Geometries on positive-definite matrices and their relation to the power means

Bruno Iannazzo, Università di Perugia, Italy
with Nadia Chouaieb and Maher Moakher Univeristy of Tunis El Manar, Tunisia

Roma, April 7, 2022

Outline

- A new family of geometries on \mathcal{P}_{n} (positive definite matrices of size n);

Outline

- A new family of geometries on \mathcal{P}_{n} (positive definite matrices of size n);
- Explicit geodesics and distances;

Outline

- A new family of geometries on \mathcal{P}_{n} (positive definite matrices of size n);
- Explicit geodesics and distances;
- A new power mean of matrices.

Outline

- A new family of geometries on \mathcal{P}_{n} (positive definite matrices of size n);
- Explicit geodesics and distances;
- A new power mean of matrices.

Why a new geometry on \mathcal{P}_{n} ?

Outline

- A new family of geometries on \mathcal{P}_{n} (positive definite matrices of size n);
- Explicit geodesics and distances;
- A new power mean of matrices.

Why a new geometry on \mathcal{P}_{n} ?

Why on \mathcal{P}_{n} ? How is this related to scientific computing?

Geometry of \mathcal{P}_{n}

The set of real symmetric matrices, \mathbb{H}^{n}, is a Euclidean space

$$
\langle H, K\rangle=\operatorname{trace}(H K) .
$$

\mathcal{P}_{n} is an open cone in \mathbb{H}^{n}

Geometry of \mathcal{P}_{n}

The set of real symmetric matrices, \mathbb{H}^{n}, is a Euclidean space

$$
\langle H, K\rangle=\operatorname{trace}(H K)
$$

\mathcal{P}_{n} is an open cone in \mathbb{H}^{n} and it is convex.
We can treat it as an open subset of \mathbb{R}^{n}.

Why a new geometry on \mathcal{P}_{n} ?

Geometry of \mathcal{P}_{n}

The set of real symmetric matrices, \mathbb{H}^{n}, is a Euclidean space

$$
\langle H, K\rangle=\operatorname{trace}(H K)
$$

\mathcal{P}_{n} is an open cone in \mathbb{H}^{n} and it is convex.
We can treat it as an open subset of \mathbb{R}^{n}.

Why a new geometry on \mathcal{P}_{n} ?

Euclidean geometry is not always the best model.

Why a new geometry on \mathcal{P}_{n} ?

Euclidean geometry is not always the best model.
But first...

Why on \mathcal{P}_{n} ? How is this related to scientific computing?

Geometry

Geodesics
Geometry
Geodesics

Mean, Interpolation

> Data Science
> Signal processing

Mean, Interpolation

Data Science
Signal processing

A new geometry with explicit geodesics and distances related to a common mean may be useful

A non-Euclidean geometry on \mathcal{P}_{n}

The most celebrated non-Euclidean geometry, the affine-invariant geometry, on \mathcal{P}_{n} arises in

- Geometry [Lang, Fundamentals of Differential Geometry, Ch. XII, '99];
- Optimization [Nesterov-Todd, '02];
- Information Geometry [Ohara-Suda-Amari, '96];
- Matrix Analysis [Lawson-Lim] (with an eye to functional analysis).

A non-Euclidean geometry on \mathcal{P}_{n}

Define the (convex) self-concordant barrier for \mathcal{P}_{n}

$$
\varphi(X)=-\log \operatorname{det}(X)
$$

The Hessian

$$
D^{2} \varphi(X)[H, K]=\operatorname{trace}\left(X^{-1} H X^{-1} K\right)
$$

is a scalar product on \mathbb{H}^{n}.
Defines a Riemannian geometry on \mathbb{P}_{n}.

Riemannian geometry

Riemannian geometry on \mathcal{M} :
A scalar product g_{X} on the tangent space $T_{x} \mathcal{M}$ that smoothly varies as X.

For our case we do not need abstraction.

Riemannian geometry on \mathcal{P}_{n}

- The tangent space to \mathcal{P}_{n} is $\mathbb{H}^{n}\left(T \mathbb{H}_{x}^{n} \cong \mathbb{H}^{n} \cong \mathbb{R}^{n(n+1) / 2}\right)$;
- $\mathcal{P}_{n} \subset \mathbb{H}^{n}$ and the inclusion is a chart (we need only one chart);
- A Riemannian geometry on \mathcal{P}_{n} is a smooth function $f: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n^{2}}$.
Examples:

Riemannian geometry on \mathcal{P}_{n}

- The tangent space to \mathcal{P}_{n} is $\mathbb{H}^{n}\left(T \mathbb{H}_{x}^{n} \cong \mathbb{H}^{n} \cong \mathbb{R}^{n(n+1) / 2}\right)$;
- $\mathcal{P}_{n} \subset \mathbb{H}^{n}$ and the inclusion is a chart (we need only one chart);
- A Riemannian geometry on \mathcal{P}_{n} is a smooth function $f: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n^{2}}$.
Examples:
- The affine-invariant geometry $X \rightarrow X^{-1} \otimes X^{-1}$;

Riemannian geometry on \mathcal{P}_{n}

- The tangent space to \mathcal{P}_{n} is $\mathbb{H}^{n}\left(T \mathbb{H}_{x}^{n} \cong \mathbb{H}^{n} \cong \mathbb{R}^{n(n+1) / 2}\right)$;
- $\mathcal{P}_{n} \subset \mathbb{H}^{n}$ and the inclusion is a chart (we need only one chart);
- A Riemannian geometry on \mathcal{P}_{n} is a smooth function $f: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n^{2}}$.
Examples:
- The affine-invariant geometry $X \rightarrow X^{-1} \otimes X^{-1}$;
- The Euclidean geometry $X \rightarrow I$;
- Bures-Wasserstein geometry $X \rightarrow\left(I \otimes X^{1 / 2}+X \otimes X^{-1 / 2}\right)^{2}$ (optimal transport).

The affine-invariant geometry and the geometric mean
The resulting geometry has explicit geodesics

$$
\gamma(t)=A\left(A^{-1} B\right)^{t}=: A \#_{t} B, \quad t \in[0,1]
$$

the (weighted) matrix geometric mean.

The affine-invariant geometry and the geometric mean

The resulting geometry has explicit geodesics

$$
\gamma(t)=A\left(A^{-1} B\right)^{t}=: A \#_{t} B, \quad t \in[0,1]
$$

the (weighted) matrix geometric mean.
Explicit distance, the trace metric

$$
\delta(A, B)=\left\|\log \left(A^{-1 / 2} B A^{-1 / 2}\right)\right\|_{F}=\left(\sum_{\mu \in \sigma(A-\mu B)} \log ^{2}(\mu)\right)^{1 / 2} .
$$

More geometric properties (worth of a chapter in Lang's book)

- Cartan-Hadamard (compare the Poincaré disk);
- Symmetric space.

Computational problems

- Compute $A \#_{t} B$ (Cholesky factorization, Schur form);

Computational problems

- Compute $A \#_{t} B$ (Cholesky factorization, Schur form);
- Compute $\left(A \#{ }_{t} B\right) v$ (Rational Krylov subspaces) [Fasi, I., 16];

Computational problems

- Compute $A \#_{t} B$ (Cholesky factorization, Schur form);
- Compute $\left(A \#_{t} B\right) v$ (Rational Krylov subspaces) [Fasi, I., 16];
- Compute the geometric mean of A_{1}, \ldots, A_{m}

$$
\operatorname{argmin}_{X} \sum_{i=1}^{m} \delta\left(A_{i}, X\right)
$$

(Riemannian Barzilai-Borwein [Porcelli, I., 18]), (Riemannian LBFGS [Absil et al., 21]);

- Compute means with further structures or with (quasi-)Toeplitz operators.

An application of the geometry

DTI problems: affine-invariant vs. Euclidean interpolation

[Moakher et al., 04], [I., Jeuris, Pompili, 19].

An application of the geometry

DTI problems: affine-invariant vs. Euclidean interpolation

Euclidean interpolation (below), $(1-t) A+t B$ (swelling effect).

An application of the geometry

DTI problems: affine-invariant vs. Euclidean interpolation

Affine-invariant interpolation (above),
$A \#{ }_{t} B \rightarrow \operatorname{det}\left(A \#{ }_{t} B\right)=(1-t) \operatorname{det}(A)+t \operatorname{det}(B)$.

Applications

Why new means and new distances?

Applications

Why new means and new distances?

New tools for engineers and scientists

The power potential

The power potential

$$
\varphi_{\beta}(X)=\frac{1-\operatorname{det}(X)^{\beta}}{\beta}
$$

is such that

$$
\lim _{\beta \rightarrow 0} \varphi_{\beta}(X)=-\log \operatorname{det}(X)
$$

Also known in Tsallis statistics as q-logarithm, with $q=1-\beta \Rightarrow$ potential application

Riemannian geometry from the power potential

For $H, K \in \mathbb{H}^{n}$ the derivative $D^{2} \varphi_{\beta}(X)[H, K]$ is

$$
\underbrace{\operatorname{det}(X)^{\beta}\left(\operatorname{trace}\left(X^{-1} H X^{-1} K\right)-\beta \operatorname{trace}\left(X^{-1} H\right) \operatorname{trace}\left(X^{-1} K\right)\right)}_{g_{X}^{\beta}(H, K)}
$$

that is positive definite for $\beta \in(-\infty, 0) \cup(0,1 / n)$.
In our notation, we get a family of Riemannian geometries on \mathcal{P}_{n}

$$
X \rightarrow \operatorname{det}(X)^{\beta}\left(X^{-1} \otimes X^{-1}-\beta \operatorname{vec}\left(X^{-1}\right) \operatorname{vec}\left(X^{-1}\right)^{T}\right)
$$

Conformal to a rank-one modification of the affine invariant geometry $\left(X^{-1} \otimes X^{-1}\right)$.

First problem: find geodesics

A geodesic between A and B is a (smooth) curve $\gamma:[0,1] \rightarrow \mathcal{P}_{n}$ such that $\gamma(0)=A, \gamma(1)=B$ and

$$
\mathcal{L}(\gamma)=\int_{0}^{1} \sqrt{g_{\gamma(t)}^{\beta}\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t
$$

is minimum.

- Reduce the problem to $A=I, B=D$;
- Prove that the geodesic between diagonal matrices is diagonal;
- Reduce the variational problem to a BVP;
- Solve the BVP.

Reduce the problem to diagonal matrices

There exists M such that $M^{T} A M=I$ and $M^{T} B M=D$.
If $\gamma(t)$ is such that $\gamma(0)=A$ and $\gamma(1)=B$, then the curve
$\varphi(t):=M^{T} \gamma(t) M$ joins I with D and

$$
\mathcal{L}(\varphi(t))=|\operatorname{det}(M)|^{\beta} \mathcal{L}(\gamma(t))
$$

$\gamma(t)$ is a geodesic from A to $B \Longleftrightarrow \varphi(t)$ is a geodesic from $/$ to D

Reduce the problem to diagonal matrices

An isometry on the Riemannian manifold \mathcal{M} is a function $f: \mathcal{M} \rightarrow \mathcal{M}$ such that

$$
g_{f(X)}(d f(X)[H], d f(X)[K])=g_{X}(H, K)
$$

Fixed points of any set of isometries are totally geodesic submanifolds of \mathcal{M}

Reduce the problem to diagonal matrices

An isometry on the Riemannian manifold \mathcal{M} is a function $f: \mathcal{M} \rightarrow \mathcal{M}$ such that

$$
g_{f(X)}(d f(X)[H], d f(X)[K])=g_{X}(H, K)
$$

Fixed points of any set of isometries are totally geodesic submanifolds of \mathcal{M}

If M is such that $\operatorname{det}(M)= \pm 1$, then $f: X \rightarrow M X M^{T}$ is an isometry of \mathcal{P}_{n} with the metric $g_{X}^{\beta}\left(X \in \mathcal{P}_{n}, A, B \in \mathcal{H}_{n}\right)$

$$
g_{M X M^{T}}^{\beta}\left(M A M^{T}, M B M^{T}\right)=\left(\operatorname{det}(M)^{2}\right)^{\beta} g_{X}^{\beta}(A, B)
$$

Reduce the problem to diagonal matrices

An isometry on the Riemannian manifold \mathcal{M} is a function $f: \mathcal{M} \rightarrow \mathcal{M}$ such that

$$
g_{f(X)}(d f(X)[H], d f(X)[K])=g_{X}(H, K)
$$

Fixed points of any set of isometries are totally geodesic submanifolds of \mathcal{M}

If M is such that $\operatorname{det}(M)= \pm 1$, then $f: X \rightarrow M X M^{T}$ is an isometry of \mathcal{P}_{n} with the metric $g_{X}^{\beta}\left(X \in \mathcal{P}_{n}, A, B \in \mathcal{H}_{n}\right)$

$$
g_{M X M^{T}}^{\beta}\left(M A M^{T}, M B M^{T}\right)=\left(\operatorname{det}(M)^{2}\right)^{\beta} g_{X}^{\beta}(A, B)
$$

Reduce the problem to diagonal matrices

An isometry on the Riemannian manifold \mathcal{M} is a function $f: \mathcal{M} \rightarrow \mathcal{M}$ such that

$$
g_{f(X)}(d f(X)[H], d f(X)[K])=g_{X}(H, K)
$$

Fixed points of any set of isometries are totally geodesic submanifolds of \mathcal{M}

If M is such that $\operatorname{det}(M)= \pm 1$, then $f: X \rightarrow M X M^{T}$ is an isometry of \mathcal{P}_{n} with the metric $g_{X}^{\beta}\left(X \in \mathcal{P}_{n}, A, B \in \mathcal{H}_{n}\right)$

$$
g_{M X M^{T}}^{\beta}\left(M A M^{T}, M B M^{T}\right)=\left(\operatorname{det}(M)^{2}\right)^{\beta} g_{X}^{\beta}(A, B)
$$

Positive-definite diagonal matrices are a totally geodesic submanifold \Rightarrow the geodesic between I and D is made of diagonal matrices

We can find in this way other totally geodesic submanifold such as the positive multiples of a matrix. (Similar results for g_{X}^{0}).

Solve the variational equation

The Euler-Lagrange equation gives the equivalent BVP

$$
\left\{\begin{array}{l}
\alpha^{\prime}=-n \beta\left(\frac{1}{2} \alpha^{2}-\frac{1}{n(1-n \beta)} \sum_{i=1}^{n} \nu_{i}^{2}\right) \\
\nu^{\prime}=-n \beta \alpha \nu_{i}, \quad i=1, \ldots, n \\
\nu_{1}+\cdots+\nu_{n}=0, \\
\lambda_{i}^{\prime} / \lambda_{i}=\nu_{i}+\alpha, \quad i=1, \ldots, n \\
\lambda_{i}(0)=1, \quad \lambda_{i}(1)=d_{i}, \quad i=1, \ldots, n
\end{array}\right.
$$

with $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$
This is a Riccati (differential not algebraic) equation

Solve the variational equation

The Euler-Lagrange equation gives the equivalent BVP

$$
\left\{\begin{array}{l}
\alpha^{\prime}=-n \beta\left(\frac{1}{2} \alpha^{2}-\frac{1}{n(1-n \beta)} \sum_{i=1}^{n} \nu_{i}^{2}\right) \\
\nu^{\prime}=-n \beta \alpha \nu_{i}, \quad i=1, \ldots, n \\
\nu_{1}+\cdots+\nu_{n}=0, \\
\lambda_{i}^{\prime} / \lambda_{i}=\nu_{i}+\alpha, \quad i=1, \ldots, n \\
\lambda_{i}(0)=1, \quad \lambda_{i}(1)=d_{i}, \quad i=1, \ldots, n
\end{array}\right.
$$

with $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$
This is a Riccati (differential not algebraic) equation
Commercial programs did not find the explicit solution,

Solve the variational equation

The Euler-Lagrange equation gives the equivalent BVP

$$
\left\{\begin{array}{l}
\alpha^{\prime}=-n \beta\left(\frac{1}{2} \alpha^{2}-\frac{1}{n(1-n \beta)} \sum_{i=1}^{n} \nu_{i}^{2}\right) \\
\nu^{\prime}=-n \beta \alpha \nu_{i}, \quad i=1, \ldots, n \\
\nu_{1}+\cdots+\nu_{n}=0, \\
\lambda_{i}^{\prime} / \lambda_{i}=\nu_{i}+\alpha, \quad i=1, \ldots, n \\
\lambda_{i}(0)=1, \quad \lambda_{i}(1)=d_{i}, \quad i=1, \ldots, n
\end{array}\right.
$$

with $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$
This is a Riccati (differential not algebraic) equation
Commercial programs did not find the explicit solution, but we were able to find it.

Special cases: positive numbers

The geodesic (with arc length parametrization) joining $a, b \in \mathcal{P}_{1}$ is

$$
G_{\beta}(a, b ; t)=\left((1-t) a^{\beta / 2}+t b^{\beta / 2}\right)^{2 / \beta}, \quad t \in[0,1]
$$

- It is the weighted power mean of a and b;

Special cases: positive numbers

The geodesic (with arc length parametrization) joining $a, b \in \mathcal{P}_{1}$ is

$$
G_{\beta}(a, b ; t)=\left((1-t) a^{\beta / 2}+t b^{\beta / 2}\right)^{2 / \beta}, \quad t \in[0,1]
$$

- It is the weighted power mean of a and b;
- Suggests that for matrices it might be a power mean of matrices in \mathcal{P}_{n};
- Mathematical curiosity: interesting per se.

Special cases: a ray

Let A and B be linearly dependent in \mathcal{P}_{n} then

$$
G_{\beta}(A, B ; t)=\left((1-t) A^{n \beta / 2}+t B^{n \beta / 2}\right)^{2 /(n \beta)}
$$

Still a "power mean" with parameter $n \beta / 2$.

We will show that also in the general case this is a power mean with parameter $n \beta / 2$

The general case

Theorem

Let $A, B \in \mathcal{P}_{n}$ linearly independent and $\beta \in\left(\beta_{1}, 0\right) \cup\left(0, \beta_{2}\right)$. There exists a unique geodesic joining A and B given by

$$
G_{\beta}(A, B ; t)=\eta(t)\left(A \#_{\alpha(t)} B\right)=\eta(t) A\left(A^{-1} B\right)^{\alpha(t)}, \quad t \in[0,1],
$$

where

$$
\begin{gathered}
\alpha(t)=\frac{1}{\gamma} \arctan \left(\frac{t \sigma \sin \gamma}{1-t+t \sigma \cos \gamma}\right) \\
\eta(t)=\left(\frac{(1-t)^{2}+2 t(1-t) \sigma \cos \gamma+t^{2} \sigma^{2}}{\sigma^{2 \alpha(t)}}\right)^{1 /(n \beta)}
\end{gathered}
$$

with $\sigma=\operatorname{det}\left(A^{-1} B\right)^{\beta / 2}$ and $\gamma=\frac{|\beta| \delta\left(A / \operatorname{det}(A)^{1 / n}, B / \operatorname{det}(B)^{1 / n}\right)}{2 \sqrt{1 / n-\beta}}$

The general case

We introduce a measure of linear independence

$$
\gamma_{\beta}(A, B):=\frac{|\beta| \delta(\widetilde{A}, \widetilde{B})}{2 \sqrt{1 / n-\beta}},
$$

where $\widetilde{A}=A / \operatorname{det}(A)^{1 / n}$ and $\widetilde{B}=B / \operatorname{det}(B)^{1 / n}$.

The general case

We introduce a measure of linear independence

$$
\gamma_{\beta}(A, B):=\frac{|\beta| \delta(\widetilde{A}, \widetilde{B})}{2 \sqrt{1 / n-\beta}},
$$

where $\widetilde{A}=A / \operatorname{det}(A)^{1 / n}$ and $\widetilde{B}=B / \operatorname{det}(B)^{1 / n}$.
γ_{β} is 0 if and only if and only if A and B are linearly dependent.

$\beta \in\left(\beta_{1}, 0\right) \cup\left(0, \beta_{2}\right) \Longleftrightarrow 0<\gamma<\pi / 2$.

The geodesic

For $0<\gamma<\pi / 2$

$$
G_{\beta}(A, B ; t)=\eta(t)\left(A \#_{\alpha(t)} B\right)=\eta(t) A\left(A^{-1} B\right)^{\alpha(t)}, \quad t \in[0,1]
$$

Can be extended to $\gamma<\pi$, but not further.

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

The geodesic

For $0<\gamma<\pi / 2$

$$
G_{\beta}(A, B ; t)=\eta(t)\left(A \#_{\alpha(t)} B\right)=\eta(t) A\left(A^{-1} B\right)^{\alpha(t)}, \quad t \in[0,1]
$$

Can be extended to $\gamma<\pi$, but not further.

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

The geodesic

For $0<\gamma<\pi / 2$

$$
G_{\beta}(A, B ; t)=\eta(t)\left(A \#_{\alpha(t)} B\right)=\eta(t) A\left(A^{-1} B\right)^{\alpha(t)}, \quad t \in[0,1],
$$

Can be extended to $\gamma<\pi$, but not further.

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

The geodesic

For $0<\gamma<\pi / 2$

$$
G_{\beta}(A, B ; t)=\eta(t)\left(A \#_{\alpha(t)} B\right)=\eta(t) A\left(A^{-1} B\right)^{\alpha(t)}, \quad t \in[0,1],
$$

Can be extended to $\gamma<\pi$, but not further.

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

Properties

For a given couple there exist $\beta_{1}<0<\beta_{2}$ such that

$$
G_{\beta}(A, B ; t), \quad t \in[0,1]
$$

exists.
For $\beta \rightarrow 0$ converges to the weighted geometric mean

$$
\lim _{\beta \rightarrow 0} G_{\beta}(A, B ; t)=A \# t B
$$

Properties

For a given couple there exist $\beta_{1}<0<\beta_{2}$ such that

$$
G_{\beta}(A, B ; t), \quad t \in[0,1]
$$

exists.
For $\beta \rightarrow 0$ converges to the weighted geometric mean

$$
\lim _{\beta \rightarrow 0} G_{\beta}(A, B ; t)=A \#{ }_{t} B
$$

For a given β, the mean exists for $\gamma<\pi$, for matrices not "greatly independent".

Analysis shows that the space is not complete.
Experiments suggest negative curvature.

Distance

The distance associated with g_{β} between A and B with $\gamma<\pi$
$\underbrace{\frac{2 \sqrt{1 / n-\beta}}{|\beta|}\left(\left(\operatorname{det}(A)^{\frac{\beta}{2}}-\operatorname{det}(B)^{\frac{\beta}{2}}\right)^{2}+4(\operatorname{det}(A) \operatorname{det}(B))^{\frac{\beta}{2}} \sin ^{2} \frac{\gamma}{2}\right)^{\frac{1}{2}}}$

$$
d_{\beta}(A, B)
$$

$$
\frac{|\beta|}{2 \sqrt{1 / n-\beta}} d_{\beta}(A, B)
$$

Distance

When $\operatorname{det}(A)=\operatorname{det}(B)=\Delta$,

$$
d_{\beta}(A, B)=\frac{4 \sqrt{1 / n-\beta}}{|\beta|} \Delta^{\beta / 2} \sin \frac{\gamma}{2}
$$

Moreover,

$$
\lim _{\beta \rightarrow 0} d_{\beta}(A, B)=\delta(A, B)
$$

It generalizes the geometric mean distance.

The power mean

The geodesic can be seen as a weighted power mean of positive definite matrices with parameter $p=n \beta / 2$.

Euclidean power mean

$$
R_{p}(A, B ; t):=\left((1-t) A^{p}+t B^{p}\right)^{1 / p}, \quad p=n \beta / 2
$$

Lim-Pálfia power mean [Lim-Palfia '12]
$Q_{p}(A, B ; t):=A f\left(A^{-1} B\right), \quad f(z)=\left((1-t)+t z^{p}\right)^{1 / p}, \quad p=n \beta / 2$.
are different from our mean for linearly independent matrices.

Properties

- $G_{\beta}\left(M^{T} A M, M^{T} B M ; t\right)=M^{T} G_{\beta}(A, B ; t) M$, with M invertible (commutativity with congruences);
- $G_{\beta}(A, B ; t)=G_{\beta}(B, A ; 1-t)$ (symmetry);
- $G_{\beta}(a A, b B ; t)=$
$\left((1-t) a^{n \beta / 2}+t b^{n \beta / 2}\right)^{2 /(n \beta)} G_{\beta}\left(A, B ; \frac{t b^{n \beta / 2}}{(1-t) a^{n \beta / 2}+t b^{n \beta / 2}}\right)$, for $a, b>0$ (homogeneity);
- $G_{\beta}\left(A^{-1}, B^{-1}, t\right)=A^{-1} G_{\beta}(A, B, 1-t) B^{-1}$ (inversion).

Comparison

With $p=n \beta / 2 ; P_{p}$ Euclidean power mean; Q_{p} Lim-Palfia mean

Comparison

With $p=n \beta / 2 ; P_{p}$ Euclidean power mean; Q_{p} Lim-Palfia mean

Property	P_{p}	Q_{p}	G_{β}
commutativity with congruences	no	yes	yes

$G_{\beta}\left(M^{T} A M, M^{T} B M ; t\right)=M^{T} G_{\beta}(A, B ; t) M$

Comparison

With $p=n \beta / 2 ; P_{p}$ Euclidean power mean; Q_{p} Lim-Palfia mean

Property	P_{p}	Q_{p}	G_{β}
commutativity with congruences	no	yes	yes
inversion	no	yes	yes

$$
G_{\beta}\left(A^{-1}, B^{-1}, t\right)=A^{-1} G_{\beta}(A, B, 1-t) B^{-1}
$$

Comparison

With $p=n \beta / 2 ; P_{p}$ Euclidean power mean; Q_{p} Lim-Palfia mean

Property	P_{p}	Q_{p}	G_{β}
commutativity with congruences	no	yes	yes
inversion	no	yes	yes
symmetry	yes	yes	yes

$$
G_{\beta}(A, B ; t)=G_{\beta}(B, A ; 1-t)
$$

Comparison

With $p=n \beta / 2 ; P_{p}$ Euclidean power mean; Q_{p} Lim-Palfia mean

Property	P_{p}	Q_{p}	G_{β}
commutativity with congruences	no	yes	yes
inversion	no	yes	yes
symmetry	yes	yes	yes
homogeneity	yes	yes	yes

$G_{\beta}(a A, b B ; t)=$
$\left((1-t) a^{n \beta / 2}+t b^{n \beta / 2}\right)^{2 /(n \beta)} G_{\beta}\left(A, B ; \frac{t b^{n \beta / 2}}{(1-t) a^{n \beta / 2}+t b^{n \beta / 2}}\right)$

Comparison

With $p=n \beta / 2 ; P_{p}$ Euclidean power mean; Q_{p} Lim-Palfia mean

Property	P_{p}	Q_{p}	G_{β}
commutativity with congruences	no	yes	yes
inversion	no	yes	yes
symmetry	yes	yes	yes
homogeneity	yes	yes	yes
consistency with scalars	yes	yes	no

The mean of two diagonal matrices is the diagonal matrix with the mean of the corresponding entries in the diagonal.
Our mean mixes the components.

Comparison

With $p=n \beta / 2 ; P_{p}$ Euclidean power mean; Q_{p} Lim-Palfia mean

Property	P_{p}	Q_{p}	G_{β}
commutativity with congruences	no	yes	yes
inversion	no	yes	yes
symmetry	yes	yes	yes
homogeneity	yes	yes	yes
consistency with scalars	yes	yes	no
global	yes	yes	no

Our mean has a restriction on the parameter / matrices.

Comparison

With $p=n \beta / 2 ; P_{p}$ Euclidean power mean; Q_{p} Lim-Palfia mean

Property	P_{p}	Q_{p}	G_{β}
commutativity with congruences	no	yes	yes
inversion	no	yes	yes
symmetry	yes	yes	yes
homogeneity	yes	yes	yes
consistency with scalars	yes	yes	no
global	yes	yes	no
Riemannian geodesic	$?$	$?$	yes

Our mean is ennobled by a Riemannian structure.

What's next

- A new family of geometries on \mathcal{P}_{n}
- Explicit geodesics and distances
- A new power mean of positive definite matrices

What's next

- A new family of geometries on \mathcal{P}_{n}
- Explicit geodesics and distances
- A new power mean of positive definite matrices

The power mean is flexible because of a free parameter ([Mercado,Tudisco,Hein,18-19],[Fasi,I.,18]).

- Try it on problems from applications (statistics, network theory,...).

Extra time: a conformal geometry

We can consider the geometry conformal to the one that defines the power mean

$$
\langle H, K\rangle_{X}=\operatorname{trace}\left(X^{-1} H X^{-1} K\right)-\beta \operatorname{trace}\left(X^{-1} H\right) \operatorname{trace}\left(X^{-1} K\right)
$$

For $\beta=0$ is the affine-invariant geometry with distance δ.

The Karcher mean

The Karcher mean is the barycenter of $A_{1}, \ldots, A_{m} \in \mathcal{P}_{n}$ with the affine-invariant geometry. It minimizes

$$
f(X)=\sum_{i=1}^{n} \delta^{2}\left(X, A_{i}\right)=\sum_{i=1}^{n}\left\|\log \left(A_{i}^{-1 / 2} X A_{i}^{-1 / 2}\right)\right\|_{F}^{2}
$$

over \mathcal{P}_{n}.
It is computed with Riemannian optimization

- Riemannian gradient descent [Bini-I., '13];
- Riemannian Barzilai-Borwein [I.-Porcelli, '16];
- Riemannian L-BFGS [Yuan-Huang-Absil-Gallivan, '20]

The Karcher mean computation

Lemma

The barycenter with respect to the conformal geometry is the Karcher mean for $\beta \in(-\infty, 0) \cup(0,1 / n)$.

A new parameter to set.

The Karcher mean computation

Left: Riemannian gradient descend
Right: Riemannian Barzilai-Borwein method

