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Helmholtz equation

Homogeneous Helmholtz equation:

−∆u − κ2u = 0

Wavenumber κ = ω/c > 0,
λ = 2π

κ = wavelength.

u(x) represents the space dependence of time-harmonic solutions
U (x, t) = ℜ{e−iωtu(x)} of the wave equation 1

c2
∂2U
∂t2 −∆U = 0.

Fundamental PDE in acoustics, electromagnetism, elasticity. . .

▶ “Easy” PDE for small κ: perturbation of Laplace eq.
▶ “Difficult” PDE for large κ: high-frequency problems
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Propagative plane waves

A difficulty for κ≫ 1 is the approximation of Helmholtz solutions.

One can beat (piecewise) polynomial approximations
using propagative plane waves (PPWs):

eiκd·x d ∈ Rn d · d = 1

Some uses of PPWs:
▶ Trefftz methods:

Galerkin schemes whose basis functions are local PDE solutions.
E.g.: UWVF, TDG, PWDG, DEM, VTCR, WBM, LS, PUM . . .

▶ reconstruction of sound fields from point measurements
(microphones) in experimental acoustics.

PPWs are complex exponentials:
easy & cheap to manipulate, evaluate, differentiate, integrate. . .
→ preferred against other Trefftz functions (e.g. circular waves)
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Approximation and instability

Rich PPW approximation theory for Helmholtz solutions:
▶ CESSENAT, DESPRÉS 1998, Taylor-based, h
▶ MELENK 1995; MOIOLA, HIPTMAIR, PERUGIA 2011, Vekua theory, hp

κ-explicit, better rates vs DOFs than polynomials.

So why isn’t everybody using plane waves?

The issue is “instability”.
Increasing # of PPWs, at some point convergence stagnates.

Numerical phenomenon: due to computer arithmetic+cancellation.

PPW instability already observed in all PPW-based Trefftz methods.
Usually described and treated as ill-conditioning issue.
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Adcock–Huybrechs theory

BEN ADCOCK, DAAN HUYBRECHS, SiRev 2019 & JFAA 2020,
“Frames and numerical approximation I & II”

Goal: Approximate some v ∈ V with linear combination of {ϕm} ⊂ V .

Result: If there exists
∑

m amϕm with
▶ good approximation of v,
▶ small coefficients am ,

then the approximation of v in computer arithmetic is stable,
if one uses oversampling and SVD regularization.

Stability does not depend on (LS, Galerkin,. . . ) matrix conditioning.

Spoiler:

– PPWs can not approximate general u with small coefficients.

+ Include evanescent PWs→ small-coefficient approx. → stability.
Here we consider only the approximation in the unit disk B1 ⊂ R2.
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Part I

Circular and propagative plane waves



Circular waves — Fourier–Bessel functions

Separable solutions in polar coordinates:

bp(r, θ) := βp Jp(kr)eipθ ∀p ∈ Z, (r, θ) ∈ B1

βp = normalization, e.g. in H1(B1) norm. βp ∼ κ
(2|p|

eκ

)|p| as p→∞.

p = 8 = κ/2
Propagative mode

p = 16 = κ p = 32 = 2κ
Evanescent mode

{bp}p∈Z is orthonormal basis of B :=
{
u ∈ H1(B1) : −∆u − κ2u = 0

}
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PPW instability
The Jacobi–Anger expansion relates PPWs and circular waves bp:

PWφ(x) := eiκd·x =
∑
p∈Z

ipJp(kr)eip(θ−φ)

{
d = (cosφ, sinφ)

x = (r cos θ, r sin θ)

=
∑
p∈Z

(
ipe−ipφβp

−1
)
bp(r, θ) d φ

-4κ -κ κ 4κ
10−16

10−13

10−10

10−7

10−4

10−1

102

Mode number p

Modulus of Fourier coefficient
|ipe−ipφβ−1

p | = |β−1
p | ∼ |p|−|p| indep. of φ.

Approximation of u =
∑

p ûpbp ∈ B
requires exponentially large coefficients.

u ∈ Hs(B1), s ≥ 1 ⇐⇒ |ûp| ∼ o(|p|−s+ 1
2 )

but |β−1
p | ∼ |p|−|p| is much smaller!

∀p ∈ Z
∀M ∈ N
∀µ ∈ CM

∀η ∈ (0,1)

∥∥∥∥∥bp −
M∑

m=1

µmPW 2πm
M

∥∥∥∥∥
B

≤ η =⇒ ∥µ∥ℓ1(CM ) ≥ (1− η) |βp|︸︷︷︸
∼|p||p|
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Part II

Evanescent plane waves



Evanescent plane waves

Idea from WBM (wave-based method) by Wim Desmet etc (Leuven).

Stability improves using PPWs & evanescent plane waves (EPW):

eiκd·x d ∈ C2 d · d = 1

Complex d! Again: exponential Helmholtz solutions.

Parametrised by φ = direction, ζ = “evanescence”.
Parametric cylinder: y := (φ, ζ) ∈ Y := [0,2π)× R.

ζ

φ

Y

d(y) :=
(
cos(φ+ iζ), sin(φ+ iζ)

)
∈ C2

EWy(x) := eiκd(y)·x

= eiκ(cosh ζ)x·d(φ) e−κ(sinh ζ)x·d⊥(φ),

oscillations along d(φ) := (cosφ, sinφ)

decay along d⊥(φ) := (− sinφ, cosφ)
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EPW modal analysis

Jacobi–Anger expansion holds also for EPWs:

EWy(x) = eiκd(y)·x =
∑
p∈Z

ipJp(κr)eip(θ−[φ+iζ]) =
∑
p∈Z

(
ipe−ipφepζβ−1

p
)

bp(x).

Absolute values of Fourier coefficients |ipe−ipφepζβ−1
p |, κ = 16:

-4κ -κ κ 4κ
10−16

10−13

10−10

10−7

10−4

10−1

102

Mode number p

ζ= -2
ζ= -1
ζ= 0
ζ= 1
ζ= 2

Looks promising!

We can hope to
approximate
large-p Fourier modes
with EPWs
& small coefficients.
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Herglotz representation with EPWs
We want to represent u ∈ B as continuous superposition of EPWs:

u(x) = (Tv)(x) =
∫

Y
EWy(x) v(y) w2(y)dy x ∈ B1

with density v ∈ L2(Y ;w2) and weight w2= e−2κ sinh |ζ|+ 1
2 |ζ|

ζ

φ
0 2π

Y
T B1

Parametric space Physical space

Herglotz density Helmholtz solution

v ∈ A = span{ap} ⊂ L2(Y ;w2) u ∈ B = span{bp} ⊂ H1(B1)

ap(y) := αp ep(ζ+iφ) αp > 0 normalization in ∥·∥A = ∥·∥L2(Y ;w2) , p ∈ Z
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Helmholtz solutions are superposition of EPWs

Define Herglotz transform: (synthesis operator)

(Tv)(x) :=
∫

Y
EWy(x) v(y) w2(y)dy T : A → B

v 7→ u

Y T B1

A B

y x

Jacobi–Anger⇒ T is diagonal in ONB’s {ap}, {bp}:

EWy(x) =
∑
p∈Z

τpap(y)bp(x), τp :=
ip

αpβp
, 0 < τ− ≤ |τp| ≤ τ+ <∞.

The operator T : A → B is bounded and invertible:

Tap = τpbp, τ−∥v∥A ≤ ∥Tv∥B ≤ τ+∥v∥A ∀v ∈ A

Every Helmholtz solution is (continuous) linear combination of EPW
with small coefficients: ∥v∥A ≤ τ−1

− ∥u∥B
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Part III

Discrete EPW spaces



Frames, RKHS, sampling

All good at continuous level, but what about finite sums of EPWs?

Call Ky the pre-images of the evanescent plane waves:

T : Ky 7→ EWy y ∈ Y .

These are Riesz representation of the evaluation functional at y:

v(y) = (v,Ky)A ∀v ∈ A, y ∈ Y .

A is reproducing-kernel Hilbert space, kernel: Ky(z) =
∑

p∈Z ap(y)ap(z)

Approximation of u by EPWs “maps” to
reconstruction of v = T−1u by point sampling:

A ∋ v ≈
M∑

m=1

µmKym

T−→←−
T−1

u ≈
M∑

m=1

µmEWym ∈ B
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Parameter sampling in Y

How to sample A=span{αpep(ζ+iφ)}⊂L2(Y ;w2)?
How to choose points {ym}m ∈ Y ?

We follow COHEN, MIGLIORATI, 2017
“Optimal weighted least-squares methods”

0 π 2π

−3

−2

−1

0

1

2

3

ϕ

ζ
Sobol (P=4κ)

Y

Fix P ∈ N, set AP := span{ap}|p|≤P ⊂ A. Define probability density

ρ(y) :=
w2

2P + 1

∑
|p|≤P

|ap(y)|2 on Y ρ−1 = “Christoffel
function”

and generate M ∈ N nodes {ym}m=1,...,M distributed according to ρ.

We expect the span of the normalised sampling functionals !{
y 7→ 1√∑

|p|≤P |ap(ym)|2
Kym (y)

}
m=1,...,M

⊂ A

to approximate any vP ∈ AP with small coefficients.
12
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“Optimal weighted least-squares methods”
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ϕ

ζ
Sobol (P=4κ)

Y

Fix P ∈ N, set AP := span{ap}|p|≤P ⊂ A. Define probability density

ρ(y) :=
w2

2P + 1

∑
|p|≤P

|ap(y)|2 on Y ρ−1 = “Christoffel
function”

and generate M ∈ N nodes {ym}m=1,...,M distributed according to ρ.

We expect the span of the normalised sampling functionals !{
y 7→ 1√∑

|p|≤P |ap(ym)|2
Kym (y)

}
m=1,...,M

⊂ A

to approximate any vP ∈ AP with small coefficients.
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Helmholtz solution approximation by EPWs

Then any u ∈ span{bp}|p|≤P can be approximated by EPWs{
x 7→ 1√

M
∑

|p|≤P |ap(ym)|2
EWym (x)

}
m=1,...,M

⊂ B

with small coefficients.

Then u can be stably approximated in computer arithmetic
using SVD and oversampling.

The M-dimensional EPW space depends on truncation parameter P:
the space is tuned to approximate the Fourier modes bp with |p| ≤ P.
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Part IV

Numerical results



Boundary sampling method
Given (PPW, EPW,. . . ) approximation set span{ϕm}m=1,...,M ,
how do we approximate u ∈ B in practice?

We use boundary sampling on
{
xs =

( r=1
θs=

2πs
S

)}
s=1,...,S ⊂ ∂B1:

Aξ = c with As,m := ϕm(xs),
cs := u(xs)

s=1,...,S
m=1,...,M → uM =

∑
m

ξmϕm ≈ u.

Choose κ2 ̸= Laplace–Dirichlet eigenvalue on B1.

Could use instead:

{ sampling in the bulk of B1,
impedance trace,
B / L2(B1) / L2(∂B1) projection. . .

▶ Oversampling: S > M

▶ SVD regularization, threshold ϵ:

}
required by Adcock–Huybrechs

A = U diag(σ1, . . . , σM ) V ∗, Σϵ := diag({σm > ϵmax
m′

σm′}),

ξϵ = VΣ†
ϵU

∗c
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Approximation by PPWs

Approximation of circular waves {bp}p by equispaced PPWs

κ = 16, ϵ = 10−14, S = max{2M ,2|p|}, residual E = ∥Aξϵ−c∥
∥c∥

▶ Propagative modes |p| ≲ κ: O(ϵ) error ∀M , O(1) coeff.’s
▶ Evanescent modes |p| ≳ 3κ: O(1) error ∀M , large coeff.’s

Condition number is irrelevant!
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Probability measure ρ on Y and samples
Probability density ρ & cumulative d.f. as functions of evanescence ζ:
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Cumulative density ΥN (κ = 16)

They depend on P: target functions in span{bp}|p|≤P .
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Samples computed on
(0,1)2 & uniform prob.,
mapped to Y by Υ−1.
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Approximation by EPWs

Approximation of {bp}, P = 4κ , κ = 16, ▲ M = 4P, ♦ M = 8P
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Discrete EPW space approximates all bps for |p| ≤ P!
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Solution and error plots
u =

∑
|p|≤P ûpbp, ûp ∼ (max{1, |p| − κ})−1/2, κ = 100, P = 2κ,

M = 802

ℜ{u}

|u − PPW |

|u|

|u − EPW |

∥u − PPW∥L∞ ≳ 7 · 109 ∥u − EPW∥L∞ DOFs/wavelength = λ
√

M/|B1| ≈ 1
18
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Summary

▶ Approximation of Helmholtz solutions by PPWs is unstable:
accuracy only with large coefficients.

▶ Approximation by evanescent PWs seems to be stable.
▶ EPWs parameters chosen with sampling in Y .
▶ Key new result is stable Herglotz transform u = Tv.

Next steps: General geometries ◀
3D ◀

Maxwell & elasticity ◀
Complete proof of EPW stability ◀

Use in Trefftz and in sampling ◀
. . . ◀

E. PAROLIN, D. HUYBRECHS, A. MOIOLA arXiv:2202.05658
Stable approximation of Helmholtz solutions by evanescent plane
waves Julia code on:
https://github.com/EmileParolin/evanescent-plane-wave-approx

Thank you!
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Weighted L2(Y ) space A
Weighted L2 space on parametric cylinder & orthonormal basis:

w(y) : = e−κ sinh |ζ|+ 1
4 |ζ| y = (φ, ζ) ∈ Y

∥v∥2A : = ∥v∥2L2(Y ;w2) =

∫
Y
|v(y)|2w2(y)dy

ζ

φ

Y
w

ap(y) : = αp ep(ζ+iφ) αp > 0 normalization in ∥·∥A , p ∈ Z

A : = span{ap}p∈Z
∥·∥A ⊊ L2(Y ;w2)

Jacobi–Anger: x ∈ B1 y ∈
Y

EWy(x) =
∑
p∈Z

ipJp(κr)eip(θ−[φ+iζ]) =
∑
p∈Z

τpap(y)bp(x), τp :=
ip

αpβp
.

From asymptotics & choice of w: 0 < τ− ≤ |τp| ≤ τ+ <∞ ∀p ∈ Z.

∀x ∈ B1, y 7→ EWy(x) ∈ A (not true for x ∈ ∂B1)
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EPW approximation: probability measure on Y

Probability density ρ & cumulative d.f. as functions of evanescence ζ:
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They depend on P: target functions in span{bp}|p|≤P .
Modes at ζ ≈ ± log(2P/κ).
Computation of ρ requires κ-dependent normalisation factors αp.
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Parameter samples in the cylinder Y
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Samples computed on (0,1)2 & uniform prob., mapped to Y by Υ−1.
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Approximation by PPWs and by EPWs
κ = 16, ϵ = 10−14, S = max{2M ,2|p|}

p = 8
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Approximation by EPWs

Approximation of {bp}, ▲ M = 4P, ♦ M = 8P P = 4κ, κ = 16

Uniform
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Approximation of general (truncated) u

Evanescent PW approximation of rough u: (S = 2M , κ = 16)

u =
∑
|p|≤P

ûpbp, ûp ∼ (max{1, |p| − κ})−1/2

EPWs constructed assuming that P is known. Deterministic sampling.

Convergence for M ↗ plotted against M
2P+1 = dim(approx. space)

dim(solution space) :
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Error is P-independent.
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Singular values of the matrix A

κ = 16
PPWs EPWs (Sobol, P = 4κ)
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Comparable condition numbers, larger ϵ-rank for EPWs.
Can further increase ϵ-rank by raising P.
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