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The Uncertainty Quantification framework

PDE/ODEParameters y ● Solution u(x,y)
● Solution functional F(y)

● y are random/uncertain 

● Then, u(y) and F(y) are random quantities

● What is the variability of u and F wrt to y ? 
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The Uncertainty Quantification framework

PDE/ODEParameters y ● Solution u(x,y)
● Solution functional F(y)

Data-informed pdf, coming e.g. from 
sequential monte carlo, MCMC, etc

Parameters y



Different kind of analysis are possible

● Forward UQ (from inputs to outputs):
Compute mean, variance, quantiles, probability density function (pdf) of F(y)

● Inverse UQ (aka calibration: from “uninformed” to “data-aware” pdf)
Can we reduce the uncertainty on y if we measure F?



Example 1: forward UQ for a ferry
● Two operational uncertain parameters:  

○ Speed within the operational range
○ Draught ±10% design (±15% design payload)

● F(y) = resistance to advancement (ship drag)
● PDE: Navier-Stokes (RANS solver)

mean(RT)=52.37
std(RT)=21.63



Example 2: inverse + forward UQ for SIR
● Two uncertain parameters 

○ Contact probability, β  
○ Recovery time, r

● ODE: SIR system

no data are available

β in [0.25, 0.35], r in [0.06,0.18] (literature)

with data on I,R up to t=30

β ~ N(0.285,0.80), r ~ N(0.086,0.26) 

We have seen these plots already



Solve, solve, solve!
Most forward / inverse techniques boil down to repeatedly solving the ODE/PDE for 
multiple values of y (sampling)

How many samples? For what values of y?



Solve, solve, solve!
Most forward / inverse techniques boil down to repeatedly solving the ODE/PDE for 
multiple values of y (sampling)

How many samples? For what values of y?

Alternative 1: Monte Carlo: Robust but slow, Error ≈M-1/2 

y2

y1



Solve, solve, solve!
Most forward / inverse techniques boil down to repeatedly solving the ODE/PDE for 
multiple values of y (sampling)

How many samples? For what values of y?

Alternative 2: Cartesian grid. More accurate but expensive: M = M0
N  N can be large!!!

y2

y1



Solve, solve, solve!
Most forward / inverse techniques boil down to repeatedly solving the ODE/PDE for 
multiple values of y (sampling)

How many samples? For what values of y?

Alternative 3: Sparse grid and other advanced sampling 

y2

y1



Make it faster: surrogate modeling
● Instead of solving the PDE for all value of y

a. Solve for a few “selected” y
b. “Interpolate” the values of F(y) 
c. Evaluate the surrogate model:

much cheaper! 
d. Works for smooth functions F(y)

● Many alternatives:
a. Polynomial Chaos Expansion 
b. Sparse Grids
c. Reduced Basis
d. Proper Orthogonal Decomposition
e. Radial Basis Functions
f. Gaussian Processes

g. Neural Networks
h. ...



Multi-fidelity

● Consider a hierarchy of approximations of the same ODE/PDE:
a. Different discretizations
b. Different physics: Euler / Stokes / RANS / Direct Navier Stokes

● Explore the “bulk” of the variability due to y with many queries of the cheap models …

● … and correct with a handful of queries of the high-fidelity models

● Can (should) be combined with the surrogate-modeling paradigm 



Summary of UQ framework

The function to sample is: 

● Implicit & expensive

● high-dimensional 

We need:

● Efficient sampling schemes + surrogate models to generate quickly many values

● Multi-fidelity approach



See the big picture here:



… and now, details 



Unsteady 
Navier-Stokes 

equations

Parameters y
● Speed
● Draught (~ payload)

Full Scale Model Scale

Length Between
Perpendiculars

LPP 162.85 m 6.0 m

Speed Range U [12÷26] knots
[6.2÷13.4] m/s

[1.2÷2.6] m/s

Draught Range T    [6.4÷7.8] m
7.1 m (design)

[0.24÷0.29] m

Two operational uncertain 
parameters y=[U, T]:

● Speed U within the 
operational range

● Draught T ±10% design 
(±15% design payload)

We assume y1, y2 to be uniform 
random variables

Advancement resistance
 

Problem setup



Unsteady 
Navier-Stokes 

equations
(RANS)

Parameters y
● Speed
● Draught (~ payload)

Reynolds Averaged Navier-Stokes (RANS) solver X-navis, developed at CNR-INM

● 2nd-order finite 
volumes scheme

● Multi-grid solver

● 4 grids by “dyadic 
derefinement”                                                                                        
of an initial fine grid

Advancement resistance
 

M4 (5.5M, cost = 512) M3 (699k, cost = 64) M2 (87k, cost = 8) M1 (11k, cost = 1)

Our RANS software:



Domain and full mesh



Some simulations
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Some simulations (zoom)

y 1 
  (s

p
ee

d
)

y2  (draught)



Our multi-fidelity method:
Multi-index Stochastic Collocation (MISC)



The sparsification principle

C: coarse discretization (coarse mesh, few 
samples)

Q: refine PDE mesh 

P: add more samples in the parameter 
space

F: take both actions

 Ideal but computationally unreachable



Rearrange to put in evidence three 
corrections

F = C 
   + P − C                     
   + Q − C                    
   + F − P − Q + C      

Write a telescopic equality

F = F + C − C
   + C − C
   + P − P
   + Q − Q

2nd order correction,
small but expensive!
(under regularity 
assumptions)

The sparsification principle



The sparsification principle

MISC formula:

F ≈ P + Q − C

i.e., a linear combination of three 
different (cheap) approximations

Sparsification principle achieved! 

Solve many PDEs on a coarse mesh and 
few PDEs with refined mesh

Bonus: balance errors in solver and 
parametric space!



So, in the end:



If we have two parameters we can 
separate also the two decisions:

● Refine the sampling of y1  (P1)

● Refine the sampling of y2 (P2)

Delay refining both simultaneously!

The parameter space is sampled in a 
structured but not tensor way

Bonus: if you have a tensorized solver 
(IGA / FD) you can do the same for the 
solver!

MISC for multiple parameters: y1, y2



MISC samples and solver calls



MISC: an adaptive algorithm



MISC: an adaptive algorithm

PDE solver accuracy

1. Add “neighboring refinements”

2. Choose the one that gave the best 
improvement:

3. Repeat

Δ[Expected value] / cost

# PDE solved
(param. accuracy)
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MISC: an adaptive algorithm

PDE solver accuracy

1. Add “neighboring refinements”

2. Choose the one that gave the best 
improvement:

3. Repeat

Δ[Expected value] / cost

# PDE solved
(param. accuracy)

Comments:
● Expensive (a-posteriori)
● Can we design the set a-priori?
● Other criteria are possible
● Points in [U, T] depend on their pdf
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Multi-indices Sampling



Multi-indices Sampling
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Numerical Results



Growth of computational work

5 solves @ 
highest fidelity



Approximation of E[RT]

Ref. value = 52.37

● Low entry cost

● Gets good estimates quickly

● “stagnation”



Surrogate models for RT 

RANS solver noise 
gets interpolated!

We have discussed 
this yesterday



Numerical noise 

Lowest-fidelity surrogate Highest-fidelity surrogate 



Pdf of RT



Bonus slide: convergence result

Elliptic PDE with parametric diffusion coefficient with mild regularity

● the solution is y-analytic , so it makes sense to use sparsification

● Convergence rate:

○ If N < ∞:  Err ≤ C work−s log(work)r   with s,r indep of N, but C might

○ If N → ∞:  Err ≤ C work−r                        with s,r,C indep of N

Setting: 

● u(x,y) lives in a Bochner space with mixed Sobolev regularity
● derive decay of the coefficients of the multi-variate spectral expansions wrt y 
● Choose the best ones by knapsack problem
● Check summability of the truncation error
● connect with multi-variate Lagrange interpolation results



Bonus slide: more tests

Linear elasticity, uncertain E, v Elliptic PDE, random diffusion coeff



Conclusions



● Uncertainty Quantification combines statistics, numerical analysis, approximation theory

● The function to sample is: 

● Implicit & expensive

● high-dimensional 

We need:

● Efficient sampling schemes + surrogate models to generate quickly many values

● Multi-fidelity approach

● MISC uses sparsification principle. Fast, effective, but issue with noise

Summary of this talk



● Software release

● Noise issues

● More efficient adaptive algorithm (ML hybridization)

● Application to inverse UQ, robust optimization, etc…

Future work
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A noisy RANS solver


