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Bayesian/variational approach to inverse problems

Direct discrete model

g — Hmtrue + v
data linear model noise

(g7 v e RWL’H c Rmxny‘rtrue c Rn)

\ 4

Inverse Problem

Try to recover z'™“ by knowing g and H.

$

Variational formulation

'™ ~ ¢* € argmin f(z), f(z)=d(Hz,g)+ R(x)

reR™

@ d(Hz,g) expresses the data discrepancy
@ R(z) is a regularization term, enforcing some desired property on z*



Some examples in image restoration problems

'™ ~ ¢* € argmind(Hz, g) + R(x)

reR™
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Some examples in image restoration problems

'™ ~ ¢* € argmind(Hz, g) + R(x)
TER™

Data discrepancy functions d(t, g) - likelihood functions

. . . T
Least squares (Gaussian noise) | Convex, quadratic 5 it — gl|?
n
Kullback-Leibler (Poisson noise) | Convex, nonlinear Zlog (%) +t;i—g;
i=1 i
Impulse noise Convex, nonsmooth [t —gll1
Cauchy noise Nonconvex, nonlinear | =%  log(p? + (t; — g:)?)

Silvia Bonettini Forward-backward methods for convex and nonconvex optimization in imaging 6 aprile 2022



>ome examples in image restoration problems

'™ ~ ¢* € argmind(Hz, g) + R(z)
TER™

Data discrepancy functions d(¢, g) - likelihood functions

. . . 1
Least squares (Gaussian noise) | Convex, quadratic - ||t -gl?
Kullback-Leibler (Poisson noise) | Convex, nonlinear Zlog (g’> +t
Impulse noise Convex, nonsmooth ||t —glh
Cauchy noise Nonconvex, nonlinear | =%  log(p? + (t; — g:)?)

Regularization functionals R (x) - Gibbs prior
0 ifz>0
+oo otherwise

nonnegativity Convex, nonsmooth | t>q(x) = {

edge preserving | Convex, nonsmooth | TV (x) = BZ |V;z||2 (Total Variation)

=0
sparsity Convex, nonsmooth | B||Wz|1
smoothness Convex, smooth B/ Lz||3 (Tichonov)
MRF Nonconvex, smooth | 377, 3, 35, log(1 + (K;)7)




Reference problem and main assumptions

argmin f(z) = d(Hz, g) + R(x)

TER™

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.
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Reference problem and main assumptions

argmin f(z) = d(Hz, g) + R(x)

TER™

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

min f(z) = fo(z) + fi(x)

zER™

fo is smooth f1 is closed and convex
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Reference problem and main assumptions

argmin f(z) = d(Hz, g) + R(x)

TER™

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

min f(z) = fo(z) + fi(x)

zER™

fo is smooth f1 is closed and convex

we have the gradient

V fo(x)

Silvia Bonettini Forward-backward methods for convex and nonconvex optimization in imaging 6 aprile 2022 6/26



Reference problem and main assumptions

argmin f(z) = d(Hz, g) + R(x)

TER™

Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

min f(z) = fo(z) + fi(x)

xER™
fo is smooth f1 is closed and convex
we have the gradient we have the proximity (or resolvent) operator:
1
Vfo(z) prox, (=) = argmin f1(2) + 5 [|e — 2
zeR™
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Reference problem and main assumptions

argmin f(z) = d(Hz, g) + R(x)

.’I)GR"
Assumption: all nonconvex terms are smooth, all nonsmooth terms are convex.

min f(z) = fo(z) + fi(x)

xER™
fo is smooth f1 is closed and convex
we have the gradient we have the proximity (or resolvent) operator:
1
Vio(a) prox;, (=) = axgmin f1(x) + 5 |lo — 2|
ZER’!L

Remark: The proximity operator of the indicator function of a closed convex set 2 C R"
consists in the orthogonal projection operator onto 2

0 ifxeQ
0@ ={ G Gese = P1O%n () = Tia()
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A general forward-backward scheme
Forward-backward iteration

A = akao(m(k)) + Forward step steepest descent point
y® = prox, ; (2")) + Backward step proximal gradient point
A% =y ®
S S ORI ) )

o two steplength parameters ay, A\, € Rso
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A general forward-backward scheme
Forward-backward iteration

A = akao(m(k)) + Forward step steepest descent point
y® = prox, ; (2")) + Backward step proximal gradient point
A% =y ®
S S ORI ) )

o two steplength parameters ay, A\, € Rso

Classical FB settings:

o Convexity assumptions;
@ Proximity operator available in
closed form;

@ Lipschitz continuity of V f, (for
steplength computation).
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A general forward-backward scheme
Forward-backward iteration

A = akao(m(k)) + Forward step steepest descent point
y*® = prox, ; (z) < Backward step proximal gradient point
A% =y ®
S S ORI ) )

o two steplength parameters ay, A\, € Rso

Classical FB settings: Challenges in FB methods:

o Convexity assumptions; @ Nonconvexity;
@ Proximity operator available in @ Proximity operator not available in
closed form; closed form;
@ Lipschitz continuity of V f, (for @ Lack of Lipschitz continuity of V fo;
steplength computation). o Implementation complying with
theoretical prescriptions;
@ Acceleration strategies.
V.
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Steplenght selection rules without Lipschitz assumption: line—search

y(k) = prox,, (x(k> — arVfo (x(k)))
N OIS C RN
Bt = ) Akd(k)

Assume that «;, > 0 is given.
@ The vector d®) is a descent direction for f(z) at the point (¥, i.e.

f@™5d®) <02 f@ +2dY) < f@0) + A @5 dY) < @),

for all sufficiently small A > 0.
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Steplenght selection rules without Lipschitz assumption: line—search

¥ = prox,, @ — arVie@®)
a® = y(k) _2®
2D () —|—Akd(k)

Assume that o, > 0 is given.
@ The vector d®) is a descent direction for f(z) at the point (¥, i.e.

f@™5d®) <02 f@ +2dY) < f@0) + A @5 dY) < @),

for all sufficiently small A > 0.

@ The steplength )\, can be computed with a backtracking line—search loop
along d'®, starting from 1, with successive reductions until

f(x(k) —l—)\kd(k)) < f(x(k)) + A AL

where Ay is a given negative quantity representing the sufficient decrease
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Sufficient decrease and line—search

Define the following function:

hO ) = Vo ™)y = 2) + 5 lly = 2O + () - Fi@)

It holds that

y*®) = argmin h(k)(y)
yeR™
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Sufficient decrease and line—search

Define the following function:

hO ) = Vo ™)y = 2) + 5 lly = 2O + () - Fi@)

It holds that
y(k) = argmin h(k)(y)
yER™
and
F(@®;d™) <P ™M) <o
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Sufficient decrease and line—search

Define the following function:

W) = Vo) (=) + 5 lly = I + Alw) - A=)

It holds that
y*® = argmin h(k)(y)
yeR™
and
F(@®;d™) <P ™M) <o

Generalized Armijo rule [Tseng-Yun, 2009, Porta-Loris, 2015, B. et al., 2016]

F@® + 2ed®) < f@®) + BARD (y)
where 8 € (0,1).

NB: For fi = 0, dropping the quadratic term gives the standard Armijo rule for smooth
optimization.
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Sufficient decrease and line—search

Define the following function:

hO ) = Vo ™)y = 2) + 5 lly = 2O + () - Fi@)

It holds that
y*® = argmin h(k)(y)
yeR™
and
F(@®;d™) <P ™M) <o

Generalized Armijo rule [Tseng-Yun, 2009, Porta-Loris, 2015, B. et al., 2016]

F@® + 2ed®) < f@®) + BARD (y)
where 8 € (0,1).

NB: For fi = 0, dropping the quadratic term gives the standard Armijo rule for smooth
optimization.
@ No Lipschitz assumption
Pros: @ Adaptive selection of \;, (no user provided parameter)
@ Only one proximity operator evaluation per iteration.

Silvia Bonettini Forward-backward methods for convex and nonconvex optimization in imaging 6 aprile 2022 9/26



Inexact computation of the proximity operator - State of the art

§* ~ y® = argmin hF) (y) = Prox,, s, (™ — @,V fo(z™))
yER™

Common strategies:
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Inexact computation of the proximity operator - State of the art

§* ~ y® = argmin hF) (y) = Prox,, s, (™ — @,V fo(z™))
yER™

Common strategies:

Empirical approach

Apply an iterative optimization method to min,cgn A (y)

<Y Pros: & Cons:
o Easy to implement. @ Theoretical convergence not
guaranteed.
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Inexact computation of the proximity operator - State of the art

g](k) ~ y(k) = argmin h(k)(y) = prox

yeR?

arn @ =V fo(z ™))
Common strategies:

Empirical approach

Apply an iterative optimization method to min,cgn A (y)

<Y Pros: & Cons:
o Easy to implement. @ Theoretical convergence not
guaranteed.

Theoretical conditions

Relative error condition:
3 € o™ st o™ <bllg® 2|

[Bolte et al. 2014, Ochs 2019]

<Y Pros: &) Cons:
@ Theoretical convergence o Not implementable.
guaranteed.
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Inexact computation of the proximity operator

Our approach: e-approximation

7 ~ y™ = argmin hF (y) = prox,, s (2% — a, V fo(z®))

yeR™
Borrowing the ideas in [Salzo,Villa 2012], [Villa et al. 2013]

replace 0 € O™ (y™) with 0 € 9., K (7))

e, P () = {fw e R™ : ¥ (2) > AP (5 + w" (2 — §™) — e, Vz € R"}
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Inexact computation of the proximity operator

Our approach: e-approximation

7 ~ y™ = argmin hF (y) = prox,, s (2% — a, V fo(z®))
yER™

Borrowing the ideas in [Salzo,Villa 2012], [Villa et al. 2013]

replace 0 € O™ (y™) with 0 € 9., K (7))

e, P () = {fw e R™ : ¥ (2) > AP (5 + w" (2 — §™) — e, Vz € R"}

o It satisfies ||§*) — 4™ || < €.
o If, in addition, ™®) () < 0, the vector d* = §*®) — (%) is still a descent
direction for f at 2(®.

@ It can be realized in practice.

o
V) It guarantees both theoretical convergence and practical implementation.
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Inexact computation of the proximity operator (2)

A well defined primal-dual procedure

Assume that f1(z) = ¢(Ax), A € R™*" (easy generalizationto f1(z) = > b, ¢i(Aix)).

1 *
min b () = max ¥ (0) = - flar ATy — 2O = 6"(v) + Ci

where ¢ is the Fenchel convex conjugate of ¢.
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Inexact computation of the proximity operator (2)

A well defined primal-dual procedure

Assume that f1(z) = ¢(Ax), A € R™*" (easy generalizationto f1(z) = > b, ¢i(Aix)).

1 *
min b () = max ¥ (0) = - flar ATy — 2O = 6"(v) + Ci

where ¢ is the Fenchel convex conjugate of ¢.
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Inexact computation of the proximity operator (2)

A well defined primal-dual procedure

Assume that f1(z) = ¢(Ax), A € R™*" (easy generalizationto f1(z) = > b, ¢i(Aix)).

1 *
min b () = max ¥ (0) = - flar ATy — 2O = 6"(v) + Ci

where ¢* is the Fenchel convex conjugate of ¢. Compute §*) as follows:

@ apply an iterative maximization method to the dual problem, generating the
dual sequence {v'*¥)},cy converging to a dual solution

@ stop the inner iterations when
h(k)(z(k) _ ockATv(k’Z)) _ \Il(k)(v(k’z)) < e

@ define B
§® = 28 0, ATy®D o 0 € g, kP (5®)
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A further ingredient: scaling

Add a new parameter, a s.p.d. scaling matrix D, which determines a different
metric at each iterate:

replace ||z|| with ||z||p, = 2" Dyx

Variable Metric Inexact Line—Search Algorithm (VMILA)

2B = 2™ 0, DV fo(z™) « Scaled Forward step

—1
§® o~ proxf:f1 (z*)) « Scaled Inexact Backward step (loop)
IR

oD = ™ 4 3. d® « Armijo-like line-search (loop)

o Inexact proximal gradient point: ¥ s.t. 0 € 9., h™ (3®)) and K® (%)) < 0
o Generalized Armijo line—search: compute ), by backtracking along d® s.t.

f(x(k) + )\kd(k)) < f(x(k)) +6}\kh(k)(g(k))
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Summary of convergence results about VMILA
Convex case
A With line—search + ex-inexact computation of the proximal gradient point I

Assumptions:
Dy "= Tlike C/kP, p > 1

ok € [amin7 amax]
= with ¢ > 1 prefixed sequence choice
€ = or
nh® (®)  withn € (0,1] adaptive choice

¥

@ Convergence to a minimizer (without Lipschitz assumptions on V fo(z))

@ Convergence rate f(z®)) — f* = O(1/k) (proof with Lipschitz assumptions
on V fo(x))
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Framework for then nonconvex case
[Bolte et al. 2007] and several others

Definition: Kurdyka—tojasiewicz functions

Let F : R® — R U {+o0} be a proper, lower semicontinuous function. The
function F is said to have the KL property at z € dom(9.F) if there exist

v € (0,+00], a neighborhood U of z, a continuous concave function

é : [0,v) — [0, +00) with ¢(0) = 0, ¢ € C*(0,v), ¢'(s) > 0 forall s € (0,v), such
that the following inequality is satisfied

¢'(F(2) = F@)OF(2)ll- > 1

forallze Un{z e R": F(z) < F(z) < F(z) + v}.
If F satisfies the KL property at each point of dom(d.F), then F is called a KL

function. )
NB: Excludes “pathological”’ cases for descent methods
Flan,22) = er?-1 <l—m%m)sin(9—ﬁg) ifr<1
otherwise

z(t) = =V f(z) has not finite length
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Summary of convergence results about VMILA

Nonconvex case

Ar with line—search + ¢, - inexact computation of the proximal gradient point I

Assumptions:
Dy, have bounded eigenvalues

FC)+1- 17 is a KL function

V fo is Lipschitz

g € [amin>amaa:]

ex = —nh!® (5™)), with € (0,1]
(adaptive choice)

¥

o If z* is a limit point of {z® },cn, then it is stationary and the whole sequence

converges to it.

6 aprile 2022 16/26
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Acceleration techniques

Theoretical convergence is obtained almost independently on the choice of «
and Dy.

The idea is to exploit these two almost free parameters to improve practical perfor-
mances.
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Acceleration techniques

Theoretical convergence is obtained almost independently on the choice of «
and Dy.

The idea is to exploit these two almost free parameters to improve practical perfor-
mances.
@ Dy, is chosen complying with theoretical prescriptions

o as a diagonal matrix by mimiking a Majorization-Minimization strategy [Yang, Oja,
2011], [Chouzenoux, Pesquet, 2016]

o as a LBFGS approximation of the inverse Hessian [Byrd et al., 2016], [Becker et
al., 2019]
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Acceleration techniques

Theoretical convergence is obtained almost independently on the choice of «
and Dy.

The idea is to exploit these two almost free parameters to improve practical perfor-
mances.
@ Dy, is chosen complying with theoretical prescriptions

o as a diagonal matrix by mimiking a Majorization-Minimization strategy [Yang, Oja,
2011], [Chouzenoux, Pesquet, 2016]

o as a LBFGS approximation of the inverse Hessian [Byrd et al., 2016], [Becker et
al., 2019]

@ «y, is computed adapting the well performing strategies for smooth
optimization (Barzilai-Borwein, Ritz values [Fletcher 2012])
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Acceleration techniques

Theoretical convergence is obtained almost independently on the choice of «
and Dy.

The idea is to exploit these two almost free parameters to improve practical perfor-
mances.
@ Dy, is chosen complying with theoretical prescriptions

o as a diagonal matrix by mimiking a Majorization-Minimization strategy [Yang, Oja,
2011], [Chouzenoux, Pesquet, 2016]

o as a LBFGS approximation of the inverse Hessian [Byrd et al., 2016], [Becker et
al., 2019]

@ «y is computed adapting the well performing strategies for smooth
optimization (Barzilai-Borwein, Ritz values [Fletcher 2012])
® No theoretical results (same rate and lower complexity bound than non-
scaled methods).
Y Good numerical results.
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Numerical results: a difficult case

@ VMILA has been tested on a variety of convex and nonconvex image
restoration problems.

@ The numerical comparison shows that its performances are comparable with
the ones of state-of-the-art methods such as: Chambolle-Pock (CP) method,
preconditioned CP, ADMM, PidSplit+, iPiano, VMFB, FISTA...

Example of application: edge preserving image deblurring in presence of impulse
noise.

f@) =|[Hz — gl + 120(x) +p > log(1 + £[| Viz|®)
i=1
fi(=z)

fo(z)

mtrue *

48 outer, 26 av. inner
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Numerical results: a simple case - only nonnegativity constraints

nin fo() + ey, (@) <= min fo(x)

VMILA —> Scaled Gradient Projection (SGP) method
Nonnegative image deconvolution in presence of Poisson noise with
regularization.

smooth TV

T T T T T T T T T T
= =
= =
B B
| |
< <
= P = P
—rsm —rsm
T . . \ . T . . \ .
0 50 100 150 200 250 300 0 50 100 150 200 250

Tter. number Tter. number
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lication of SGP/VMILA to real data

@ confocal and STED microscopy (on GPUs) [Zanella et al. 2013], [Porta et al.
2015]

@ astronomical interferometric imaging [Prato et al. 2019]

BHE-8

° reglon of interest computed tomography (ROI-CT) [Bubba et al. 2018]




Future research
In progress

@ Algorithm design

o consider line—search and inexactness in combination with inertial/heavy ball/
FISTA-like acceleration strategies.
@ nonconvex, nonsmooth terms

@ Model design
o Combining machine learning and variational models for image restoration
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Recent research developments: learning image prior with algorithm
unrolling

Combining machine learning and variational models

Classical variational model for image restoration

true
x

~ z* € argmin E(z, 8)

z€ER"
where E is a chosen energy functional containing data discrepancy and
regularization, which depends on a set of parameters g € R?.
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Recent research developments: learning image prior with algorithm
unrolling

Combining machine learning and variational models

Classical variational model for image restoration

z'" ~ z* € argmin E(z, 8)

z€ER"
where E is a chosen energy functional containing data discrepancy and
regularization, which depends on a set of parameters g € R?.

N

Supervised learning - bilevel optimization

Given a dataset of images D = { (=", g;)})_; where g is a noisy version of
zt™¢ compute the parameters § such that

min Yoy ll=3(8) — =i
B E€RP, st zi(B) = argmin,pn E(z, )

.

.
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Recent research developments: learning image prior with algorithm
unrolling

Combining machine learning and variational models

Classical variational model for image restoration

true
x

~ z* € argmin E(z, 8)

z€ER"
where E is a chosen energy functional containing data discrepancy and
regularization, which depends on a set of parameters g € R?.

N

Supervised learning - bilevel optimization

Given a dataset of images D = { (=", g;)})_; where g is a noisy version of
zt™¢ compute the parameters § such that

min Yoy ll=3(8) — =i
B E€RP, st zi(B) = argmin,pn E(z, )

.

Unrolling techniques

Replace argmin_ g, E(x, 3) with the image obtained after m steps of an
optimization algorithm applied to the variational problem min, E(x, ), possibly
learning algorithms and model parameters simultaneously.

.
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Example: image denoising with learned model vs. Total Variation

1 n
E(z,8) = glle—gl* +pY_ Vil 5 p

i=1

1 ~ ‘
E(z,B) = 5”55 - g||2 + ij ZIOg(l + ([5; *w]1)2) B pjr ki g =1,..q

j=1  i=1

TV restoration learned prior restoration
PSNR 27.85 PSNR 29.89
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Acceleration via metric selection

Strategy 1: Majorization-Minimization

Majorization-Minimization idea
If F(z, (%)) is an auxiliary function for fq if

F(z®, ™) = f5(z*) and F(z,2®) > fo(z) Vo € R"
then,

fo(x)

& = argmin F(z,z®) = fo(&) < fo(z™)
T ERM

Tk

For several relevant fy, an auxiliary function can be build as
@ Quadratic auxiliary function [Chouzenoux, Pesquet, 2016]:

F(@,o®) = fo@®) + (@ = 20TV foe®) + 2 (& 20)T D7 (& = 2¥)

@ Non quadratic auxiliary function [Yang, Oja, 2011].

In both cases there exists a diagonal matrix D, build on the component of V fo(z(*)), such
that
2®) — D,V fo(z®)) = argmin F(z, z*))
rER™
The convergence condition D;, — I can be fulfilled by squeezing the elements of the diago-
nal matrix D, to 1 as k increases.
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Acceleration via metric selection
Strategy 2: LBFGS approach

@ Choose D, using the 0-memory LBFGS idea [Ochs et al., 2019]

Dy = (I — pks(k—l)w(k—l)T)(I_ pks(k—l)w(k—l)T)T +pks(k—1)s(k—1)T

where
s = (k) _ p(k=1) gy (k=1) — Vfo(m(k)) _ Vfo(x(kfl))
1 s(k=1) T, (k—1)
= 5 Ti =
Pk s(k=1T (k—1) k |lwE=1)]|2

@ Non diagonal matrix

o The scaled direction Dk,Vfo(xU“)) can be implemented via only scalar products
o Similar formula for D;, ~!
o The bound on the eigenvalues can be checked on the coefficients 7y, pi.
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Acceleration via stepsize selection - Barzilai-Borwein rules

Given Dy, we would choose «y, such that

1

—Dk_1 ~ V2fo(x(k))
(64

simulating the Taylor’s equality

1
Volx +d) = Vfo(x) +/ V2 fo(z + td)d dt
0

_ 1 _
Vhole®) - Vfole® V) > =Dt @™ —2*7Y)
k —
w(k—1) s(k—1)

1 - - D 1lg(k=1)) 2
= argmin|=D; Lglb=1) _ (k 1)|| _ ||_ kTS_l H_
iy s T D=Top(k=1)

' =0T D, =1
= argmin||s
[e3

D7 wk=1 ]2

(k—1) _ aDk_w(kfl)” _

@ Good results when the two values are alternated following an adaptive switching rule
and projected onto a given interval [amin, @max], With 0 < amin < @max-

@ Recent developments in steplength selection rules: Ritz values [Fletcher 2012]
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