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timeline [7]

® demography: expected number of newborns

— 1886: first ever estimate from fertility table [Bockh]

— 1925: fully developed concept in demography [Dublin, Lotka]
® epidemiology: expected number of secondary cases

— 1927 celebrated threshold theorem [Kermack, McKendrick]

— ...incomplete surveys, re-discovering ...

— 1975 current definition and notation Ry [Dietz]

—1990: full mathematical development [Diekmann, Heesterbeek, Metz]

— 1991: influential book on infectious diseases [Anderson, May]
® numerics:

— 2007: rectangles rule [1]

— 2017: Euler scheme [8]

[1] Bacaér, Guernaoui — J. Math. Biol. 2006
[7] Heesterbeek — Acta Biother. 2002
[8] Kuniya — Appl. Math. Lett. 2017
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demography vs epidemiology [7]

® demography — each individual of a population of density P produces on average
BP offspring per unit of time for an average of 1/y time units:

1
Ro=BP- =
Y

— Ro > 1 growth, Ry < 1 extinction

® epidemiology — interpretation in terms of critical population density:

BP Y
21 = P2P.=—
,y< < lec .B

[7] Heesterbeek — Acta Biother. 2002



modern account for heterogeneous populations [6]

Ro: expected number of secondary cases produced in a completely susceptible
population by a typical infected individual during its entire period of infectiousnessJ

® & € Q: structure, one or more traits characterizing individuals (age, size...)
® S(&): density of susceptibles in absence of disease

° A(T, &,m): infectivity towards a susceptible with structure & of an individual
infected T units of time ago while having structure n

® density of newly infected in S caused by density of infected ¢

(K(S)P)(&) :=S(&) JQ J:o AT, & n)dtd(m)dn next-generation operator

® long run per-generation growth factor:

Ro = lim ||K(S)9]*/9 spectral radius p(K(S))
q—o0

[6] Diekmann, Heesterbeek, Metz — J. Math. Biol. 1990
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unstructured single species [2]
® balance of birth () and “death” (w):
x' = Bx — pux (in R)
® asymptotic dynamics ruled by the malthusian parameter 3 —p 2 0
e alternatively, for the birth rate b(t) := Bx(t), variation of constants gives
b(t) = e *'x(0) + B J: e Ht=9)p(s) ds

e taking x(0) =0, b=1 and t — +o0o gives Ry as

o0 1
BJ e "do=p- - 21
0 53
® note that e *t

— is the solution semigroup of x’ = —ux (absence of birth)

— gives the survival probability (= x(t)/x(0)), hence 1/u is the life expectancy

[2] Barril, Calsina, Ripoll — Bull. Math. Biol. 2017
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structured populations [2]

® let X =X(Q) be a Banach lattice of functions Q CR* - R (s =1,2)
® abstract ODE

x' = Bx — Mx (in X)

— birth B : X — X linear and bounded

— “death” M : dom(M) C X — X linear and such that —M generates a Co-
semigroup {T(t)}+>o with spectral abscissa s(—M) < 0

® asymptotic dynamics ruled by the malthusian parameter s(B—M) = 0
® or, equivalently, by the next-generation operator

BJ T(o)do=BM!
0

through its spectral radius Rp = p(BM 1) =2 1

® BM™!is in general linear, bounded and positive

[2] Barril, Calsina, Ripoll — Bull. Math. Biol. 2017
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Malthus vs Rg

® sign relation [9]:
signs(B — M) =sign [p(BM 1) — 1]
® pros/cons [2]:
—rank (B) < rank (B—M)
— B finite rank: BM™! is compact, whereas B — M is not in general
— splitting in birth/ “death” not unique (x)
® assumption: BM ™! compact, implying Ry = p(BM ™) > 0 dominant eigenvalue

[2] Barril, Calsina, Ripoll — Bull. Math. Biol. 2017
[9] Thieme — SIAM J. Appl. Math. 2009
(x) e.g., cell proliferation: B —pu =2 — (B + )
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standard vs generalized eigenvalue problems

e BM~!:X — X is linear, bounded, positive and compact
® vet infinite-dimensional = infinitely-many eigenvalues

® discretize
BM 1 =Ap

with a finite-dimensional SEP

® M~! unknown in general, so consider equivalently the GEP
Bd =AMob, ¢ € dom(M)

® dom(M) C X more regular than X, plus additional constraints C¢ = 0 for some
C:dom(M) c X — X with X:=X(Q) and Q a boundary of Q, hence consider

Q

{ 0=ACo
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abstract discretization — 1

® let Xy C X be a finite-dimensional approximation space, isomorphous to RN

® define

— restriction Ry : X — RN

— prolongation Py : RN — Xy

such that RyPyn = Iy (hence Ly := PyRy : X — Xy is a projection)
® act similarly for N < N on

— X with >_<N, EN: ]3](, and I_—N

—X° = X(Q\ Q) with X2, <, RS . P

10/19



abstract discretization — 2

® discretize
Bd =AM .
{ 0=AC (in X)
with
BN =AMy (in RN)
for
By RS, < BPx My o [ R MPy
OxoN Rx CPn
® examples: fo)

— pseudospectral collocation in L
— Fourier expansion in 12
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age-immunity model [3]

¢ individuals characterized by age a € [0, a and immunity level w € [0, 1] waning
as w’ = —g(w) for some positive g

® susceptibles s = s(t,a,w) and infected 1 = i(t, a,w) at time t, age a and
immunity w ruled by

0tS + 048 — O lg(w)s] = —[u(a) + A(i, w) +n(i, w)ls
i+ 0ai = A1, w)s — [u(a) +yIi

1 1
g(1)s(t, a, 1) :yL idw + L ni,w)sdw, 1i(t,a,1)=0

s(t,0,w) =B(w), i(t,0,w)=0

with

— force of infection A(1, w) := B(w)p(i)

— force of boosting n(i, w) := [1 — B(w)lp(i)

— probability f(w) of infection upon contact

— infection pressure p(i) := J"é v(w) jgl i(t, a, w)dadw (infectivity v)

[3] B., De Reggi, Scarabel, Vermiglio, Wu — Comput. Math. Appl. 2021



linearization, B and M

e disease-free equilibrium 5(a, w) > 0, i(a, w) = 0 by integration along character-
istics
® the linearized equation for the infected reads
0tx + 0ax = Alx, w)s(a, w)—[u(a) +vylx
x(t,a,1)=0 (in R)
x(t,0,w) =0
® equivalently,
x' = Bx — Mx (in X :=1%([0, a] x [0, 1]))
for
—x(t): (a,w) — x(t, a,w)
= (B (@, w) = Bw) ([ v(w) [§ $(E. w) d&.dw) 5(a, w)
)(a,w) = 0dad(a,w) + [un(a) +vId(a,w)
—domM):={bpeX : 9,0 € Xand $(0,w) = d(a,1) =0}
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tensorial bivariate collocation
® recall:

in X = L'([0, @] x [0, 1]) discretized by Bny® = AMN® in RN

Bn = ., My = M
h (oNN ) N <RNCPN)

® concretely: Q
— [0, a] discretized by 0 =ap < a; < --- < ap:=a
— [0, 1] discretized by 0 = wg <w; < -+ <wp =1

{ 0=ACo

with

-0 = VeC((Di,j]i:o ..... n,j=0,..,m
— Pn® = ¢ m bivariate polynomial interpolant
- : evaluation at grid points (a;, Wj)i=1,..n.j—0....m—1

-N=Mmn+1)(m+1),N=n+m+1
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results

gw)=pw)=viw)=1-w
Bw) = (1 —w)?
p=y=1a=2

Ro and ¢ known exactly Ro and ¢ unknown
§ analytic s only C!
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convergence: one structure, Q C R [5]

O(N~*logN) for coefficients of class C*
O(k NlogN), k> 1 for analytic coefficients

[on = dllx = {

An —Al=O(]bn — &), « algebraic multiplicity of A

® steps of the proof:

— the eigenvalue problem leads basically to an ODE or to a Volterra integro-
differential equation

— bound the relevant collocation error [[pn — d||x

— consolidated tools as variation of constants or resolvent theory leads to a
characteristic equation for the eigenvalues

— compare with the discrete version from collocation and apply Rouché’s The-
orem to bound Ay — Al

[5] B., Kuniya, Ripoll, Vermiglio — J. Sci. Comput. 2020
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convergence: two structures, Q C R?

® work in progress
® apparently no trivial extension from Q C R:
— the eigenvalue problem leads to a PDE
— no easy tool to get a characteristic equation
— integration along characteristics only for “simple” models
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so far

M does not regularize, whereas M1 does
let o* denotes nontrivial eigenvalues, with multiplicities and relevant eigenvectors

if BMIX CYC Xand L% g —Ixllxcy — 0as N,N,N—N — oo, then

lim  o*(SEPN_x) = 0*(SEP)

N,N,N—N—o0
the following standard property seems crucial to understand the relation between
0*(SEPN_x) and o*(GEPy):

1

m, )\gO-(A), AGRdXd

[(Ala —A)H| >

— need for careful extensions to pencils AB—A : U — V (possibly with dim U <
dimV < oo or vice versa)

18/19



open

® abstract convergence proof (linear operator pencils)
® |ack of compactness
® more structures (Padua points)

e user-friendly tool (codes @ http://cdlab.uniud.it/software)
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open

® abstract convergence proof (linear operator pencils)
® |ack of compactness
® more structures (Padua points)

e user-friendly tool (codes @ http://cdlab.uniud.it/software)

thank you all for the attention
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http://cdlab.uniud.it/software
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