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Goal and outline

Goal

How to use “nonlinear eigenvectors” in core-periphery classification
of hypergraphs

Outline

• Review of graph clustering via nonlinear eigenvectors
• Extension to hypergraphs
• Core-periphery classification of hypergraphs via nonlinear eigenvectors
• Numerical examples

2



“Nonlinear eigenvector”

Solution to F(x) = λ x, where:

• F(x) = composition of linear and point-wise nonlinear mappings
= σ1(A1σ2(A2x))
Generalized linear models in deep learning

• F(x) = action of a matrix valued operator
= M(x)x
Nonlinear eigenvalue problems with eigenvector nonlinearity
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Nonlinear Laplacians

B = incidence, boundary, gradient operator
L(x) = Bg(B⊤f(x)) B : edges→ nodes

Different choices of f and g are used in several different settings:
• f = Id, g(x) = |x|p−1sign(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . graph p-Laplacian
[Bühler&Hein, 2009], [Elmoataz et al, 2008], [Zhang, 2016], [T&Hein, 2018], ...

• exp and log . . . . . . . . . . . . . . . . consensus dynamics and chemical reactions
[Neuhäuser et al, 2021], [Rao et al, 2013], [Van Der Schaft et al, 2016], ...

• Trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . network oscillators
[Battiston et al, 2021], [Millán et al, 2020], [Schaub et al, 2016], ...

• Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . semi-supervised learning
[Arya et al, 2021], [Ibrahim&Gleich, 2019], [Prokopchick et al, 2021], ...

• p-norm-based . . . . . . . . . . . . . . . . . . . . . . . . . centrality and core-periphery 4



(HYPER)GRAPH CLASSIFICATION



Unsupervised classification via graph clustering

similarity graph↔ A = adjacency mx

cut(S) = #edges between S and V \ S
S

V \ S

Formulation as combinatorial optimization problem:

min
{
K(S) = cut(S)/|S| : S ⊆ {1, . . . ,n}, |S| ≤ n/2

}

5



Unsupervised classification via graph clustering

similarity graph↔ A = adjacency mx

cut(S) = #edges between S and V \ S
S

V \ S

Formulation as combinatorial optimization problem:

min
{
K(S) = cut(S)/|S| : S ⊆ {1, . . . ,n}, |S| ≤ n/2

}

5



Unsupervised classification via graph clustering

similarity graph↔ A = adjacency mx

cut(S) = #edges between S and V \ S
S

V \ S

Formulation as combinatorial optimization problem:

min
{
K(S) = cut(S)/|S| : S ⊆ {1, . . . ,n}, |S| ≤ n/2

}

5



Matrix reordering

Clusters C1, C2: many edges Ci ↔ Ci and few edges Ci ↔ Cj (i 6= j)
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Extensions: discrete→ continuous optimization

Fiedler extension: min
{
f(x) =

∑
ij Aij(xi − xj)2 : xT1 = 0, ‖x‖2 = 1

}
• min f(x) ≤ minK(S) ≤

√
2min f(x)

• It boils down to a matrix-eigenvalue problem which we know how to
solve very efficiently to arbitrary precision

Lovász Extension: min
{
ℓ(x) =

∑
ij Aij|xi − xj| : xT1 = 0, ‖x‖1 = 1

}
• min ℓ(x) = minK(S)
• It can be interpreted as a nonlinear eigenvector problem, but it cannot
be solved in polynomial time
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How do we extend to hypergraphs?

Hypergraph:

• H = (V, E) where e ∈ E can contain an arbitrary number of nodes
H is a standard graph if |e| = 2, for all e ∈ E
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Why hypergraphs?

Relational data is full of interactions that happen in groups
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Why hypergraphs?

Directly considering graph motifs brings a great deal of new insight

Example: Triangle hypergraph

j

i

k

Hyperedge e = {ijk} ∈ E if the graph contains all three edges ij, jk and ki
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Hypergraph cut

How to quantify the strength of a cut in the hypergraph case?
Nice recent review: [Veldt,Benson,Kleinberg, SIREV, 2022]
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All-or-nothing hypergraph cut

Directly formulate a hypergraph cut by extending the notion of graph cut

• Graph:
∂S = {ij ∈ E : i ∈ S, j ∈ Sc}, cutG(S) =

∑
ij∈∂S Aij

• All-or-nothing hypergraph cut:
∂S = {e ∈ E : e ∩ S 6= ∅, e ∩ Sc 6= ∅}, cutH(S) =

∑
e∈∂S Ae
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Graph projection

A standard approach to represent and deal with hypergraphs

project

Example: Clique-expansion.
Form a graph where all nodes in an hyperedge are fully connected.

Cut on the clique-expanded graph: cutCE(S) =
∑

e∈∂S |e ∩ S||e ∩ Sc|Ae
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Hypergraph vs projected graph

How do cutCE and cutH compare?

Semi-supervised classification with ∼ 2% input labels
Rice31 Caltech36 FMNIST
n = 3560 n = 590 n = 60000
c = 9 c = 8 c = 10

cutH Lovász 82.6 ± 0.1 66.1 ± 0.3 79.7 ± 1.1
cutCE Fiedler 80.5 ± 2.7 55.3 ± 2.9 70.5 ± 3.3

Criticism: the additional complication of H is not justified
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CORE-PERIPHERY CLASSIFICATION



Clustering vs core-periphery

Clusters C1, C2: many edges Ci ↔ Ci and few edges Ci ↔ Cj (i 6= j)

Core-periphery C, P: many edges C↔ C and C↔ P, few P↔ P
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Core–periphery in networks

Borgatti, Everett, Social Networks, 1999

Core: nodes strongly
connected across the
whole network

Periphery: nodes
strongly connected
only to the core
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Combinatorial optimization formulation

Writing the problem in terms of cut(S) leads to a two-variable
combinatorial problem, for which the Lovász approach does not work

Matrix reordering formulation:

Find the permutation i 7→ pi that solves

max
{∑

ij Aijmax{pi,pj} : p = permutation of {1, . . . ,n}
}
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Coreness score relaxation

Relax the constraint p = permutation into “nonnegative with fixed norm”

max
{∑

ij Aijmax{xi, xj} : x ≥ 0, ‖x‖ = 1
}

Use a “softmax”: for e = (i, j) and x|e = (xi, xj) we have max{xi, xj} = ‖x|e‖∞

max
{∑

e Ae ‖x|e‖p : x ≥ 0, ‖x‖ = 1
}

(p large)

We obtain a model for coreness score: “xi > xj if i is more in the core than j”
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Hypergraph case

All-or-nothing core-periphery model:

e is a “good” hyperedge if it contains at least one core node

x|e = (xi1 , . . . , xi|e|)

max
{
φ(x) =

∑
e∈E

Ae ‖x|e‖p s.t. x ≥ 0, ‖x‖ = 1
}
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Questions for the remaining slides

• How can we solve maxφ(x)?

• How does it compare with doing core-periphery classification on the
projected graph?
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Nonlinear eigenvector formulation

Let ‖ · ‖ = ‖ · ‖q be the norm defining the constraint.

φ(αx) = αφ(x)⇒ look at the unconstrained problem maxx φ(x)/‖x‖q

∇
{ φ(x)
‖x‖q

}
= 0 ⇐⇒ Bg(B⊤f(x)) = λ x

• B : hyperedges→ nodes hypergraph incidence operator
• f(x) = x

p
p−q (entrywise)

• g(x) = x
1

q−1 (entrywise)
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Nonlinear eigenvalue formulation (cont.)

max
{
φ(x) =

∑
e∈E

w(e) ‖x|e‖p s.t. x ≥ 0, ‖x‖q = 1
}

is equivalent to

L(x) = Bg(B⊤f(x)) = λ x, x ≥ 0

Flavor of Perron-Frobenius problem:
we look for a nonnegative solution which is maximal (in some sense)
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Main result

If p > q > 1, there exists a unique nonnegative eigenvector x∗ of L(x).

Moreover:

• x∗ is entrywise positive
• the iterative method

• y← Diag(x)q−1B (BTxq)
1
q−1

• x← (y/‖y‖p∗)
1

p−1 , p∗ = dual norm of p
converges to x∗ for any positive starting point x(0), with linear rate
of convergence O(|p− 1|/|q− 1|).

Note: cost per iteration = O(B,BT × vector)
23



G VS H: EXAMPLES



Examples: hyperplane and hypercycle
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Core-periphery profile

Extension of the core-periphery profile for graphs [DellaRosa et al, 2013]

For any subset of nodes S ⊆ V consider the quantity

γ(S) = # edges all contained in S
# edges with at least one node in S

Hypergraph core-periphery profile:

function γx(k) that to any k ∈ {1, . . . ,n} associates the value γ(Sk(x))
where Sk(x) is the set of k nodes with smallest coreness score in x

γ(S) is small if S is largely contained in the periphery of the hypergraph

26



Real-world datasets
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Conclusions and questions

• When dealing with classification problems on graphs and hypergraphs
we end up nonlinear eigenvector problems

• One example is core-periphery. Here, unlike clustering:

• we have guarantees for uniquenes and computation of the
solution to the nonlinear eigenvector problem
• the results are very different on the projected graph

¿Q? What are other settings where graph projections fail?
¿Q? What is a tight convergence rate for the iterative method?
¿Q? Is there a better method than (nonlinear) power method?

Thank you!
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