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A tsunami wave across the Atlantic?

time evolution

• a coarse grid

• a first order scheme

• using the shallow water model
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A tsunami wave across the Atlantic?

time evolution
• a coarse grid

• a first order scheme

• using the shallow water model



m
a

tteo
.sem

p
lice@

u
n

in
su

b
ria

.it

2

A quiet Atlantic ocean?

time evolution
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A quiet Atlantic ocean?

time evolution
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Finite Volume Schemes for hyperbolic balance laws

∂u

∂t
+∇x · f (u) = s(u) (balance law)

uj(t) :=
1

|Ωj |

∫
Ωj

u(t, x)dx (cell average)

Average (balance law) on Ωj , obtaining the semi-discrete formulation:

d

dt
uj = − 1

|Ωj |

∫
∂Ωj

f (u(t, γ)) · ~n(γ)dγ +
1

|Ωj |

∫
Ωj

s(u(t, x))dx (SD)
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Quadrature and reconstruction
Approximate the integrals with numerical quadratures

d

dt
uj = . . .

∑
ejk

Q∑
q=1

wqf (u(t, γq)) · ~n(γq) . . .
Q2∑
q=1

w̃qs(u(t, xq))

• Know the cell averages

• Need the point values

• Choose a reconstruction:

Rj(x) s.t.

∫
Ωj

Rj(x)dx = uj

Ωj

ujuj−1 uj+1

u
− j+

1
/

2

u
+ j+

1
/

2

• . . . and use it to feed
: the numerical quadrature for the source term

: the numerical fluxes at interfaces Fj+1/2 = F
(
u−j+1/2

, u+
j+1/2

)
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Higher order schemes

• Choose a reconstruction:

Rj(x) s.t.

∫
Ωj

Rj(x)dx = uj

• and such that, for
i = ±1,±2, . . .,

Rj(x) s.t.

∫
Ωj+i

Rj(x)dx = uj+i
Ωj

ujuj−1 uj+1

Rj(x)

• in practice use “Essentially Non Oscillatory” reconstructions, which
locally trade accuracy for non-oscillatory propeties
(ENO, WENO, CWENO1, . . . ).
CWENO is particularly efficient when many reconstruction points per
cell are required.

1Levy, Puppo, Russo (1998–2002); M.S., Puppo, Visconti, . . . (2016–2021)
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A tsunami across the Ocean (take 2)

raising order
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Only grid refinement seems to help

but we cannot discretize the Atlantic with 1 meter cells!
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Steady states of the Shallow Water model

{
∂th + ∂xq = 0

∂tq + ∂x
(
q2/h + 1

2gh
2
)

= −gh∂xZ

They are called “lake at rest” when q = 0:

q(t, x) = 0 and ∂x
(

1
2gh

2
)

= −gh∂xZ

i.e.
⇒ h(x) + Z (x) = C
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Steady states of the Shallow Water model
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Origin of numerical storms

Exact steady state:
∂x f (u) = s(u)

In the numerical scheme

d

dt
uj = − [Fj+1/2(u•)−Fj−1/2(u•)]︸ ︷︷ ︸

∂x f (u)+O(∆xp)

+ Sj(u•)︸ ︷︷ ︸
s(u)+O(∆xp)

and in general

d

dt
uj

∣∣∣∣∣lake
at
rest

= O(∆xp)−O(∆xp) 6= 0
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Well balanced schemes

d

dt
uj = Hj(u•)

• A scheme is called well balanced if

Hj(u•)

∣∣∣∣steady
state

= 0

so that un• steady ⇒ un+1
• = un• + machine precision

The well-balanced property can be satisfied w.r.to all equilibria, to a
class of equilibria, to a single equilibrium, etc
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One of the culprits: the reconstruction

On lake at rest, free surface η = h + Z is flat,
but reconstruction is applied to h and q

d

dt
hj = Fh

j+1/2
(u•)−Fh

j−1/2
(u•)

where (e.g. first order)

Fh
j+1/2

(u•) = 1
2 (q−j+1/2

+ q+
j+1/2

)− Dj+1/2(h+
j+1/2
− h−j+1/2

)

where Dh is the numerical dissipation term.
For a lake at rest (first order p-wise constant):

Fh
j+1/2

(u•) = 1
2 (
�
�
�>

0
q−j+1/2

+
�
�
�>

0
q+
j+1/2

)− Dj+1/2(h+
j+1/2
− h−j+1/2

)

= −Dj+1/2

[(
��C − Z j+1

)
−
(
��C − Z j

)]
6= 0 unless the bottom is flat

C
hj hj+1
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Towards well-balanced schemes

• Design a well balanced reconstruction Rj(x ; u•) that

: are accurate of order p on general data
: on steady states, we have no jumps at interfaces

Key idea: reconstruct perturbations w.r.to equilibria of interest

• Design a well balanced quadrature2 such that

: are consistent and accurate of order p on general data

:
d

dt
uj

∣∣∣∣steady
state

= −[Fj+1/2(u•)−Fj−1/2(u•)]︸ ︷︷ ︸
���−∂x f (u)+O(∆xp)

+Sj(u•)︸ ︷︷ ︸
��s(u)+O(∆xp)

= 0

• There are alternatives like source upwinding or path-conservative
schemes, but high order versions invariably require many
reconstruction points inside the cell, so we have found that CWENO3

class reconstructions are most useful

2Audusse et al. (2004)
Noelle, Pankratz, Puppo, Natvig (2006)
Cravero, Puppo, M.S., Visconti (2018)

3Levy, Puppo, Russo (1998–2002); M.S., Puppo, Visconti, . . . (2016–2021)
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A tsunami across the Ocean (take 3)

time evolution
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Comparing different orders
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2d with Coriolis force for the Tohoku tsunami

Castro, M.S. (2018)



Euler gas dynamics with external gravity

Some more examples
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An isothermal atmosphere?

Spherically symmetric gas cloud initially in isothermal equilibrium.

Initial state:
isothermal equilibrium

Evolution:
numerically equilibrium is lost

The scheme is not well-balanced!
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A perturbed isothermal atmosphere??

Add a small perturbation.

time evolution

Note the change in range of colorbars
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A perturbed isothermal atmosphere??

Add a small perturbation.

time evolution

Note the change in range of colorbars
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Steady states of Euler+gravity
The system 

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v + pI ) = −ρ∇Φ

∂tE +∇ · (v(E + p)) = −ρv∇Φ

has very large families of hydrostatic equilibria satisfying

v(x , t) ≡ 0 ∇peq = −ρeq∇Φ

For example:
• isothermal athmospheres:

ρiso(x) =
e−Φ(x)/Teq

Teq
piso(x) = e−Φ(x)/Teq .

• polytropic equilibria:

ρpoly(x) =
(
1− ν−1

ν Φ(x)
) 1
ν−1 ppoly(x) = (ρ(x))ν .

• and many more . . .
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Euler+gravity: well-balanced reconstruction

• introduce fluctuations

r(x , t) = ρ(x , t)− ρeq(x) π(x , t) = p(x , t)− peq(x)

• compute r j and πj from the data ρ•,m•,E •
• Reconstruct r , π and ρv to get r±j+1/2

, π±j+1/2
, (ρv)±j+1/2

• Then set

ρ±j+1/2
= r±j+1/2

+ ρeq(xj+1/2)

p±j+1/2
= π±j+1/2

+ peq(xj+1/2)

E±j+1/2
= 1

2 (ρv)±j+1/2

2
/ρ±j+1/2

+ p±j+1/2
/(γ − 1)

Klingenberg, Puppo, M.S. (2019)
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Higher order extension
Pointwise

E (x) =
1

2

m(x)2

ρ(x)
+

p(x)

γ − 1
 p(x) = (γ − 1)

(
E (x)− 1

2
m(x)2

ρ(x)

)
where m = ρv , but on cell averages

pj = (γ − 1)

(
E j − 1

2

m2
j

ρj

)
+O(∆x2)

Solution:
• reconstruct Ej(x), mj(x), ρj(x) from their cell averages
• choose an appropriate (Gaussian) quadrature rule and compute

pj ≈
Nq∑
q=0

wqp(xq) =

Nq∑
q=0

wq(γ − 1)(Ej(x)− 1
2
mj (x)2

ρj (x) )

with the desired accuracy (CWENO useful here!)

Klingenberg, Puppo, M.S. (2019)
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An isothermal atmosphere!

Using

• well-balanced reconstruction

• well-balanced quadrature for the source,

Initial state:
isothermal equilibrium

Evolution:
steady state is preserved up to 10−16
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A quasi-isothermal atmosphere!

time evolution



Euler gas dynamics with external gravity

Some more examples
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Windy athmospheres for Euler+gravity
The technique can be extended to “windy steady states”, i.e.

• ∇p = −ρ∇Φ

• constant ~v(x , t) s.t. ~v · ∇Φ = 0

Density (grayscale) and density perturbation (contours, yellow=reference)

WB on isothermal WB on windy isothermal

Klingenberg, Puppo, M.S. (2019)
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Shallow water for non-rectangular sections
1D SWE model
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Shallow water for non-rectangular sections
1D SWE model
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Channel topography and cross-section
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Shallow water for non-rectangular sections (2)
A(t, x) wet area at location x , time t

Q(t, x) discharge at location x , time t

η(t, x) free surface height at location x , time t

The model can be written as4 is
∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

(
Q2

A

)
= −gA∂η

∂x

A(x) =

∫ η(x)

Z(x)
σ(x , z)dz

Well-balanced scheme:5

• convert A↔ h↔ η at machine-precision

• reconstruct fluctuations from a lake-at-rest

• deduce reconstruction of free surface η

• path-conservative approach instead of w.b. quadrature
4Gouta-Maurel – Int. J. Numer. Meth. Fluid (2002)
5Escalante, Castro, M.S. (2021)
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Rainy shallow-water model
Model presented by O. Lakkis at 2018 CSMM in Como{

∂th + ∂xq = R(t, x)

∂tq + ∂x
(
q2/h + 1

2gh
2
)

= −gh∂xz − κ(t, h, q)qh

where

• R(t, x) is the contribution of rain (and possibly runoff for fluvial case)

• κ models the change in momentum due to the added water, assuming
that the incoming water has zero velocity

“filling the lake” solution:
R(t, x) = R(t) and

η(x)

z

0

{
h(t, x) + Z (x) = C (t)

q(t, x) = 0
where C (t) = C (0) +

∫ t

0
S(τ)dτ
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Well-balanced scheme on “filling the lake”

• The Runge-Kutta scheme of a semidiscrete scheme for SWE,
applied to the R(t) term is

σ∑
k=1

bk

(
R(tn+ck∆t)

0

)
is a quadrature rule in time for

∫ ∆t
0 S(τ)dτ .

• Any w.b. scheme on lake-at-rests for SWE is automatically
well-balanced on the “filling the lake” provided that S(t) is polynomial
of degree up to the accuracy of the rule with nodes ck and weights bk .

order 1 2 3 5 7 9

N=25 4.3e-16 2.3e-15
N=50 3.6e-15 2.0e-14
N=100 3.4e-15 5.0e-15 5.3e-15 5.1e-15 1.5e-14 2.4e-14
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Conclusions and perspectives

There are many well-balancing techniques (w.b. quadrature, source
upwinding, path-conservative schemes) but the common motivation is that

only preserving exactly the equilibria
we can see small perturbations of equilibria

using a coarse grid, thus being able to perform computations in a fast,
cheap (and eco-friendly) way

Well-balancing is just an instance of a more general approach to numerics,
which includes asymptotic preserving schemes, divergence-free
discretizations, structure-preserving schemes, etc
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