approximately achieved for a rational MTF)
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Minimal twist frames

I the angular velocity ω(t) specifies the variation of (f1, f2, f3) along r(t)

ω = ω1 f1 + ω2 f2 + ω3 f3

MTF:

I the angular velocity
component ω · f1 in the
tangent direction does not
change sign

I the total amount of ro-
tation of the normal–plane
vector about the tangent is
minimized

(A constant ω · f1 can only be approximately achieved for a rational MTF)
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RMFs vs. MTFs

RMF
no end–frame interpolation on a fixed curve
the curve is an outcome of the algorithm
different

[Farouki, Giannelli, Sestini — JCAM, 2019] 21/37
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I smooth PH spline paths
I data stream interpolation
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I data stream interpolation
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The local interpolation problem

Construction of

x(u), u ∈ [ui , uf ]

so that

x(ui ) = pi , x(uf ) = pf

x′(ui ) = vi , x′(uf ) = vf
x′′(ui ) = wi . x(uf ) = pf

We consider the PH quintic biarc composed by 2 PH quintics joining at um

x(u) =

{
xi (u) for u ∈ [ui , um],
xf (u) for u ∈ [um , uf ].

dxi
dτ

(τ) = A(τ) iA∗(τ) ,
dxf
dη

(η) = B(η) iB∗(η) ,

where the quadratic quaternion polynomials

A(τ) :=
2∑

j=0

AjB
2
j (τ), B(η) :=

2∑
j=0

BjB
2
j (η) ,

define the pre-image of xi and xf , in the Bernstein basis,
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Data stream interpolation: spline extension
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Local shape parameters

I 6 quaternion coefficients → 24 scalar degrees of freedom

I 6 · 3 → 18 interpolation conditions

I 6 free parameters → reduced to 4 shape parameters by imposing
C 1 joint between the quaternion pre-images of xi and xf
(→ construction of just one PH quintic whenever possible)
(→ C 1 continuity of the ERF at the joint point) 25/37
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Selection of free parameters

Biarc representation of CC C 1 PH quintic interpolant
[Farouki, Giannelli, Manni, Sestini — CAGD 2008]

xH(t) =

{
xHi (t) for t ∈ [0 , t̂]
xHf (t) for t ∈ [t̂ , 1]

dxHi
dτ

= AH(τ) iAH∗(τ)
dxHf
dη

= BH(η) iBH∗(η)

where

AH(τ) =
2∑

j=0

AH
j B

2
j (τ) , BH(η) =

2∑
j=0

BH
j B

2
j (η) .

Parameter selection strategy for the biarc

I A0 = AH
0 → angular parameter

I min |A1 −AH
1 |2 → real parameter

I min |A2 −AH
2 |2 → angular parameter

I B2 = BH
2 → angular parameter
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Approximation order

C 2 PH quintic spline reconstruction (solid line) of a circular helix (dashed line)
from first order Hermite data — 3 (left), 5 (center), and 9 (right) sampled locations

r(s): sufficiently smooth arc length parameterized curve, s ∈ [0,∆s]
x(t): PH biarc interpolant

||x(t)− r(t∆s)|| = O(s4) ∀ t ∈ [0, 1]
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Numerical approximation order

curve #1 curve #2 curve #3
k Ek pk Ek pk Ek pk

2 1.6891e-01 5.00 1.1459e+01 3.76 2.7103e+00 2.78
3 1.2229e-02 3.79 2.1602e-01 2.77 3.9744e-01 5.73
4 1.0656e-03 3.52 2.3278e-02 3.32 3.9717e-02 3.21
5 8.0828e-05 3.72 2.6217e-03 4.42 1.8504e-03 3.15
6 5.5547e-06 3.86 2.1238e-04 3.01 2.3004e-04 3.63
7 3.6361e-07 3.93 1.4952e-05 3.78 1.6709e-05 3.83
8 2.3249e-08 3.97 9.8900e-07 3.94 1.0883e-06 3.92
9 1.4695e-09 3.98 6.3543e-08 3.98 6.8957e-08 3.96
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3D point stream interpolation

PH quintic splines curvature plots
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C 2 PH biarc (solid line) vs. C 1 CC PH quintic (dashed line)
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Guidance, navigation & control

Guidance
I responsible of providing kinematics reference to follow

2 main approaches:
trajectory traking (TT) & path following (PF)

I TT: requires that the vehicle must track 42 both time and kinematics
states: the vehicle should be at a certain time in a certain
configuration (position/orientation)

I PF: a software module is responsible of generating a suitable velocity
profile to follow so that the vehicle moves along a desired geometric
path without any particular time constraint

Navigation
I estimates the kinematic state of the vehicle

(geodetic location and high order differential states)

Control
I combine the results of the previous ones and allocate forces

31/37



Path following scheme

I Goal: prescribe the vehicle velocity commands to achieve motion control objectives

η(t) : vehicle position, ηp(t) : PH spline path, εp = (s, e, h) : track error

(in, in, in) : navigation frame, (in, in, in) : path reference frame

32/37



Kinematic simulations: C 1 PH spline path

path to be followed (dashed line) & path of the vehicle solid line

GL without current GL with current EGL with current
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Kinematic simulations: C 1 PH spline path

track errors (top) & vehicle speed (bottom)
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Kinematic simulations: C 2 PH spline path
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Zeno UAV
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Dynamic simulations
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