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Optimization with random models

Unconstrained Optimization Problems

min
x∈Rn

f (x),

with f : Rn → R su�ciently smooth (f ∈ C2 for second-order methods), bounded below,
possibly nonconvex.

f (x), ∇f (x) and ∇2f (x) evaluations are subject to random noise and we can only
compute random estimates

f (x) = f (x , ξ), ∇f (x) = ∇f (x , ξ) ∇2f (x) = ∇2f (x , ξ)

where ξ is a random variable.
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Random model and optimality measures

First-order

• random model: mk (p) = f (x) +∇f (x)Tp
• ϵ- approximate �rst-order critical point:

∥∇f (x̂)∥2 ≤ ϵ.

Second-order

• random model: mk (p) = f (x) +∇f (x)Tp + 1
2
pT∇2f (x)p

ϵ approximate �rst and second-order critical point:{
∥∇f (x̂)∥2 ≤ ϵ
λmin(∇2f (x̂)) ≥ −ϵ.

.
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Motivating applications

Finite-sum minimization problem:

min
x∈Rn

f (x) =
1

N

N∑
i=1

ϕi (x),

where ϕi : Rn → R, i = 1, . . . ,N.

Several problems can be cast in the previous form: classi�cation, data �tting, sample
average approximation ...

Supervised machine learning: given a family of prediction function h(·; x), x ∈ Rn, a loss
function ℓ and a set of examples {(ai , bi )}Ni=1 (training set), ai ∈ IR

d (feature), bi ∈ IR

(label),

min
x∈Rn

f (x) =
1

N

N∑
i=1

ℓ(h(ai ; x), bi )︸ ︷︷ ︸
ϕi (x)

The function f is often nonconvex, e.g. in the case of neural networks

Big data applications ⇒ N very large ⇒ f and derivatives are very expensive!
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Subsampled functions, gradients and Hessians

N is large

M: sample size

IM : a randomly selected nonempty subset of {1, . . . ,N} of cardinality M

IM ⊆ {1, . . . ,N}, |IM | = M, M ≥ 1,

Use:

f (x) =
1

M

∑
i∈IM

ϕi (x)

∇f (x) =
1

M

∑
i∈IM

∇ϕi (x)

∇2f (x) =
1

M

∑
i∈IM

∇2ϕi (x)

A training set shows redundancy in the data ⇒ using all the sample data in every
optimization iteration is ine�cient

Overall less expensive when N is large

Computational evidence that they are more robust than fully deterministic approaches.
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Stochastic gradient methods
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xk+1 = xk − αk∇f (xk ), k = 0, 1, . . .

✓ The expected value of the average norm of the gradients can be made small by picking a
su�ciently small α

✗ ... but the smaller α, the slower the convergence rate!

✗ The optimal α (and the mini-batch size) are problem-dependent!

✗ For large-scale, real-world systems, expensive parameter tuning e�orts is required!

Bottou, Curtis and Nocedal, SIREV 2018, Curtis, Scheinberg, ArXiv, 2020.
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Adaptive stochastic optimization methods

SGD and its variants employ stochastic (possibly and occasionally full) gradient estimates
and do not rely on any machinery from standard globally convergent optimization
procedures, such as linesearch or trust-region.

Strategies for selecting the steplength that mimic traditional step acceptance rules using
stochastic estimates of functions and gradients:

Some criterion to accept/reject the step is tested

Stochastic estimates of functions and derivatives are computed.

⇓
random models are employed.

Bandeira, Vicente Scheinberg, SIOPT, 2014
Chen, Menickelly, Scheinberg, Math. Prog., 2018
Bollapragada, Byrd, and Nocedal, SIOPT 2018
Blanchet, Cartis, Menickelly, Scheinberg, INFORMS J. on Opt. 2019
B., Gurioli, Morini, Toint, SIOPT 2019, & J. of Complexity 2021
Paquette, Scheinberg, SIOPT 2020
Xu, Roosta, Mahoney, Math. Prog. 2020
Berahas, Cao, Scheinberg, SIOPT 2021
B., Gurioli, Morini, Toint, ArXiv, 2021.
B., Kreji¢, Morini, Rebegoldi, ArXiv, 2021
di Sera�no, Kreji¢, Krklec Jerinki¢, Viola, ArXiv 2021
Bergou, Diouane, Kunc, Kungurstev, Royer, INFORMS J. Optim., 2022
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Deterministic Trust-Region method
kth iteration

0. Given xk ∈ Rn, η ∈ (0, 1), γ > 1, and the trust-region radius δk > 0.

1. Compute a trial step
Compute the model mk (p) and an (approximate) solution of the trust-region
problem

min
p

mk (p) s.t. ∥p∥ ≤ δk

2. Check decrease

ρk (pk ) =
f (xk )− f (xk + pk )

mk (0)−mk (pk )

3. Successful iteration
If ρk ≥ η then set δk+1 = γδk and xk+1 = xk + pk .

4. Unsuccessful iteration
If ρk < η then δk+1 = γ−1δk and xk+1 = xk
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Trust-Region method with random models

kth iteration
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Stochastic Trust-Region
kth iteration

0. Given xk ∈ Rn, η ∈ (0, 1), γ > 1, and the trust-region radius δk > 0.

1. Compute a trial step
Compute a random model mk (p) and an (approximate) solution of the
trust-region problem

min
p

mk (p) s.t. ∥p∥ ≤ δk

2. Guess decrease
Compute f (xk ) and f (xk + pk ) estimate of f (xk ) and f (xk + pk ) and

ρk (pk ) =
f (xk )− f (xk + pk )

mk (0)−mk (pk )

3. Successful iteration
If ρk ≥ η then set δk+1 = γδk and xk+1 = xk + pk .

4. Unsuccessful iteration
If ρk < η then set δk+1 = γ−1δk and xk+1 = xk

Blanchet, Cartis, Menickelly, Scheinberg, INFORMS J. on Opt. (2019)

B., Gurioli, Morini, Toint, arXiv:2112.06176 (2021)
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Stochastic Trust-Region -First order method
kth iteration

0. Given xk ∈ Rn, η ∈ (0, 1), γ > 1, and the trust-region radius δk > 0,

1. Compute a trial step
Compute a a random estimate ∇f (xk ) of ∇f (xk ) and set

pk = −
δk

∥∇f (xk )∥
∇f (xk )

2. Guess decrease
Compute f (xk ) and f (xk + pk ) estimate of f (xk ) and f (xk + pk ) and

ρk (pk ) =
f (xk )− f (xk + pk )

∥∇f (xk )∥δk

3. Successful/unsuccesful iteration
If ρk ≥ η then set δk+1 = γδk and xk+1 = xk + pk .
If ρk < η then set ∆k+1 = γ−1δk and xk+1 = xk

Stochastic gradient method with adaptive choice of the steplenght (learning rate)!
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Possible iteration outcomes
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What does it mean "good" model/estimations?

How often can we have false successful/unsuccessful iterations?
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Adaptive accuracy requirements

An informal statement of our assumptions:

Consider the events
Mk =

{
∥Gk −∇f (Xk )∥ ≤ ν∥Gk∥)

}
Fk =

{
max{|F 0

k − f (Xk )|, |F p
k − f (Xk + Pk )|} ≤ ν∥Gk∥∆k

}
We assume that

Probability
[
Mk ∩ Fk |conditioned by the past

]
= p∗ > 1

2

the expected value of f (Xk )− f (Xk + Pk) at false successful iterations, conditioned by the past,
is positive.

+ f bounded below and Lipschitz continuity of ∇f (x)

============
Xk ,∆k , Pk are the random variables corresponding to the realizations xk , δk , pk .

Gk is the random variable associate with the realization ∇f (xk ).

F0k , F
p
k
are the random variables associated with the realizations f (xk ), f (xk + pk ).
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Iteration complexity

Let
Nϵ = inf {k ≥ 0 | ∥∇f (Xk )∥ ≤ ϵ} .

If the stochastic Trust-region algorithm is applied to the problem

min f (x)

then, under the stated assumptions,

E
[
Nϵ
]
= O

(
ϵ−2
)

O
(
ϵ−2
)
iteration bound is sharp for TR methods using exact function and gradient evaluations.

Probability p∗ is constant along the algorithm and we only require p∗ > 1/2

B., Gurioli, Morini, Toint arXiv:2112.06176 (2021)
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Ensuring the Accuracy Requirements
The Finite-Sum Minimisation Setting - Uniform Random Subsampling

Consider the �nite-sum minimisation setting: minx∈Rn f (x), f = 1
N

∑N
i=1 ϕi (x).

The resulting approximation

f (xk ) =
1

|Df
k |

∑
i∈Df

k

ϕi (xk ), ∇f (xk ) =
1

|Dg
k |
∑
i∈Dg

k

∇ϕi (xk ),

with Df
k ,D

g
k ⊆ {1, 2, . . . ,N} (randomly and uniformly taken).

Probability
[
Mk ∩ Fk |conditioned by the past

]
≥ p∗ = α∗β∗ if

Adaptive choice of the sample size

|Df
k | = O

(
1

ν∥∇f (xk )∥2δ2k
log(

1

1− β∗
)

)
|Dg

k | = O

(
1

ζ2k
log(

1

1− α∗
)

)

where ζk < ν∥∇f (xk )∥ (requires an inner loop).

=======================

Mk =
{
∥Gk − ∇f (Xk )∥ ≤ ν∥Gk∥)

}
, Fk =

{
max{|F0k − f (Xk )|, |F

p
k
− f (Xk + Pk )|} ≤ ν∥Gk∥∆k

}
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An example: classi�cation problems

Logistic loss: given {(ai , bi )}Ni=1

f (x) =
1

N

N∑
i=1

log(1+ e−bi a
T
i x )︸ ︷︷ ︸

ϕi (x)

+
1

2N
∥x∥2,

Nonlinear least squares problems: given {(ai , bi )}Ni=1

f (x) =
1

N

N∑
i=1

(
bi −

1

1+ e−aTi x

)2

︸ ︷︷ ︸
ϕi (x)

The classi�er is such that

1

1+ e−aTi x
≥ 0.5 bi = 1

1

1+ e−aTi x
< 0.5, bi = 0

The main cost in the computation of ϕi is the scalar product a
T
i x .

Props: Number of Propagations (1 full function and gradient evaluation is counted as 2
Prop). A maximum number of Props is considered as a termination criterion.

Computing f (x) and ∇f (x) costs
|Df

k |+|Dg
k
|

N
props.
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STR - �rst and second order: Adaptive sample size choice
N: 4800 n = 5000, Testing 1200

Average Accuracy STR- �rst order 87.85%, STR- second order 94.67%

GISETTE: percentage of samples used
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Stocastic trust region & inexact restoration
kth iteration

0. Given xk ∈ Rn, η ∈ (0, 1), γ > 1, and the trust-region radius ∆k > 0,

1. Compute a trial step
Choose randomly and uniformly Dg

k ,⊆ {1, 2, . . . ,N}, compute

∇f (xk ) =
1

|Dg
k
|
∑

i∈Dg
k
∇ϕi (xk ) and set

pk = −
δk

∥∇f (xk )∥
∇f (xk )

2. Guess decrease
Compute f (xk + pk ) and f (xk ) by subsampling in Dg

k
and ρk (pk ) given by the inexact-restoration step acceptance rule.

3. Successful/unsuccessful iteration
If ρk ≥ η and ∥∇f (xk )∥ ≥ η2δk then set δk+1 = γδk and xk+1 = xk + pk .
Otherwise set δk+1 = γ−1δk and xk+1 = xk

The function approximation is computed averaging in the same subsample used for the gradient
approximation!

B., Kreji¢, Morini, Rebegoldi A stochastic �rst-order trust-region method with inexact restoration for

�nite-sum minimization, Arxiv2107.03129, 2021
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Inexact-restoration step acceptance

Given xk ,Dg
k ,D

g
k−1, θk , pk .

Let f k−1(xk ) =
1

|Dg
k−1

|
∑

i∈Dg
k−1

ϕi (xk ) be the estimate computed at the previous

iteration and

ρk =
Aredk (θk+1)

Predk (θk+1)

Predk (θk+1) = θk+1(f k−1(xk )− (f (xk ) +∇f (xk )
Tpk )︸ ︷︷ ︸

mk (pk )

) + (1− θk+1)
|Dg

k
|−|Dg

k−1
|

N

Aredk (θk+1) = θk+1(f k−1(xk )− f (xk + pk )) + (1− θk+1)
|Dg

k
|−|Dg

k−1
|

N

θk+1 ∈ (0, 1) s.t.

Predk (θk+1) ≥ η
|Dg

k | − |Dg
k−1|

N
.

We balance the increase/decrease in the approximated objective function with the
increase/decrease in the sample size.
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History: sample size versus iterations

MNIST problem N = 60000 A9A problem N = 22793.
Average accuracy: 86,90% Average accuracy: 98,32%
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TRISH: trust-region without adaptive choice of the learning
rate

SIRTR versus Trust-Region-ish algorithm (TRish)1.
TRish is a stochastic gradient method based on a trust-region methodology. Normalized steps
are used in a dynamic manner whenever the norm of the stochastic gradient is within a pre�xed
interval. The k−th iteration of TRish is given by

xk+1 = xk −


γ1,kαk∇f k , if ∥∇f k∥ ∈

[
0, 1

γ1,k

)
αk

∇f k
∥∇f k∥

, if ∥∇f k∥ ∈
[

1
γ1,k

, 1
γ2,k

]
γ2,kαk∇f k , if ∥∥ ∈

(
1

γ2,k
,∞
)

where αk > 0 is the steplength parameter, 0 < γ2,k < γ1,k are positive constants.

1
F.E. Curtis, K. Scheinberg, R. Shi, INFORMS Journal on Optimization 1(3), 200�220, 2019.
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Avoiding learning rate tuning

0 2 4 6 8 10

Cost

0.12

0.14

0.16

0.18

0.2

0.22

0.24

A
ve

ra
ge

 te
st

in
g 

lo
ss

0 2 4 6 8 10

Cost

10-2

10-1

A
ve

ra
ge

 te
st

in
g 

lo
ss

SIRTR versus Trust-Regionish algorithm for several choices of the steplength α.
Decrease of the (average) testing loss f (xk ) w.r.t. the (average) computational time.

From left to right: a9a and htru2 datasets.
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Avoiding Learning rate tuning (2)
Mushrooms dataset, Training N = 5000, n = 112, Testing 1600, batch-size=50

TRrish2 γ1 = 4/G , γ2 = 1/(2G) G : average norm of stochastic gradient estimates provided by SDG, α = 0.1.
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Conclusion, remarks ..

The stocastic trust-region approach has been extended to polynomial models of arbitrary
degree:

seek for �rst- and second-order critical points,
and also for critical points of arbitrary order

Adaptive accuracy, �nite sum context:
adaptive choice of the steplength and of the subsample sizes

Second order methods:
Inexact steps + matrix-free implementation produce
a signi�cative reduction of each iteration cost

Thank you!
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