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Liposomes

Liposomes (typical diameter <100 nm) are lipid vesi-
cles with a bilayered membrane structure.

Liposomes are considered to be the most successful
drug carriers.

Despite extensive research, only a few liposomal drugs have been
approved by the U.S. Food and Drug Administration.

Key liposomal characteristics are

• high target selectivity

• enhanced target cell uptake

• limited toxicity

[Noble et al., Trends Biotechnol. 2014] [Jain-Jain, Current Molecular Medicine 2018]
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A promising class of liposomes

Fusogenic liposomes are liposomes formulated to
facilitate fusion.

Fusogenic liposomes successfully deliver
biomolecules into cells. However, the fusion-
inducing components needed for efficient delivery
make these liposomes toxic in vivo.

One needs to find a balance between fusogenicity and toxicity.

[Filion-Phillips, Biochimica et Biophysica Acta 1997] [Csiszar et al., Bioconjug Chem.
2010] [Dutta et al., Bioconjug Chem. 2010] [Kube et al., Langmuir 2017]
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How can fusogenic liposomes be improved?
Possible solution: low concentrations of fusogenic lipids that can be
presented in dense patches through phase separation.
[Veatch-Keller, Biophysical journal 2003]

Dark: liquid ordered phase. Bright: liquid disordered phase.

Our goal: to apply complementary mathematical, computational, and
experimental tools to design and develop a new class of liposomal
carriers, called patchy fusogenic liposomes.
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Lateral phase separation with conservation

Conservation law for representative concentration c on Γ ⊂ R3:

ρ
∂c

∂t
+ divΓj = 0

ρ: total density of the system

j = −M∇Γµ: diffusion flux (Fick’s law, empirical)

M = M(c): mobility coefficient

µ = δf
δc : chemical potential

f (c) = f0(c) + 1
2ε

2|∇Γc |2: total specific free energy

In order to have phase separation, f0 must be a non-convex function of c .

Surface Cahn–Hilliard equation

ρ
∂c

∂t
− divΓ

(
M∇Γ

(
f ′0 − ε2∆Γc

))
= 0 on Γ
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TraceFEM: basic principles
We study for the first time a geometrically unfitted finite element
method.

Γ

Th

Idea

Use a trace space induced by FE functions for the bulk triangulation Th.

{Th}h>0 is a triangulation of the domain

T Γ
h is the subset of elements that have a nonzero intersection with Γ
→ ΩΓ

h

Define

Define the outer space: Vh = {v ∈ C (ΩΓ
h) : v ∈ P1(T ) for any T ∈ T Γ

h }
And then define the trace space for Vh:

interface FE space V Γ
h := {ψh ∈ C (Γh) : ∃ vh ∈ Vh : ψh = vh|Γh

}.

[Olshanskii-Reusken-Grande, SINUM 2009]
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TraceFEM: basic principles
We study for the first time a geometrically unfitted finite element
method.

Γ
Γh

Th

{Th}h>0 is a triangulation of the domain

Γh is an approximation of Γ

For example:

Γ = {x ∈ R3 | φ(x, t) = 0}
Γh = {x ∈ R3 | φh(x, t) = 0}

with φh = Ih(φ), where Ih is a nodal interpolant.

[Olshanskii-Reusken-Grande, SINUM 2009]
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h
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Advantages of TraceFEM

• Surface Γ is not meshed directly.

• Number of active degrees of freedom is optimal, it is comparable to
methods in which Γ is meshed directly.

• Amenable to both space and time adaptivity.

• Effective condition numbers of matrices are comparable to common
FEMs.

• If Γ evolves, Γ is not tracked by a mesh (Eulerian method).

• If Γ evolves, one recomputes matrices using the same data
structures.
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Qualitative comparison with Majd’s experiments

We compared our numerical results on steady surfaces with experiments
conducted in Majd’s lab for two membrane compositions:

• one yielding about 16% liquid ordered area fraction.

t = 124 t = 148 t = 172 t = 294
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Qualitative comparison with Majd’s experiments

• Another yielding about 9% liquid ordered area fraction.

t = 194 t = 241 t = 583 t = 800

To set the initial state for numerical simulations, we relied on
thermodynamic considerations.
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Quantitative comparison with Majd’s experiments
9% liquid ordered area fraction 16% liquid ordered area fraction

[Zhiliakov-Wang-Q-Olshanskii-Majd, BAA 2021]
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Navier–Stokes–Cahn–Hilliard system

We proposed a more complex thermodynamically consistent phase-field
model to capture the viscous and fluidic phenomena.

ρ(∂tu + (∇Γu)u)︸ ︷︷ ︸
inertia

− divΓ(2ηEs(u)) +∇Γp︸ ︷︷ ︸
lateral stresses

= −σγε2divΓ (∇Γc ⊗∇Γc)︸ ︷︷ ︸
line tension

+ Mθ(∇Γ(θu) )∇Γµ︸ ︷︷ ︸
chemical momentum flux

divΓu = 0︸ ︷︷ ︸
membrane inextensibility

∂tc + divΓ(cu)︸ ︷︷ ︸
transport of phases

− divΓ (M∇Γµ)︸ ︷︷ ︸
phase masses exchange

Fick’s law

= 0, µ = f ′0 (c)− ε2∆Γc︸ ︷︷ ︸
mixture free energy variation

Thanks to the term in red with θ2 = dρ
dc , the model allows for a

non-linear dependence of fluid density on the phase-field order parameter.
[Abels-Garcke-Grün, M3AS 2012]
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Numerical method for the NSCH system

Two issues arise when dealing with surface and unfitted finite elements:

1. The numerical treatment of condition u · n = 0
−→ add a penalty term to the weak formulation.

2. Possible small cuts of tetrahedra from T Γ
h by the surface

−→ add certain volumetric terms to the finite element formulation

The decoupled linear finite element method we propose reads: At time
step tn+1, perform

- Step 1: Find (cn+1, µn+1) such that

[c]n+1
t + divΓ(cn+1un)− divΓ

(
M∇Γµ

n+1
)

= 0,

µn+1 =
γc∆t

ε
[c]n+1

t +
1

ε
f ′0 (cn)− ε∆Γc

n+1.

The TraceFEM formulation will include terms for issue 2.

[Shen-Yang, Discrete & Continuous Dynamical Systems 2010]
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Numerical method for the NSCH system

- Step 2: Find (un+1, pn+1) such that

ρn[u]n+1
t + ρn+1(∇Γu

n)un+1 − PdivΓ(2ηn+1Es(un+1)) +∇Γp
n+1

= −σγcn+1∇Γµ
n+1 + Mθn+1(∇Γ(θn+1un+1) )∇Γµ

n+1 + fn+1,

divΓu
n+1 = 0.

The TraceFEM formulation will include terms for issues 1 and 2.

We have the following properties for our decoupled scheme:

• the resulting two algebraic systems are linear;

• the numerical solution satisfies the same stability bound as the
solution of the original system under some restrictions on the
discretization parameters.

[Palzhanov-Zhiliakov-Q-Olshanskii, CMAME 2021]
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Kelvin–Helmholtz instability on a sphere

The KH instability arises when there is a difference in velocity at the
interface between the two fluids and a perturbation is added to the
interface. We consider fluids with matching densities (ρ1 = ρ2 = 1) and
viscosities (η1 = η2 = 10−5). [PLAY]
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Rayleigh–Taylor instability on a torus
The Rayleigh–Taylor (RT) instability occurs when a gravity force is
acting on a heavier fluid that lies above a lighter fluid. We take two
fluids with densities ρ2 = 3 and ρ1 = 1 and matching viscosities
η1 = η2 = η. We set σγ = 0.025. [PLAY]
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Qualitative comparison with Majd’s experiments
We compared our numerical results on steady surfaces with experiments
conducted in Majd’s lab for two membrane compositions:

• one yielding about 70% liquid ordered area fraction.
t = 102 t = 145 t = 408 t = 1030

• another yielding about 30% liquid ordered area fraction.
t = 73 t = 166 t = 225 t = 244 t = 322

Green: liquid ordered phase. Red: liquid disordered phase.
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Quantitative comparison with Majd’s experiments

total domain perimeter total number of domains

Red dots: experimental data for 70% liquid ordered area fraction.
Red line: computed mean for 70% liquid ordered area fraction.
Blue triangles: experimental data for 30% liquid ordered area fraction.
Blue line: computed mean for 30% liquid ordered area fraction.

[Wang-Palzhanov-Q-Olshanskii-Majd, BAA 2022]
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Lateral phase separation on an evolving surface

Using elementary tangential calculus, we derive a Cahn–Hilliard problem
posed on an evolving material surface:

ρ̇+ ρdivΓu = 0 on Γ(t)

ċ − ρ−1divΓ

(
M∇Γ

(
1

ε
f ′0 − ε∆Γc

))
= 0 on Γ(t)

where ḟ is the material derivative of f .

• Total conservation of mass

• Conservation of mass for one component

[Elliott-Ranner, Numer. Math. 2015]
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Lateral phase separation on an evolving surface

Using elementary tangential calculus, we derive a Cahn–Hilliard problem
posed on an evolving material surface:

ρ̇+ ρdivΓu = 0 on Γ(t)

ċ − ρ−1divΓ

(
M∇Γ

(
1

ε
f ′0 − ε∆Γc

))
= 0 on Γ(t)

where ḟ is the material derivative of f .

• The system is one-way coupled

• We are not aware of a minimization property for the Cahn–Hilliard
problem in time-dependent domains → the system is no longer
dissipative

[Elliott-Ranner, Numer. Math. 2015] [Yushutin-Q-Olshanskii, JCP 2019]
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Oscillating ellipsoid

We consider time-dependent surface Γ(t) to be an oscillating ellipsoid.
As initial solution, we take:

c0 = 0.5 + 0.05 cos(2πx1) cos(2πx2) cos(2πx3).

PLAY simulation for ε = 0.01, h` = 10/3
2`+2 , ∆t = 0.01.

Discrete Lyapunov energy:

EL
h (ch) =

∫
Γh

f (ch)ds

[Elliott-Ranner, Numer. Math.

2015]
0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

time

l = 1
l = 2
l = 3
l = 4
l = 5
l = 6



Motivation CH model NSCH model Evolving surfaces Conclusions

Pattern formation on colliding spheres

We consider two colliding spheres with the following initial condition:

• two-component mixture with random initial condition (1:1) for the
sphere on the left;

• homogeneous phase for the sphere on the right.

We set ε = 0.01.

t = 0.23 t = 0.26 t = 1.23

PLAY

[Yushutin-Q-Olshanskii, JCP 2019]
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Conclusions

• We extended a well-known phase field model for two-phase
incompressible flow.

• Because of our interest in biomembranes, the system is posed on an
arbitrary-shaped closed smooth surface.

• We applied and analyzed an unfitted finite element method for its
numerical approximation.

• We proposed a discrete scheme that decouples the fluid problem
from the phase-field problem at each time step.

THANK YOU FOR YOUR ATTENTION!

[Olshanskii-Q.-Reusken-Yushutin, SISC 2018] [Yushutin-Q.-Majd-Olshanskii, IJNMBE
2019] [Yushitin-Q-Olshanskii, JCP 2019] [Zhiliakov-Wang-Q-Olshanskii-Majd, BAA
2021] [Palzhanov-Zhiliakov-Q-Olshanskii, CMAME 2021]
[Wang-Palzhanov-Q-Olshanskii-Majd, BAA 2022]

http://www.igpm.rwth-aachen.de/DROPS/

http://www.igpm.rwth-aachen.de/DROPS/
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