An Introduction to the divergence-free Virtual Element Method with focus on the Oseen Equation

Giuseppe Vacca

Department of Mathematics, University of Bari

Joint work with
L. Beirão da Veiga, F. Dassi, A. Russo

CALCOLO SCIENTIFICO E MODELLI MATEMATICI alla ricerca delle cose nascoste attraverso le cose manifeste

Outline of the presentation

- Virtual Element Methods (VEMs)
- Divergence-free VEMs
- definition, DoFs, divergence-free solution,
- kernel inclusion \& advantages
[Beirão da Veiga, Lovadina, V., 2017], [Beirão da Veiga, Lovadina, V., 2019]
- Vorticity stabilization for the Oseen Equation
- vorticity stabilization [Ahmed, Barrenechea, Burman, Guzman, Linke, Merdon, 2020]
- VEM setting [Beirão da Veiga, Dassi, V., 2021],
- Conclusions \& Remarks

The Virtual Element Method

The Virtual Element Method (VEM) is a generalization of the Finite Element Method on polyhedral or polygonal meshes
[Beirão da Veiga, Brezzi, Cangiani, Manzini, Marini, Russo, M3AS, 2013]

Why polygons? Fractures

Why polygons? Local Refinement

Why polygons? Mesh gluing

POlytopal Element Methods (POEMs)

- Hybrid High Order methods
A. Di Pietro, A. Ern, et als;
- Hybridizable Discontinuous Galerkin methods
B. Cockburn, J. Gopalakrishnan, et als;
- Mimetic Finite Difference Methods
L. Beirão da Veiga, F. Brezzi, K. Lipnikov, G. Manzini, M. Shashkov, et als;
- Polygonal/Polyhedral Finite Element methods
J. Bishop, G. Paulino, N. Sukumar, et als;
- Polygonal/Polyhedral Discontinuous Galerkin methods
P. Antonietti, A. Cangiani, E. Georgoulis, P. Houston, et als;
- Virtual Element Methods
L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, et als;
- Weak Galerkin Methods
J. Wang, X. Ye, et als.

Then mean features of VEMs

- VEMs allow to use very general polygonal and polyhedral meshes, also for high polynomial degrees,
- the VEMs spaces are similar to the usual polynomial spaces with the addition of suitable (and unknown!) non-polynomial functions, these functions inside each element are solutions of suitable PDEs,
- VEMs do not require the evaluation of test and trial functions at the integration points,
- the key of the VEMs is to define suitable projections onto the space of polynomials that are computable from the degrees of freedom,
- they satisfy the patch test exactly,
- the flexibility of VEM is not limited to the mesh: C^{k} element, div-free method!

The Stokes equation - primal formulation

We consider the Stokes Problem on a polygon $\Omega \subseteq \mathbb{R}^{2}$:

$$
\left\{\begin{array}{rlrl}
-\nu \boldsymbol{\Delta u}-\nabla \boldsymbol{p} & =\boldsymbol{f} & & \text { in } \Omega,
\end{array} \begin{array}{l}
\text { momentum equation } \\
\operatorname{div} \boldsymbol{u}
\end{array}=0 \quad \text { in } \Omega, \quad\right. \text { mass equation (incompressibility constraint) }
$$

- $\boldsymbol{u}=\left(u_{1}, u_{2}\right)^{T}$ is the fluid velocity,
- p is the fluid pressure,
- $\nu>0$ is the fluid viscosity,
- $\boldsymbol{f}=\left(f_{1}, f_{2}\right)^{T} \in\left[L^{2}(\Omega)\right]^{2}$ is the external load.

The Stokes equation - variational formulation

We consider

- velocities space $\left[H_{0}^{1}(\Omega)\right]^{2}:=\left\{\boldsymbol{v} \in\left[L^{2}(\Omega)\right]^{2} \quad\right.$ s.t. $\left.\quad \nabla \boldsymbol{v} \in\left[L^{2}(\Omega)\right]^{2 \times 2}, \quad \boldsymbol{v}_{\mid \partial \Omega}=\mathbf{0}\right\}$,
- pressures space $L_{0}^{2}(\Omega):=\left\{q \in L^{2}(\Omega)\right.$ s.t. $\left.\int_{\Omega} q \mathrm{~d} \Omega=0\right\}$.

Then the variational formulation of the Stokes equation is:

$$
\left\{\begin{array}{rr}
\text { find }(\boldsymbol{u}, p) \in\left[H_{0}^{1}(\Omega)\right]^{2} \times L_{0}^{2}(\Omega) \text { such that } \\
\nu \int_{\Omega} \nabla \boldsymbol{u}: \nabla \boldsymbol{v} \mathrm{d} \Omega+\int_{\Omega} \operatorname{div} \boldsymbol{v} p \mathrm{~d} \Omega=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{d} \Omega & \text { for all } \boldsymbol{v} \in\left[H_{0}^{1}(\Omega)\right]^{2}, \\
\int_{\Omega} \operatorname{div} \boldsymbol{u} q \mathrm{~d} \Omega=0 & \text { for all } q \in L_{0}^{2}(\Omega),
\end{array}\right.
$$

where

$$
\nabla u:=\left(\begin{array}{ll}
u_{1, x} & u_{1, y} \\
u_{2, x} & u_{2, y}
\end{array}\right) \quad \text { and } \quad \boldsymbol{A}: \boldsymbol{B}:=\sum_{i, j=1}^{n} a_{i j} b_{i j} \quad \text { for all } \boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n \times n}
$$

Inf-sup stable FEMs \& VEM

element name	velocity	pressure	div-free	balance approx.
P2-P0	$\left[\mathbb{P}_{2}\right]^{2}$	\mathbb{P}_{0}	NO	NO
Taylor-Hood	$\left[\mathbb{P}_{2}\right]^{2}$	$\mathbb{P}_{1}^{\text {cont }}$	NO	\checkmark
Mini	$\left[\mathbb{P}_{1}+\mathbb{B}_{3}\right]^{2}$	$\mathbb{P}_{1}^{\text {cont }}$	NO	NO
Crouzeix-Raviart	$\left[\mathbb{P}_{2}+\mathbb{B}_{3}\right]^{2}$	\mathbb{P}_{1}	NO	\checkmark
Scott-Vogelius ${ }^{(*)}$	$\left[\mathbb{P}_{k}\right]^{2}$	\mathbb{P}_{k-1}	\checkmark	\checkmark
VEM	V_{h}	Q_{h}	\checkmark	\checkmark

$(*)$ for $k \geq 4$ and meshes without singular-vertex.

Virtual Elements for the Stokes Problem

We build a Virtual Elements Method for the Stokes Problem in following form

$$
\left\{\begin{aligned}
& \text { find }\left(\boldsymbol{u}_{h}, p_{h}\right) \in \boldsymbol{V}_{h} \times Q_{h} \text { such that } \\
& \nu a_{h}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+ \int_{\Omega} \operatorname{div} \boldsymbol{v}_{h} p_{h} \mathrm{~d} \Omega=\int_{\Omega} \boldsymbol{f}_{h} \cdot \boldsymbol{v}_{h} \mathrm{~d} \Omega
\end{aligned} \quad \text { for all } \boldsymbol{v}_{h} \in \boldsymbol{V}_{h}\right.
$$

- $\boldsymbol{V}_{h} \subseteq\left[H_{0}^{1}(\Omega)\right]^{2}$ is a finite dimensional space,
- $Q_{h} \subseteq L_{0}^{2}(\Omega)$ is a finite dimensional space,
- $a_{h}(\cdot, \cdot): \boldsymbol{V}_{h} \times \boldsymbol{V}_{h} \rightarrow \mathbb{R}$ is a bilinear form s.t.

$$
a_{h}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right) \approx \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}_{h}: \nabla \boldsymbol{v}_{h} \mathrm{~d} \Omega \quad \text { for all } \boldsymbol{u}_{h}, \boldsymbol{v}_{h} \in \boldsymbol{V}_{h}
$$

- \boldsymbol{f}_{h} is a right hand side term approximating the load term.

The pressure space and the velocities space
Let Ω_{h} be a polygonal decomposition of Ω.
For sake of simplicity we consider the consider the VEM scheme of order 2.

The pressure space is given by the piecewise polynomial functions

$$
Q_{h}:=\left\{q \in L_{0}^{2}(\Omega) \quad \text { s.t. } \quad q_{\mid E} \in \mathbb{P}_{1}(E) \quad \text { for all } E \in \Omega_{h}\right\} .
$$

The velocity virtual space

$$
\boldsymbol{V}_{h}:=\left\{\boldsymbol{v} \in\left[H_{0}^{1}(\Omega)\right]^{2} \quad \text { s.t. } \quad \boldsymbol{v}_{\left.\right|_{E}} \in \boldsymbol{V}_{h}(E) \quad \text { for all } E \in \Omega_{h}\right\} .
$$

is defined, as for standard FEM, element-wise, by introducing

- local spaces $V_{h}(E)$;
- the associated local degrees of freedom.

For $k=1$: [Antonietti, Beirão da Veiga, Mora, Verani, SINUM, 2014].

Virtual Elements for the velocities: definition \& properties
On each element $E \in \Omega_{h}$ we define the local virtual velocities space

$$
\begin{aligned}
& \boldsymbol{v}_{h}(E):=\left\{\boldsymbol{v} \in\left[C^{0}(\bar{E})\right]^{2} \text { s.t. (i) } \boldsymbol{\Delta v}+\nabla s=0,\right. \\
& \text { (ii) } \operatorname{div} \boldsymbol{v} \in \mathbb{P}_{1}(E), \quad \text { for some } s \in L_{0}^{2}(E) \\
& \\
& \text { (iii) } \boldsymbol{v}_{l e} \in\left[\mathbb{P}_{2}(e)\right]^{2} \quad \forall e \in \partial E,
\end{aligned}
$$

- the definition of $\boldsymbol{V}_{h}(E)$ is associated with a Stokes-like problem on E,
- the divergence of functions in $\boldsymbol{V}_{h}(E)$ are polynomials of degree 1 ,
- polynomial inclusion: $\left[\mathbb{P}_{2}(E)\right]^{2} \subseteq V_{h}(E)$,
- the the dimension of $\boldsymbol{V}_{h}(E)$ is

$$
\operatorname{dim}\left(\boldsymbol{V}_{h}(E)\right)=4 N_{\text {edge }}+\operatorname{dim}\left(\mathbb{P}_{1}(E)\right)-1 .
$$

Degrees of freedom for the velocities

$$
\operatorname{dim}\left(\boldsymbol{V}_{h}(E)\right)=4 N_{\text {edge }}+\left(\operatorname{dim}\left(\mathbb{P}_{1}(E)\right)-1\right)
$$

- $\mathrm{D}_{\mathrm{V}} 1$: the values at the vertices of the polygon E
- Dv2: the values at the midpoint of every edge $e \in \partial E$

Figure: DoFs: Dv1 green dots, $\mathrm{D}_{\mathrm{V}} 2$ orange dots.

Degrees of freedom for the velocities

$$
\operatorname{dim}\left(\boldsymbol{V}_{h}(E)\right)=4 N_{\text {edge }}+\left(\operatorname{dim}\left(\mathbb{P}_{1}(E)\right)-1\right)
$$

- D_{v} 3: the moments of $\operatorname{div} \boldsymbol{v}$ in E

$$
\int_{E}(\operatorname{div} \boldsymbol{v}) \times \mathrm{d} E \quad \int_{E}(\operatorname{div} \boldsymbol{v}) y \mathrm{~d} E
$$

Figure: DoFs: Dv3 red squares.

Bilinear form $a_{h}(\cdot, \cdot)$
The approximated local form $a_{h}^{E}(\cdot, \cdot)$ mimics

$$
a_{h}^{E}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right) \approx \int_{E} \nabla \boldsymbol{u}_{h}: \nabla \boldsymbol{v}_{h} \mathrm{~d} E
$$

Drawback: the virtual functions are unknown inside the element!
For an arbitrary pair $\boldsymbol{u}_{h}, \boldsymbol{v}_{h} \in \boldsymbol{V}_{h}(E)$, the integral $\int_{E} \boldsymbol{\nabla} \boldsymbol{u}_{h}: \boldsymbol{\nabla} \boldsymbol{v}_{h} \mathrm{~d} E$ is not computable.

- We do not attempt to approximate the virtual functions and we do require the evaluation of test and trial functions at the integration points.
- The key is to define on $\boldsymbol{V}_{h}(E)$ suitable projections onto the space of polynomials that are computable from the DoFs.

The DoFs D_{v} allow us to compute the following operators

$$
\Pi_{2}^{0, E}: \boldsymbol{V}_{h}(E) \rightarrow\left[\mathbb{P}_{2}(E)\right]^{2}, \quad \Pi_{1}^{0, E}: \nabla \boldsymbol{V}_{h}(E) \rightarrow\left[\mathbb{P}_{1}(E)\right]^{2 \times 2}
$$

Divergence free velocity solution

Let us briefly recall that by definition

$$
\boldsymbol{V}_{h}:=\left\{\boldsymbol{v} \in\left[H_{0}^{1}(\Omega)\right]^{2} \quad \text { s.t. } \quad \ldots \quad(\operatorname{div} \boldsymbol{v})_{\left.\right|_{E}} \in \mathbb{P}_{1}(E) \quad \text { for all } E \in \Omega_{h}\right\} .
$$

The pressure space is given by the piecewise polynomial functions

$$
Q_{h}:=\left\{q \in L_{0}^{2}(\Omega) \quad \text { s.t. } \quad q_{\mid E} \in \mathbb{P}_{1}(E) \quad \text { for all } E \in \Omega_{h}\right\} .
$$

Therefore by construction

$$
\operatorname{div} V_{h} \subseteq Q_{h} .
$$

The incompressibility constraint for the velocity solution $\boldsymbol{u}_{h} \in \boldsymbol{V}_{h}$ reads as

$$
\int_{\Omega} \operatorname{div} \boldsymbol{u}_{h} q_{h} \mathrm{~d} \Omega=0 \quad \text { for all } q_{h} \in Q_{h}
$$

therefore the discrete velocity $\boldsymbol{u}_{h} \in \boldsymbol{V}_{h}$ is exactly divergence-free.

The divergence-free property is not shared by the most popular mixed FEMs!

Kernel inclusion \& Advantages

More generally, the kernels:

$$
\begin{gathered}
\boldsymbol{Z}=\left\{\boldsymbol{v} \in\left[H_{0}^{1}(\Omega)\right]^{2} \quad \text { s.t. } \quad \operatorname{div} \boldsymbol{v}=0\right\} \\
\boldsymbol{Z}_{h}=\left\{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h} \text { s.t. } \int_{\Omega} \operatorname{div} \boldsymbol{v}_{h} q_{h} \mathrm{~d} \Omega=0 \quad \text { for all } q_{h} \in Q_{h}\right\}=\left\{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h} \text { s.t. } \operatorname{div} \boldsymbol{v}=0\right\}
\end{gathered}
$$

satisfy the inclusion

$$
Z_{h} \subseteq Z .
$$

Consequence of the kernel inclusion:

- decoupling of the error [Beirão da Veiga, Lovadina, V., SINUM, 2019]
- reduced virtual element space [Beirão da Veiga, Lovadina, V., M2AN, 2017]
- coupling Stokes and Darcy flow [V., M3AS, 2018]
- underlying Stokes complex \& stream formulation [Beirão da Veiga, Mora, V., JSC, 2019], [Beirão da Veiga, Dassi, V., M3AS, 2020]

Convergence results

Theorem (Beirão da Veiga, Lovadina, V.)
Let Ω_{h} be a polygonal decomposition of Ω s.t.

- each element $E \in \Omega_{h}$ is star-shaped with respect to a ball of uniform radius,
- for each element $E \in \Omega_{h}$, the length of all edges is comparable with its diameter.

Then following error estimates hold

$$
\begin{gathered}
\left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{\left[H^{1}(\Omega)\right]^{2}} \lesssim h^{k}|\boldsymbol{u}|_{H^{k+1}\left(\Omega_{h}\right)}+\frac{h^{k+2}}{\nu}|\boldsymbol{f}|_{H^{k+1}\left(\Omega_{h}\right)} \\
\left\|p-p_{h}\right\|_{L^{2}(\Omega)} \lesssim h^{k}|p|_{H^{k}\left(\Omega_{h}\right)}+h^{k}|\boldsymbol{u}|_{H^{k+1}\left(\Omega_{h}\right)}+\frac{h^{k+2}}{\nu}|\boldsymbol{f}|_{H^{k+1}\left(\Omega_{h}\right)} .
\end{gathered}
$$

Remark: The velocity component of the error depends on the pressure with a higher order term, via the load \boldsymbol{f}. Notice that for popular mixed FEMs it holds:

$$
\left\|\boldsymbol{u}-\boldsymbol{u}_{h}^{\mathrm{FEM}}\right\| \boldsymbol{v} \lesssim \frac{h^{k}}{\nu}|p|_{H^{k}\left(\Omega_{h}\right)}+h^{k}|\boldsymbol{u}|_{H^{k+1}\left(\Omega_{h}\right)}
$$

Navier-Stokes equation: small viscosity
Velocity error
VEM: $\left\|\boldsymbol{u}-\boldsymbol{u}_{h}^{\mathrm{VEM}}\right\| \boldsymbol{v} \lesssim \frac{h^{k+2}}{\nu}|\boldsymbol{f}|_{k+1}+h^{k}|\boldsymbol{u}|_{H^{k+1}}$
FEM: $\left\|\boldsymbol{u}-\boldsymbol{u}_{h}^{\mathrm{FEM}}\right\| \boldsymbol{v} \lesssim \frac{h^{k}}{\nu}|\boldsymbol{p}|_{k}+h^{k}|\boldsymbol{u}|_{H^{k+1}}$

Reduced spaces

The div. free property of \boldsymbol{u}_{h} implies that all the divergence moments $D_{V} 3$ of \boldsymbol{u}_{h} vanish

$$
\int_{E}\left(\operatorname{div} \boldsymbol{u}_{h}\right) \times \mathrm{d} E=0 \quad \int_{E}\left(\operatorname{div} \boldsymbol{u}_{h}\right) y \mathrm{~d} E=0
$$

therefore many velocity and pressure DoFs can be eliminated from the system.
On each element $E \in \Omega_{h}$ we define the reduced local virtual velocities space

$$
\begin{aligned}
& \widehat{\boldsymbol{v}}_{h}(E):=\left\{\boldsymbol{v} \in\left[C^{0}(\bar{E})\right]^{2} \text { s.t. (i) } \Delta v+\nabla s=0,\right. \\
& \text { (ii) } \operatorname{div} v \in \mathbb{P}_{0}(E), \quad \text { for some } s \in L_{0}^{2}(E) \\
& \text { (iii) } \boldsymbol{v}_{l e} \in\left[\mathbb{P}_{2}(e)\right]^{2} \quad \forall e \in \partial E,
\end{aligned}
$$

Remark: the reduced formulation allows us to solve the Stokes Problem saving $4 n_{P}$ DoFs where n_{P} is the number of polygons in the mesh.

VEM \& FEM (triangular elements): P2-P0
Remark: The proposed VE is different from already-known FE

VEM \& FEM (triangular elements): Taylor-Hood
Remark: The proposed VE is different from already-known FE

VEM \& FEM (triangular elements): Crouzeix-Raviart
Remark: The proposed VE is different from already-known FE

Divergence free property: coupling Stokes and Darcy fluids

Consider the Darcy Equation (Poisson Equation in mixed form) on a polygon $\Omega \subseteq \mathbb{R}^{2}$:

$$
\left\{\begin{array}{ll}
\text { find }(\boldsymbol{u}, p) \in H_{0}(\operatorname{div}, \Omega) \times L_{0}^{2}(\Omega) \text { such that } \\
\int_{\Omega} \mathbb{K} \boldsymbol{u} \cdot \boldsymbol{v} \mathrm{d} \Omega+ & \int_{\Omega} \operatorname{div} \boldsymbol{v} p \mathrm{~d} \Omega=0
\end{array} \quad \text { for all } \boldsymbol{v} \in H_{0}(\operatorname{div}, \Omega),\right.
$$

The proposed family of VEM is stable for both Stokes and Darcy problem!
Remark: Most popular FEMs are not robust for both Stokes and Darcy.

Brinkman equation

$$
\begin{aligned}
& \text { find }(\boldsymbol{u}, p) \in\left[H_{0}^{1}(\Omega)\right]^{2} \times L_{0}^{2}(\Omega) \text { such that } \\
& \left\{\begin{aligned}
\nu \int_{\Omega} \nabla \boldsymbol{u}: \nabla \boldsymbol{v} \mathrm{d} \Omega+\int_{\Omega} \mathbb{K} \boldsymbol{u} \cdot \boldsymbol{v} \mathrm{d} \Omega+\int_{\Omega} \operatorname{div} \boldsymbol{v} p \mathrm{~d} \Omega & =\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{d} \Omega & \forall \boldsymbol{v} \in\left[H_{0}^{1}(\Omega)\right]^{2}, \\
\int_{\Omega} \operatorname{div} \boldsymbol{u} q \mathrm{~d} \Omega & =\int_{\Omega} g q \mathrm{~d} \Omega & \forall q \in L_{0}^{2}(\Omega) .
\end{aligned}\right.
\end{aligned}
$$

In the limit Darcy case i.e. "small" ν we recover the optimal order of accuracy.

	h	$\operatorname{error}\left(\boldsymbol{u}, H^{1}\right)$	$\operatorname{error}\left(\boldsymbol{u}, L^{2}\right)$	$\operatorname{error}\left(p, L^{2}\right)$
	$1 / 4$	$2.049871 \mathrm{e}-01$	$9.414645 \mathrm{e}-03$	$1.531569 \mathrm{e}-02$
$\nu=1 \mathrm{e}-1$	$1 / 8$	$4.616835 \mathrm{e}-02$	$8.379142 \mathrm{e}-04$	$2.796060 \mathrm{e}-03$
	$1 / 16$	$1.102679 \mathrm{e}-02$	$9.416547 \mathrm{e}-05$	$5.322283 \mathrm{e}-04$
	$1 / 32$	$2.654465 \mathrm{e}-03$	$1.104272 \mathrm{e}-05$	$1.261317 \mathrm{e}-04$
$\nu=1 \mathrm{e}-14$	$1 / 4$	$2.572957 \mathrm{e}-01$	$1.301886 \mathrm{e}-02$	$6.431351 \mathrm{e}-03$
	$1 / 8$	$5.539413 \mathrm{e}-02$	$1.111681 \mathrm{e}-03$	$1.887150 \mathrm{e}-03$
	$1 / 16$	$1.299961 \mathrm{e}-02$	$1.253090 \mathrm{e}-04$	$4.203480 \mathrm{e}-04$
	$1 / 32$	$3.003059 \mathrm{e}-03$	$1.394861 \mathrm{e}-05$	$1.026912 \mathrm{e}-04$

Stokes complex

Let $\Omega \subseteq \mathbb{R}^{2}$ a simply connected domain, consider the Stokes complex [Mardal, Tai, Winther, SINUM, 2002] and [Falk, Neilan, SINUM, 2013]

$$
0 \xrightarrow{i} H_{0}^{2}(\Omega) \xrightarrow{\text { curl }}\left[H_{0}^{1}(\Omega)\right]^{2} \xrightarrow{\text { div }} L_{0}^{2}(\Omega) \xrightarrow{0} 0
$$

The proposed element enjoys an underlying discrete Stokes complex structure

$$
0 \xrightarrow{i} \Phi_{h} \xrightarrow{\text { curl }} V_{h} \xrightarrow{\text { div }} Q_{h} \xrightarrow{0} 0,
$$

that is

$$
\operatorname{curl} \Phi_{h}=Z_{h}
$$

where Φ_{h} is a suitable H^{2}-conforming VEM.

Curl formulation

VEM mixed formulation

$$
\left\{\begin{array}{rlr}
\text { find }\left(\boldsymbol{u}_{h}, p_{h}\right) \in \boldsymbol{V}_{h} \times Q_{h} \text { such that } \\
\nu a_{h}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+ & \int_{\Omega} \operatorname{div} \boldsymbol{v}_{h} p_{h} \mathrm{~d} \Omega=\int_{\Omega} \boldsymbol{f}_{h} \cdot \boldsymbol{v}_{h} \mathrm{~d} \Omega & \text { for all } \boldsymbol{v}_{h} \in \boldsymbol{V}_{h} \\
& \int_{\Omega} \operatorname{div} \boldsymbol{u}_{h} q_{h} \mathrm{~d} \Omega=0 & \text { for all } q_{h} \in Q_{h}
\end{array}\right.
$$

VEM curl formulation: $\operatorname{curl} \Phi_{h}=Z_{h}$

$$
\left\{\begin{array}{l}
\text { find } \psi_{h} \in \Phi_{h}, \text { such that } \\
\nu a_{h}\left(\operatorname{curl} \psi_{h}, \operatorname{curl} \varphi_{h}\right)=\left(\boldsymbol{f}_{h}, \operatorname{curl} \varphi_{h}\right) \quad \text { for all } \varphi_{h} \in \Phi_{h}
\end{array}\right.
$$

- 2($\left.n_{P}-1\right)$ less DoFs with respect to the reduced problem;
- the pressure can be computed by least square;
- definite positive linear system;
- higher condition number (fourth order system).

The Oseen equation

We consider the Oseen equation on a polygon $\Omega \subseteq \mathbb{R}^{2}$:

$$
\left\{\begin{array}{rlr}
-\nu \boldsymbol{\Delta} \boldsymbol{u}+(\boldsymbol{\nabla} \boldsymbol{u}) \boldsymbol{\beta}+\sigma \boldsymbol{u}-\nabla p=\boldsymbol{f} & \text { in } \Omega, \\
\operatorname{div} \boldsymbol{u}=0 & \text { in } \Omega, \\
\boldsymbol{u} & =\mathbf{0} & \text { on } \partial \Omega
\end{array}\right.
$$

- $\nu>0$ is the fluid viscosity, $\sigma>0$ is the reaction coefficient,
- $\boldsymbol{\beta} \in\left[W_{1}^{\infty}(\Omega)\right]^{2}$ with $\operatorname{div} \boldsymbol{\beta}=0$ is the transport advective field,
- $\boldsymbol{f} \in\left[L^{2}(\Omega)\right]^{2}$ is the external load.

Model problem: discretization of a time-dependent Navier-Stokes equation.

- Discretizing the Oseen equation leads to instabilities when the convective term is dominant with respect to the diffusive term, i.e.

$$
\nu \ll\|\boldsymbol{\beta}\|_{[L \infty(\Omega)]^{2}} .
$$

- The majority of the stabilizations may disrupt the divergence-free property and related advantages.

Stabilization of the vorticity equation

We follow the approach in [Ahmed, Barrenechea, Burman, Guzman, Linke, Merdon, 2020].

Assume that curlf $\in L^{2}(E)$ for all $E \in \Omega_{h}$. We consider the vorticity equation

$$
\operatorname{curl}(-\nu \boldsymbol{\Delta} \boldsymbol{u}+(\boldsymbol{\nabla} \boldsymbol{u}) \boldsymbol{\beta}+\sigma \boldsymbol{u})=\operatorname{curl} \boldsymbol{f} \quad \text { for all } E \in \Omega_{h}
$$

Remark: in the vorticity equation the gradient of the pressure disappears!
We define the stabilizing forms and the stabilizing right hand side

$$
\begin{aligned}
\mathcal{L}^{E}(\boldsymbol{u}, \boldsymbol{v}) & :=\tau_{E} \int_{E} \operatorname{curl}(-\nu \boldsymbol{\Delta} \boldsymbol{u}+(\boldsymbol{\nabla} \boldsymbol{u}) \boldsymbol{\beta}+\sigma \boldsymbol{u}) \operatorname{curl}((\boldsymbol{\nabla} \boldsymbol{v}) \boldsymbol{\beta}) \mathrm{d} E \\
\mathcal{F}^{E}(\boldsymbol{v}) & :=\tau_{E} \int_{E} \operatorname{curl} \boldsymbol{f} \operatorname{curl}((\boldsymbol{\nabla}) \boldsymbol{\beta}) \mathrm{d} E
\end{aligned}
$$

where τ_{E} is the stabilization parameter.
The global forms are

$$
\mathcal{L}(\boldsymbol{u}, \boldsymbol{v}):=\sum_{E \in \Omega_{h}} \mathcal{L}^{E}(\boldsymbol{u}, \boldsymbol{v}), \quad \mathcal{F}^{E}(\boldsymbol{v}):=\mathcal{F}^{E}(\boldsymbol{v})
$$

The Oseen equation: kernel formulation

We consider the stabilized Oseen equation:

$$
\left\{\begin{aligned}
& \text { find }(\boldsymbol{u}, p) \in\left[H_{0}^{1}(\Omega)\right]^{2} \times L_{0}^{2}(\Omega) \text { such that } \\
& \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}: \nabla \boldsymbol{v} \mathrm{d} \Omega+\int_{\Omega}[(\nabla \boldsymbol{u}) \boldsymbol{\beta}] \cdot \boldsymbol{v} \mathrm{d} \Omega+\sigma \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v} \mathrm{d} \Omega+\int_{\Omega} \operatorname{div} \boldsymbol{v} p \mathrm{~d} \Omega+\mathcal{L}(\boldsymbol{u}, \boldsymbol{v}) \\
&=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{d} \Omega+\mathcal{F}(\boldsymbol{v}) \\
& \begin{array}{rl}
\int_{\Omega} \operatorname{div} \boldsymbol{u} q \mathrm{~d} \Omega=0 & \text { for all } \boldsymbol{v} \in\left[H_{0}^{1}(\Omega)\right]^{2}
\end{array} \\
& \text { for all } q \in L_{0}^{2}(\Omega) .
\end{aligned}\right.
$$

The equation can be also written in the kernel formulation, i.e.

$$
\left\{\begin{aligned}
& \boldsymbol{u} \in \boldsymbol{Z} \\
& \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}: \boldsymbol{\nabla} \boldsymbol{v} \mathrm{d} \Omega+\int_{\Omega}[(\nabla \boldsymbol{u}) \boldsymbol{\beta}] \cdot \boldsymbol{v} \mathrm{d} \Omega+\sigma \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v} \mathrm{d} \Omega+\mathcal{L}(\boldsymbol{u}, \boldsymbol{v}) \\
&=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{d} \Omega+\mathcal{F}(\boldsymbol{v}) \quad \text { for all } \boldsymbol{v} \in \boldsymbol{Z} .
\end{aligned}\right.
$$

Stabilized Virtual Elements for the Oseen equation

Let $\left(V_{h}, Q_{h}\right)$ be the divergence-free VEM couple.
We build a stabilized Virtual Elements Method for the Oseen in the following form

$$
\begin{cases}\text { find }\left(\boldsymbol{u}_{h}, p_{h}\right) \in \boldsymbol{V}_{h} \times Q_{h} \text { such that } \\ a_{h}\left(\nu ; \boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+c_{h}\left(\boldsymbol{\beta} ; \boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+m_{h}\left(\sigma ; \boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+\int_{\Omega} \operatorname{div} \boldsymbol{v}_{h} p_{h} \mathrm{~d} \Omega+\mathcal{L}_{h}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right) \\ =\int_{\Omega} \boldsymbol{f}_{h} \cdot \boldsymbol{v}_{h} \mathrm{~d} \Omega+\mathcal{F}\left(\boldsymbol{v}_{h}\right) & \text { for all } \boldsymbol{v}_{h} \in \boldsymbol{V}_{h}, \\ \int_{0} \operatorname{div} \boldsymbol{u}_{h} q_{h} \mathrm{~d} \Omega=0 & \text { for all } q_{h} \in Q_{h} .\end{cases}
$$

Recalling that $Z_{h} \subset Z$, we have the corresponding kernel formulation

$$
\left\{\begin{array}{l}
\text { find } \boldsymbol{u}_{h} \in \boldsymbol{Z}_{h} \times Q_{h} \text { such that } \\
a_{h}\left(\nu ; \boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+c_{h}\left(\boldsymbol{\beta} ; \boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+m_{h}\left(\sigma ; \boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+\mathcal{L}_{h}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right) \\
\quad=\int_{\Omega} \boldsymbol{f}_{h} \cdot \boldsymbol{v}_{h} \mathrm{~d} \Omega+\mathcal{F}\left(\boldsymbol{v}_{h}\right) \quad \text { for all } \boldsymbol{v}_{h} \in \boldsymbol{Z}_{h} .
\end{array}\right.
$$

Stabilizing VEM forms

$$
\begin{aligned}
\mathcal{L}_{h}^{E}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right) & \simeq \tau_{E} \int_{E} \operatorname{curl}(-\nu \boldsymbol{\Delta} \boldsymbol{u}+(\boldsymbol{\nabla} \boldsymbol{u}) \boldsymbol{\beta}+\sigma \boldsymbol{u}) \operatorname{curl}((\boldsymbol{\nabla} \boldsymbol{v}) \boldsymbol{\beta}) \mathrm{d} E \\
\mathcal{L}_{h}^{E}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right) & :=\mathcal{L}_{h, \text { res }}^{E}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+\mathcal{L}_{h, \text { jump }}^{E}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+\mathcal{L}_{h, \text { stab }}^{E}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)
\end{aligned}
$$

- stabilizing residual bilinear form

$$
\begin{aligned}
& \mathcal{L}_{h, \mathrm{res}}^{E}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right):= \\
& \quad \tau_{E} \int_{E} \operatorname{curl}\left(-\nu \operatorname{div}\left(\Pi_{k-1}^{0, E} \boldsymbol{\nabla} \boldsymbol{u}_{h}\right)+\left[\Pi_{k-1}^{0, E} \boldsymbol{\nabla} \boldsymbol{u}_{h}\right] \boldsymbol{\beta}+\sigma \Pi_{k}^{0, E} \boldsymbol{u}_{h}\right) \operatorname{curl}\left(\left[\Pi_{k-1}^{0, E} \nabla \boldsymbol{v}_{h}\right] \boldsymbol{\beta}\right) \mathrm{d} E
\end{aligned}
$$

- gradient jumps penalizing term

$$
\mathcal{L}_{h, \mathrm{jump}}^{E}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right):=\frac{1}{2} h_{E}^{2} \int_{\partial E} \llbracket\left(\Pi_{k-1}^{0, E} \boldsymbol{\nabla} \boldsymbol{u}_{h}\right) \boldsymbol{\beta} \rrbracket \cdot \llbracket\left(\Pi_{k-1}^{0, E} \boldsymbol{\nabla} \boldsymbol{v}_{h}\right) \boldsymbol{\beta} \rrbracket \mathrm{d} \boldsymbol{e}
$$

- VEM stabilizing term

$$
\mathcal{L}_{h, s \operatorname{stab}}^{E}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right):=\frac{\tau_{E} \beta_{E}^{2}}{h_{E}^{2}} S^{E}\left(\left(I-\Pi_{k}^{0, E}\right) \boldsymbol{u}_{h},\left(I-\Pi_{k}^{0, E}\right) \boldsymbol{v}_{h}\right), \quad \beta_{E}:=\|\boldsymbol{\beta}\|_{\left[L^{\infty}(E)\right]^{2}}
$$

Stability analysis

We define the norm

$$
\begin{aligned}
& \|\boldsymbol{v}\|_{\mathrm{stab}, E}^{2}:=\nu\|\boldsymbol{\nabla} \boldsymbol{v}\|_{0, E}^{2}+\sigma\|\boldsymbol{v}\|_{0, E}^{2}+ \\
& \quad \tau_{E}\left\|\operatorname{curl}\left(\left[\Pi_{k-1}^{0, E} \nabla \boldsymbol{v}\right] \boldsymbol{\beta}\right)\right\|_{0, E}^{2}+\frac{h_{E}^{2}}{2}\left\|\llbracket\left(\Pi_{k-1}^{0, E} \nabla \boldsymbol{u}_{h}\right) \boldsymbol{\beta} \rrbracket\right\|_{0, \partial E}^{2}+\frac{\tau_{E} \beta_{E}^{2}}{h_{E}^{2}}\left\|\nabla\left(I-\Pi_{k}^{0, E}\right) \boldsymbol{v}\right\|_{0, E}^{2}
\end{aligned}
$$

with global counterpart

$$
\|\boldsymbol{v}\|_{\text {stab }}^{2}:=\sum_{E \in \Omega_{h}}\|\boldsymbol{v}\|_{\text {stab }, E}^{2} .
$$

Proposition (Coercivity)
Let Ω_{h} be a shape regular polygonal decomposition of Ω.
If the parameter τ_{E} satisfies for any $E \in \Omega_{h}$

$$
\tau_{E} \lesssim \min \left\{\frac{h_{E}^{4}}{\nu}, \frac{h_{E}^{2}}{\sigma}\right\}
$$

the following coercivity inequality holds

$$
\left\|\boldsymbol{v}_{h}\right\|_{\text {stab }}^{2} \lesssim a_{h}\left(\nu ; \boldsymbol{v}_{h}, \boldsymbol{v}_{h}\right)+c_{h}\left(\boldsymbol{\beta} ; \boldsymbol{v}_{h}, \boldsymbol{v}_{h}\right)+m_{h}\left(\sigma ; \boldsymbol{v}_{h}, \boldsymbol{v}_{h}\right)+\mathcal{L}_{h}\left(\boldsymbol{v}_{h}, \boldsymbol{v}_{h}\right)
$$

Convergence analysis

Let Ω_{h} be a shape regular polygonal decomposition of Ω
Assume that for some $\varepsilon>0$

$$
\boldsymbol{u} \in\left[H^{3 / 2+\varepsilon}(\Omega)\right]^{2} \cap\left[H^{k+1}\left(\Omega_{h}\right)\right]^{2}, \quad \boldsymbol{f} \in\left[H^{k+1}\left(\Omega_{h}\right)\right]^{2}, \quad \boldsymbol{\beta} \in\left[W_{\infty}^{k+1}\left(\Omega_{h}\right)\right]^{2} .
$$

- Convection dominated regime $\nu \ll h_{E} \beta_{E}, \sigma \ll \frac{\beta_{E}}{h_{E}}: \tau_{E} \simeq \frac{h_{E}^{3}}{\beta_{E}}$
$\left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{\mathrm{stab}}^{2} \lesssim \sum_{E \in \Omega_{h}}\left(\beta_{E} h_{E}^{2 k+1}\left(1+\beta_{E}+\frac{\beta_{E} h_{E}^{3}}{\max \left\{\nu, \sigma h_{E}^{2}\right\}}\right)\right)\|\boldsymbol{u}\|_{k+1, E}^{2}+\sum_{E \in \Omega_{h}} \frac{h_{E}^{2 k+3}}{\beta_{E}}|\boldsymbol{f}|_{k+1, E}^{2}$.
- Diffusion dominated regime $\beta_{E} h_{E} \lesssim \nu, \sigma h_{E}^{2} \ll \nu: \tau_{E} \simeq \frac{h_{E}^{4}}{\nu}$

$$
\left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{\text {stab }}^{2} \lesssim \sum_{E \in \Omega_{h}}\left(\nu h_{E}^{2 k}\left(1+\beta_{E}\right)\right)\|\boldsymbol{u}\|_{k+1, E}^{2}+\sum_{E \in \Omega_{h}} \frac{h_{E}^{2 k+4}}{\nu}|\boldsymbol{f}|_{k+1, E}^{2}
$$

- Reaction dominated regime $\frac{\beta_{E}}{h_{E}} \lesssim \sigma, \frac{\nu}{h_{E}^{2}} \ll \sigma: \tau_{E} \simeq \frac{h_{E}^{2}}{\sigma}$

$$
\left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{\mathrm{stab}}^{2} \lesssim \sum_{E \in \Omega_{h}} h_{E}^{2 k+2} \sigma\|\boldsymbol{u}\|_{k+1, E}^{2}+\sum_{E \in \Omega_{h}} \frac{h_{E}^{2 k+2}}{\sigma}|\boldsymbol{f}|_{k+1, E}^{2}
$$

Comments \& Remarks

- Diffusion dominated case \& Reaction dominated case:
- the scheme recovers the optimal orders of approximation.
- Convection dominated case:
- "optimal" order $h^{k+1 / 2}$ is recovered;
- the degenerative term $\beta_{E} / \max \left\{\nu, \sigma h_{E}^{2}\right\}$ is weighted by a factor h_{E}^{3} and can be improved using a slightly different discrete convective form;
- the following L^{2} error estimate holds:

$$
\left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{L^{2}(\Omega)} \lesssim h^{k+1 / 2}
$$

this convergence result is not recovered by the most popular FEM.

- Analogous results can be obtained for the pressure component of the error.
- The proposed stabilized VEM is "quasi pressure-robust": the velocity error depends on the pressure with a higher order term via the load \boldsymbol{f}.
- The VEM Stokes complex structure is a fundamental tool for the proofs.

Numerical Test: adopted meshes

Consider the sequences of meshes

Numerical Test: H^{1} velocity error

- convection dominated regime: $\nu=1 \mathrm{e}-06, \quad \boldsymbol{\beta}=(1,1)^{\mathrm{T}}, \quad \sigma=0$.
- Loading and BCs in accordance with known exact solution.

tria

random

Numerical Test: H^{1} velocity error

- convection dominated regime: ν varying from $1 \mathrm{e}-01$ to $1 \mathrm{e}-09, \boldsymbol{\beta}=(1,1)^{\mathrm{T}}, \sigma=0$.
- Loading and BCs in accordance with known exact solution.

3D \& Curved polygons
3D case [Beirão da Veiga, Dassi, V., M3AS, 2019]
Curved polygons [Beirão da Veiga, Russo, V., M2AN, 2019]

- discrete kernel inclusion
- divergence free velocity solution
- error decoupling
- reduced problem
- Darcy limit stability
- underlying Stokes complex

Conclusions

The proposed family of Virtual Elements has four advantages:

- it can be applied to general polyhedral meshes,
- it yields an exactly divergence-free kernel,
- the velocity error depends on the pressure with a higher order term,
- easier coupling Stokes and Darcy equation,
- enjoys a discrete Stokes complex structure,
- stabilized Oseen equation,
- we recover the optimal order of convergence in all the regimes,
- differently from other choices the stabilization proposed does not spoil such property.

Essential bibliography

R. Beirão da Veiga, C. Lovadina and G. Vacca.

Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM Math. Model. Numer. Anal., 51:509-535, 2017L. Beirão da Veiga, C. Lovadina and G. Vacca.

Virtual Elements for the Navier-Stokes problem on polygonal meshes,
SIAM J. Numer. Anal., 56(3):1210-1242, 2018
L. Beirão da Veiga, F. Dassi and G. Vacca.

The Stokes complex for Virtual Elements in 3D,
Math. Models Methods Appl. Sci, 30(3):477-512, 2020
T- L. Beirão da Veiga, C. Canuto, R.H. Nochetto, and G. Vacca.
Equilibrium analysis of an immersed rigid leaflet by the virtual element method, Math. Models Methods Appl. Sci, 31(7):1323-1372, 2021
L. Beirão da Veiga, F. Dassi, and G. Vacca.

Vorticity-stabilized Virtual Elements for the Oseen Equation, Math. Models Methods Appl. Sci, 31(14):3009-3052, 2021

