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Image acquisition process: examples
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Bayesian/variational approach to inverse problems

Direct discrete model

g = Hxtrue + ν
data linear model noise

(
g, ν ∈ Rm, H ∈ Rm×n, xtrue ∈ Rn

)
Inverse Problem

Try to recover xtrue by knowing g and H.

Variational formulation

xtrue ≃ x∗ ∈ argmin
x∈Rn

f(x), f(x) = d(Hx, g) +R(x)

d(Hx, g) expresses the data discrepancy
R(x) is a regularization term, enforcing some desired property on x∗
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Some examples in image restoration problems

xtrue ≃ x∗ ∈ argmin
x∈Rn

d(Hx, g) +R(x)

Data discrepancy functions d(t, g) - likelihood functions

Least squares (Gaussian noise) Convex, quadratic
1

2
∥t− g∥2

Kullback-Leibler (Poisson noise) Convex, nonlinear
n∑

i=1

log

(
gi

ti

)
+ ti − gi

Impulse noise Convex, nonsmooth ∥t− g∥1
Cauchy noise Nonconvex, nonlinear

∑n
i=1 log(ρ

2 + (ti − gi)
2)

Regularization functionals R(x) - Gibbs prior

nonnegativity Convex, nonsmooth ι≥0(x) =

{
0 if x ≥ 0
+∞ otherwise

edge preserving Convex, nonsmooth TV (x) = β
n∑

i=0

∥∇ix∥2 (Total Variation)

sparsity Convex, nonsmooth β∥Wx∥1
smoothness Convex, smooth β∥Lx∥22 (Tichonov)
MRF Nonconvex, smooth

∑m
j=1 βj

∑n
i=1 log(1 + (Kjx)

2
i )
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Reference problem and main assumptions

argmin
x∈Rn

f(x) ≡ d(Hx, g) +R(x)

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

min
x∈Rn

f(x) ≡ f0(x) + f1(x)

f0 is smooth

we have the gradient

∇f0(x)

f1 is closed and convex

we have the proximity (or resolvent) operator:

proxf1
(z) = argmin

x∈Rn
f1(x) +

1

2
∥x− z∥2

Remark: The proximity operator of the indicator function of a closed convex set Ω ⊂ Rn

consists in the orthogonal projection operator onto Ω

ιΩ(x) =

{
0 if x ∈ Ω
+∞ otherwise ⇒ proxιΩ (z) = ΠΩ(z)
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A general forward-backward scheme

Forward-backward iteration

z(k) = x(k) − αk∇f0(x(k))← Forward step steepest descent point

y(k) = proxαkf1
(z(k))← Backward step proximal gradient point

d(k) = y(k) − x(k)

x(k+1) = x(k) + λkd
(k)

two steplength parameters αk, λk ∈ R>0

Classical FB settings:

Convexity assumptions;

Proximity operator available in
closed form;

Lipschitz continuity of ∇f0 (for
steplength computation).

Challenges in FB methods:

Nonconvexity;

Proximity operator not available in
closed form;

Lack of Lipschitz continuity of∇f0;

Implementation complying with
theoretical prescriptions;

Acceleration strategies.
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Steplenght selection rules without Lipschitz assumption: line–search

y(k) = proxαkf1
(x(k) − αk∇f0(x(k)))

d(k) = y(k) − x(k)

x(k+1) = x(k) + λkd
(k)

Assume that αk > 0 is given.

The vector d(k) is a descent direction for f(x) at the point x(k), i.e.

f ′(x(k); d(k)) < 0⇒ f(x(k) + λd(k)) < f(x(k)) + λf ′(x(k); d(k)) < f(x(k)),

for all sufficiently small λ > 0.

The steplength λk can be computed with a backtracking line–search loop
along d(k), starting from 1, with successive reductions until

f(x(k) + λkd
(k)) ≤ f(x(k)) + λk∆k

where ∆k is a given negative quantity representing the sufficient decrease
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Sufficient decrease and line–search
Define the following function:

h(k)(y) = ∇f0(x(k))T (y − x(k)) +
1

2αk
∥y − x(k)∥2 + f1(y)− f1(x

(k))

It holds that
y(k) = argmin

y∈Rn
h(k)(y)

and
f ′(x(k); d(k)) ≤ h(k)(y(k)) < 0

Generalized Armijo rule [Tseng-Yun, 2009, Porta-Loris, 2015, B. et al., 2016]

f(x(k) + λkd
(k)) ≤ f(x(k)) + βλkh

(k)(y(k))

where β ∈ (0, 1).

NB: For f1 ≡ 0, dropping the quadratic term gives the standard Armijo rule for smooth
optimization.

Pros:
No Lipschitz assumption

Adaptive selection of λk (no user provided parameter)

Only one proximity operator evaluation per iteration.
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Inexact computation of the proximity operator - State of the art

ỹ(k) ≃ y(k) = argmin
y∈Rn

h(k)(y) = proxαkf1
(x(k) − αk∇f0(x(k)))

Common strategies:

Empirical approach

Apply an iterative optimization method to miny∈Rn h(k)(y)

Pros:

Easy to implement.

Cons:

Theoretical convergence not
guaranteed.

Theoretical conditions

Relative error condition:

∃v(k) ∈ ∂f(ỹ(k)) s.t. ∥v(k)∥ ≤ b∥ỹ(k) − x(k)∥

[Bolte et al. 2014, Ochs 2019]

Pros:

Theoretical convergence
guaranteed.

Cons:

Not implementable.
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Inexact computation of the proximity operator
Our approach: ϵ-approximation

ỹ(k) ≃ y(k) = argmin
y∈Rn

h(k)(y) = proxαkf1
(x(k) − αk∇f0(x(k)))

Borrowing the ideas in [Salzo,Villa 2012], [Villa et al. 2013]

replace 0 ∈ ∂h(k)(y(k)) with 0 ∈ ∂ϵkh
(k)(ỹ(k))

∂ϵkh
(k)(ỹ(k)) = {w ∈ Rn : h(k)(z) ≥ h(k)(ỹ(k)) + wT (z − ỹ(k))− ϵk, ∀z ∈ Rn}

It satisfies ∥ỹ(k) − y(k)∥2 ≤ ϵk.

If, in addition, h(k)(ỹ(k)) < 0, the vector d(k) = ỹ(k) − x(k) is still a descent
direction for f at x(k).

It can be realized in practice.

It guarantees both theoretical convergence and practical implementation.
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It satisfies ∥ỹ(k) − y(k)∥2 ≤ ϵk.
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Inexact computation of the proximity operator (2)
A well defined primal-dual procedure

Assume that f1(x) = ϕ(Ax), A ∈ Rm×n (easy generalization to f1(x) =
∑p

i=1 ϕi(Aix)).

min
x∈Rn

h(k)(x) = max
v∈Rm

Ψ(k)(v) ≡ − 1

2αk
∥αkA

T v − z(k)∥2 − ϕ∗(v) + Ck

where ϕ∗ is the Fenchel convex conjugate of ϕ.

Compute ỹ(k) as follows:

apply an iterative maximization method to the dual problem, generating the
dual sequence {v(k,ℓ)}ℓ∈N converging to a dual solution

stop the inner iterations when

h(k)(z(k) − αkA
T v(k,ℓ̄))−Ψ(k)(v(k,ℓ̄)) ≤ ϵk

define
ỹ(k) = z(k) − αkA

T v(k,ℓ̄) ⇒ 0 ∈ ∂ϵkh
(k)(ỹ(k))
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dual sequence {v(k,ℓ)}ℓ∈N converging to a dual solution

stop the inner iterations when

h(k)(z(k) − αkA
T v(k,ℓ̄))−Ψ(k)(v(k,ℓ̄)) ≤ ϵk

define
ỹ(k) = z(k) − αkA

T v(k,ℓ̄) ⇒ 0 ∈ ∂ϵkh
(k)(ỹ(k))
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A further ingredient: scaling

Add a new parameter, a s.p.d. scaling matrix Dk which determines a different
metric at each iterate:

replace ∥x∥ with ∥x∥Dk = xTDkx

Variable Metric Inexact Line–Search Algorithm (VMILA)

z(k) = x(k) − αkDk∇f0(x(k))← Scaled Forward step

ỹ(k) ≈ prox
D−1

k
αkf1

(z(k))← Scaled Inexact Backward step (loop)

d(k) = ỹ(k) − x(k)

x(k+1) = x(k) + λkd
(k) ← Armijo-like line–search (loop)

Inexact proximal gradient point: ỹ(k) s.t. 0 ∈ ∂ϵkh
(k)(ỹ(k)) and h(k)(ỹ(k)) < 0

Generalized Armijo line–search: compute λk by backtracking along d(k) s.t.

f(x(k) + λkd
(k)) ≤ f(x(k)) + βλkh

(k)(ỹ(k))
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Summary of convergence results about VMILA
Convex case

VMILA

λk with line–search + ϵk-inexact computation of the proximal gradient point

Assumptions:
Dk

k→∞−→ I like C/kp, p > 1

αk ∈ [αmin, αmax]

ϵk =


C
kq with q > 1 prefixed sequence choice
or

ηh(k)(ỹ(k)) with η ∈ (0, 1] adaptive choice

Convergence to a minimizer (without Lipschitz assumptions on ∇f0(x))
Convergence rate f(x(k))− f∗ = O(1/k) (proof with Lipschitz assumptions
on ∇f0(x))
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Framework for then nonconvex case
[Bolte et al. 2007] and several others

Definition: Kurdyka–Łojasiewicz functions

Let F : Rn −→ R ∪ {+∞} be a proper, lower semicontinuous function. The
function F is said to have the KL property at z ∈ dom(∂F) if there exist
υ ∈ (0,+∞], a neighborhood U of z, a continuous concave function
ϕ : [0, υ) −→ [0,+∞) with ϕ(0) = 0, ϕ ∈ C1(0, υ), ϕ′(s) > 0 for all s ∈ (0, υ), such
that the following inequality is satisfied

ϕ′(F(z)−F(z))∥∂F(z)∥− ≥ 1

for all z ∈ U ∩ {z ∈ Rn : F(z) < F(z) < F(z) + υ}.
If F satisfies the KL property at each point of dom(∂F), then F is called a KL
function.

NB: Excludes “pathological” cases for descent methods

f(x1, x2) =

{
e

1
r2−1

(
1− 4r4

4r4+(1−r2)4

)
sin

(
θ − 1

1−r2

)
if r < 1

0 otherwise
ẋ(t) = −∇f(x) has not finite length
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Summary of convergence results about VMILA
Nonconvex case

VMILA

λk with line–search + ϵk- inexact computation of the proximal gradient point

Assumptions:
Dk have bounded eigenvalues

αk ∈ [αmin, αmax]

ϵk = −ηh(k)(ỹ(k)), with η ∈ (0, 1]
(adaptive choice)

f(·) + ∥ · ∥2 is a KL function

∇f0 is Lipschitz

If x∗ is a limit point of {x(k)}k∈N, then it is stationary and the whole sequence
converges to it.
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Acceleration techniques

Remark:

Theoretical convergence is obtained almost independently on the choice of αk

and Dk.

The idea is to exploit these two almost free parameters to improve practical perfor-
mances.

Dk is chosen complying with theoretical prescriptions
as a diagonal matrix by mimiking a Majorization-Minimization strategy [Yang, Oja,
2011], [Chouzenoux, Pesquet, 2016]
as a LBFGS approximation of the inverse Hessian [Byrd et al., 2016], [Becker et
al., 2019]

αk is computed adapting the well performing strategies for smooth
optimization (Barzilai-Borwein, Ritz values [Fletcher 2012])

No theoretical results (same rate and lower complexity bound than non-
scaled methods).

Good numerical results.
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Numerical results: a difficult case

VMILA has been tested on a variety of convex and nonconvex image
restoration problems.
The numerical comparison shows that its performances are comparable with
the ones of state-of-the-art methods such as: Chambolle-Pock (CP) method,
preconditioned CP, ADMM, PidSplit+, iPiano, VMFB, FISTA...

Example of application: edge preserving image deblurring in presence of impulse
noise.

f(x) = ∥Hx− g∥1 + ι≥0(x)︸ ︷︷ ︸
f1(x)

+ ρ

n∑
i=1

log(1 + ξ∥∇ix∥2)︸ ︷︷ ︸
f0(x)

xtrue g x∗

48 outer, 26 av. inner
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Numerical results: a simple case - only nonnegativity constraints

min
x∈Rn

f0(x) + ιRn
≥0

(x) ⇐⇒ min
x≥0

f0(x)

VMILA –> Scaled Gradient Projection (SGP) method
Nonnegative image deconvolution in presence of Poisson noise with smooth TV
regularization.
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Application of SGP/VMILA to real data

confocal and STED microscopy (on GPUs) [Zanella et al. 2013], [Porta et al.
2015]

astronomical interferometric imaging [Prato et al. 2019]

region of interest computed tomography (ROI-CT) [Bubba et al. 2018]
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Future research
In progress

Algorithm design
consider line–search and inexactness in combination with inertial/heavy ball/
FISTA–like acceleration strategies.
nonconvex, nonsmooth terms

Model design
Combining machine learning and variational models for image restoration
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Recent research developments: learning image prior with algorithm
unrolling
Combining machine learning and variational models

Classical variational model for image restoration

xtrue ≃ x∗ ∈ argmin
x∈Rn

E(x, β)

where E is a chosen energy functional containing data discrepancy and
regularization, which depends on a set of parameters β ∈ Rp.

Supervised learning - bilevel optimization

Given a dataset of images D = {(xtrue
s , gs)}Ns=1 where gs is a noisy version of

xtrue
s , compute the parameters β such that

min
∑N

s=1 ∥x
∗
s(β)− xtrue

s ∥2
β ∈ Rp, s.t. x∗

s(β) = argminx∈Rn E(x, β)

Unrolling techniques

Replace argminx∈Rn E(x, β) with the image obtained after m steps of an
optimization algorithm applied to the variational problem minx E(x, β), possibly
learning algorithms and model parameters simultaneously.
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Example: image denoising with learned model vs. Total Variation

E(x, β) =
1

2
∥x− g∥2 + ρ

n∑
i=1

∥∇ix∥ β ↔ ρ

E(x, β) =
1

2
∥x− g∥2 +

q∑
j=1

ρj

n∑
i=1

log(1 + ([κj ∗ x]i)2) β ↔ ρj , κj , j = 1, ..., q

TV restoration learned prior restoration
PSNR 27.85 PSNR 29.89
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Acceleration via metric selection
Strategy 1: Majorization-Minimization

Majorization-Minimization idea

x

f0(x)

x(k)

F (x, x(k))

x̄

If F (x, x(k)) is an auxiliary function for f0 if

F (x(k), x(k)) = f0(x
(k)) and F (x, x(k)) ≥ f0(x) ∀x ∈ Rn

then,

x̄ = argmin
x∈Rn

F (x, x(k)) ⇒ f0(x̄) ≤ f0(x
(k))

For several relevant f0, an auxiliary function can be build as
Quadratic auxiliary function [Chouzenoux, Pesquet, 2016]:

F (x, x(k)) = f0(x
(k)) + (x− x(k))T∇f0(x

(k)) +
1

2
(x− x(k))TDk

−1(x− x(k))

Non quadratic auxiliary function [Yang, Oja, 2011].

In both cases there exists a diagonal matrix Dk build on the component of ∇f0(x(k)), such
that

x(k) −Dk∇f0(x
(k)) = argmin

x∈Rn
F (x, x(k))

The convergence condition Dk → I can be fulfilled by squeezing the elements of the diago-
nal matrix Dk to 1 as k increases.
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Acceleration via metric selection
Strategy 2: LBFGS approach

Choose Dk using the 0-memory LBFGS idea [Ochs et al., 2019]

Dk = τk(I − ρks
(k−1)w(k−1)T )(I − ρks

(k−1)w(k−1)T )T + ρks
(k−1)s(k−1)T

where
s(k−1) = x(k) − x(k−1), w(k−1) = ∇f0(x

(k))−∇f0(x
(k−1))

ρk =
1

s(k−1)Tw(k−1)
, τk =

s(k−1)Tw(k−1)

∥w(k−1)∥2

Non diagonal matrix

The scaled direction Dk∇f0(x(k)) can be implemented via only scalar products
Similar formula for Dk

−1

The bound on the eigenvalues can be checked on the coefficients τk, ρk
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Acceleration via stepsize selection - Barzilai-Borwein rules

Given Dk, we would choose αk such that

1

αk
D−1

k ≃ ∇2f0(x
(k))

simulating the Taylor’s equality

∇f0(x+ d) = ∇f0(x) +
∫ 1

0

∇2f0(x+ td)d dt

∇f0(x(k))−∇f0(x(k−1))︸ ︷︷ ︸
w(k−1)

≃ 1

αk
D−1

k (x(k) − x(k−1)︸ ︷︷ ︸
s(k−1)

)

αk
BB1 = argmin

α
∥ 1
α
D−1

k s(k−1) − w(k−1)∥ =
∥D−1

k s(k−1)∥2

s(k−1)TD−1
k w(k−1)

αk
BB2 = argmin

α
∥s(k−1) − αDkw

(k−1)∥ = s(k−1)TDkw
(k−1)

∥D−1
k w(k−1)∥2

Good results when the two values are alternated following an adaptive switching rule
and projected onto a given interval [αmin, αmax], with 0 < αmin < αmax.

Recent developments in steplength selection rules: Ritz values [Fletcher 2012]
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