# A multi-fidelity method for uncertainty quantification in engineering problems

#### L. Tamellini

Institute for Applied Mathematics and Information Technologies "E. Magenes" (CNR-IMATI), Pavia, Italy



### The Uncertainty Quantification framework



#### • y are random/uncertain

- Then, *u*(**y**) and *F*(**y**) are random quantities
- What is the variability of *u* and *F* wrt to *y*?

#### **The Uncertainty Quantification framework**



#### The Uncertainty Quantification framework



### Different kind of analysis are possible

#### • Forward UQ (from inputs to outputs):

Compute mean, variance, quantiles, probability density function (pdf) of  $F(\mathbf{y})$ 

Inverse UQ (aka calibration: from "uninformed" to "data-aware" pdf)
Can we reduce the uncertainty on y if we measure F?

# **Example 1: forward UQ for a ferry**

- Two operational **uncertain parameters:** 
  - Speed within the operational range
  - **Draught** ±10% design (±15% design payload)
- F(y) = resistance to advancement (ship drag)
- PDE: Navier-Stokes (RANS solver)





#### Example 2: inverse + forward UQ for SIR



- Contact probability,  $\beta$
- Recovery time, r



We have seen these plots already

Most forward / inverse techniques boil down to **repeatedly solving the ODE/PDE** for multiple values of **y** (**sampling**)

How many samples? For what values of y?

Most forward / inverse techniques boil down to **repeatedly solving the ODE/PDE** for multiple values of **y** (**sampling**)

How many samples? For what values of y?

Alternative 1: Monte Carlo: Robust but slow, Error ≈M<sup>-1/2</sup>



Most forward / inverse techniques boil down to **repeatedly solving the ODE/PDE** for multiple values of **y** (**sampling**)

How many samples? For what values of y?

Alternative 2: Cartesian grid. More accurate but expensive:  $M = M_0^N$  N can be large!!!



Most forward / inverse techniques boil down to **repeatedly solving the ODE/PDE** for multiple values of **y** (**sampling**)

How many samples? For what values of y?

Alternative 3: Sparse grid and other advanced sampling



# Make it faster: surrogate modeling

- Instead of solving the PDE for all value of y
  - a. Solve for a few "selected" **y**
  - b. "Interpolate" the values of  $F(\mathbf{y})$
  - c. Evaluate the surrogate model: **much cheaper!**
  - d. Works for **smooth functions** *F*(**y**)
- Many alternatives:
  - a. Polynomial Chaos Expansion
  - b. Sparse Grids
  - c. Reduced Basis
  - d. Proper Orthogonal Decomposition
  - e. Radial Basis Functions
  - f. Gaussian Processes
  - g. Neural Networks



# **Multi-fidelity**

- Consider a **hierarchy of approximations** of the same ODE/PDE:
  - a. Different discretizations
  - b. Different **physics:** Euler / Stokes / RANS / Direct Navier Stokes
- Explore the "bulk" of the variability due to y with **many queries of the cheap models** ...
- ... and correct with a handful of queries of the high-fidelity models
- Can (should) be combined with the **surrogate-modeling** paradigm

# Summary of UQ framework

The function to sample is:

- Implicit & expensive
- high-dimensional

We need:

- Efficient sampling schemes + surrogate models to generate quickly many values
- Multi-fidelity approach

### See the big picture here:







# ... and now, details

### **Problem setup**

#### Parameters **y**

- Speed
- Draught (~ payload)



# Two operational **uncertain** parameters y=[U, T]:

- **Speed U** within the operational range
- Draught T ±10% design (±15% design payload)

# We assume **y<sub>1</sub>, y<sub>2</sub>** to be **uniform** random variables

|  | k//Lpp                           |                 | Full Scale                      | Model Scale   |
|--|----------------------------------|-----------------|---------------------------------|---------------|
|  | Length Between<br>Perpendiculars | L <sub>PP</sub> | 162.85 m                        | 6.0 m         |
|  | Speed Range                      | U               | [12÷26] knots<br>[6.2÷13.4] m/s | [1.2÷2.6] m/s |
|  | Draught Range                    | Т               | [6.4÷7.8] m<br>7.1 m (design)   | [0.24÷0.29] m |

### **Our RANS software:**



Reynolds Averaged Navier-Stokes (RANS) solver X-navis, developed at CNR-INM

- 2nd-order finite volumes scheme
- Multi-grid solver
- **4 grids** by "dyadic derefinement" of an initial fine grid



#### **Domain and full mesh**



#### **Some simulations**

**y**<sub>1</sub> (speed)

 $\mathbf{y_2}$  (draught)



# Some simulations (zoom)

 $\mathbf{y_2}$  (draught)



### Our multi-fidelity method: Multi-index Stochastic Collocation (MISC)

# The sparsification principle



#### Ideal but computationally unreachable

C: coarse discretization (coarse mesh, few samples)

Q: refine PDE mesh

**P**: add more samples in the parameter space

**F**: take both actions

# The sparsification principle

**#PDE** solved (parametric accuracy)



Write a **telescopic equality** 

Rearrange to put in evidence three

2nd order correction, small but expensive! (under regularity assumptions)

# The sparsification principle

#PDE solved (parametric accuracy)



MISC formula:

 $\mathbf{F} \approx \mathbf{P} + \mathbf{Q} - \mathbf{C}$ 

i.e., a linear combination of three different (cheap) approximations

#### Sparsification principle achieved!

Solve many PDEs on a coarse mesh and few PDEs with refined mesh

Bonus: **balance errors** in solver and parametric space!

# So, in the end:





# MISC for multiple parameters: $y_1, y_2$



If we have **two parameters** we can separate also the two decisions:

- Refine the sampling of y<sub>1</sub> (P<sub>1</sub>)
- Refine the sampling of  $y_2 (P_2)$

Delay refining both simultaneously!

The parameter space is sampled in a **structured but not tensor** way

Bonus: if you have a tensorized solver **(IGA / FD)** you can do the same for the solver!

#### **MISC samples and solver calls**



**#PDE** solved (parametric accuracy) Ρ F PDE solver accuracy



- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

∆[Expected value] / cost



- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 $\Delta$ [Expected value] / cost



- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

∆[Expected value] / cost



- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 $\Delta$ [Expected value] / cost



- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 $\Delta$ [Expected value] / cost



- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 $\Delta$ [Expected value] / cost

3. Repeat

#### **Comments:**

- Expensive (a-posteriori)
- Can we design the set a-priori?
- Other criteria are possible
- Points in [U, T] depend on their pdf





#### **Multi-indices**

#### Sampling





#### **Multi-indices**

#### Sampling

# **Numerical Results**

#### **Growth of computational work**



# Approximation of $E[R_{T}]$



- Low entry cost
- Gets good estimates quickly
- "stagnation"

#### Surrogate models for $R_{\!_{\rm T}}$



#### **Numerical noise**



Lowest-fidelity surrogate

**Highest-fidelity surrogate** 

# Pdf of $R_{T}$



### **Bonus slide: convergence result**

Elliptic PDE with parametric diffusion coefficient with mild regularity

- the solution is **y**-analytic , so it makes sense to use sparsification
- Convergence rate:
  - If  $N < \infty$ : Err  $\leq C \operatorname{work}^{-s} \log(\operatorname{work})^{r}$  with s,r indep of N, but C might
  - If  $N \rightarrow \infty$ : Err  $\leq C$  work<sup>-r</sup> with s,r,C indep of N

Setting:

- u(**x**,**y**) lives in a Bochner space with mixed Sobolev regularity
- derive decay of the coefficients of the multi-variate spectral expansions wrt y
- Choose the best ones by knapsack problem
- Check summability of the truncation error
- connect with multi-variate Lagrange interpolation results

#### **Bonus slide: more tests**





Elliptic PDE, random diffusion coeff

Linear elasticity, uncertain *E*, *v* 

# Conclusions

# Summary of this talk

- Uncertainty Quantification combines statistics, numerical analysis, approximation theory
- The function to sample is:
  - Implicit & expensive
  - high-dimensional

We need:

- Efficient sampling schemes + surrogate models to generate quickly many values
- Multi-fidelity approach
- **MISC** uses sparsification principle. Fast, effective, but issue with noise

#### **Future work**

- Software release
- Noise issues
- More efficient adaptive algorithm (ML hybridization)
- Application to inverse UQ, robust optimization, etc...

# **Bibliography & thanks for the attention!**

**J. D. Jakeman, S. Friedman, M. Eldred, L. Tamellini, A. Gorodetsky, D. Allaire (2022)** Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems. *International Journal for Numerical Methods in Engineering* 

C. Piazzola, L. Tamellini, R. Pellegrini, R. Broglia, A. Serani, M. Diez (2022)

Comparing Multi-Index Stochastic Collocation and Multi-Fidelity Stochastic Radial Basis Functions for Forward Uncertainty Quantification of Ship Resistance

Engineering with Computers

J. Beck, L. Tamellini, R. Tempone (2019)

IGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domains.

Computer Methods in Applied Mechanics and Engineering

A. Haji-Ali, F. Nobile, L. Tamellini, R. Tempone (2016)

Multi-index Stochastic Collocation convergence rates for random PDEs with parametric regularity. Foundations of Computational Mathematics

**A. Haji-Ali, F. Nobile, L. Tamellini, R. Tempone (2016)** Multi-index stochastic collocation for random PDEs Computer Methods in Applied Mechanics and Engineering

#### A noisy RANS solver

