Calcolo Scientifico e Modelli Matematici
Alla ricerca della cose nascoste attraverso le cose manifeste

Smooth path planning for autonomous
vehicles: perspectives from the theory of
Pythagorean-hodograph curves

Carlotta Giannelli

(University of Florence)



Calcolo Scientifico e Modelli Matematici
Alla ricerca della cose nascoste attraverso le cose manifeste

Smooth path planning for autonomous
vehicles: perspectives from the theory of
Pythagorean-hodograph curves

Carlotta Giannelli
(University of Florence)

---/ e joint work with
Alessandra Sestini, Vincenzo Calabré (MDM Team)

Lorenzo Sacco

(University of Florence) \ ID M

Tl



Planning curvilinear paths for autonomous vehicles

Path planning for autonomous or remotely operated vehicles

» Unmanned Aerial Vehicles (UAVs)
» Autonomous Underwater Vehicles (AUVs)
> ...

2/37



Planning curvilinear paths for autonomous vehicles

Feasible paths must satisfy various constraints

» bounds on the path curvature or climb angle
» avoidance of environmental obstacles

» maintenance of safe separations in vehicle swarms
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Pythagorean—hodograph curves

» smooth PH spline paths
» data stream interpolation

» real test case: Zeno AUV
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Pythagorean—hodograph curves
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Pythagorean—hodograph

" r(t) Pythagorean—hodograph (PH) curve

=

¥ ()] Polynomial function of t

[Farouki and Sakkalis — IBMJRD, 1990]
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PH space curves

= (X(t)’Y('tﬂ):"‘z(t)) () = x2(t) +y"2(1) + 22(1)

algebraic structure in its hodograph
o X2(e) 4y () + 23(t) = o3 (1)

PH space curve iff z for some polynomial
Ir'(t)| is a polynomial . o(t) = |r'(t)]
function of - ’
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PH space curves

r(t) = Xt,y-t',“z.t

(= Gae Y5 =) PO = X2() + y'2() + 2/3(t)
- algebraic structure in its hodograph
7 XR(t) +y 2 (8) + 22(t) = o¥(t)
PH space curve iff z for some polynomial

Ir'(t)| is a polynomial . o(t) = |r'(t)|
functionof -+ ’

- polynomial arc—length function

() = Jy 1P (7)ldr

. rational adapted frames

;;‘" rational swept surfaces
) parametrization
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PH space curves

r(£) = (x(8), (1), 2(1))

PH space curve iff
Ir'(t)| is a polynomial .
function of - )

"'"'rz,'l(f)

[V (6) = x"2(8) + y'2(t) + 2'%(t)

algebraic structure in its hodograph
o X2(e) 4y () + 23(t) = o3 (1)

for some polynomial

o(t) =|r'(t)]

pythagorean quadru ples"bf polynomials

X(t) = (1) +v3(t) - p*(t) — ¢°(t)
y'(t) = 2[u(t)q(t)+ v(t)p(t)]

t) = 2[v(t)q(t) — u(t)p(t)]
o(t). = u?(t) +v3(t) + p*(t) + ¢*(t)

for some pc‘>|'yh'om"ia|s u(t), v(t), p(t), q(t)
[Dietz, Hoschek and Jiittler — CAGD, 1993]
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PH space curves

= (X(t)’Y('tﬂ):"‘z(t)) () = x2(t) +y"2(1) + 22(1)

algebraic structure in its hodograph
o X2(e) 4y () + 23(t) = o3 (1)

PH space curve iff z for some polynomial
Ir'(t)| is a polynomial . o(t) = [r'(2)]
function of - ’
: c
y .
: pythagorean quadruples of polynomials
N — X(t) = w() +v3(t) - pA(t) — ¢*(1)
, . XY = 2[u(ae) + v()e(e)]
(1) = ADiA() () = 2[v(t)alt) —u(e)p(0)]
quaternion polynomial U(t)""r:._ u (t)‘% vaA(t) + p7(t) + a7(t)
A(t) := u(t)+v(t)i+p(t)i+aq(t) k for some polynomials u(t), v(t), p(t), q(t)
[Choi, Lee and Moon — ACOM, 2002] [Dietz, Hoschek and Jiittler — CAGD, 1993]
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Quaternion algebra H

| A= st aitamjtak PP =k —ijk=—1
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Quaternion algebra H

| A= st aitamjtak PP =k —ijk=—1

A = (a0,a) where ag is the scalar part and a = (a1, a2, a3) is the vector part;
AB = (aobo —a-b,agb + bpa+ a x b) is the quaternion product;

A* = (a0, —a) is the conjugate of A and (AB)* = B* A*;

|AP? = AA* = A* A = a3 + |a|? is the square module of A and |AB| = |A]||B|;

vV v vy
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Quaternion algebra H

| A= st aitamjtak PP =k —ijk=—1

A = (a0,a) where ag is the scalar part and a = (a1, a2, a3) is the vector part;
AB = (aobo —a-b,agb + bpa+ a x b) is the quaternion product;

A* = (a0, —a) is the conjugate of A and (AB)* = B* A*;

|AP? = AA* = A* A = a3 + |a|? is the square module of A and |AB| = |A]||B|;

vV v vy

If w=0 = V= (w,v) and also Av.A" are pure vectors

= the general solution of the non—unilateral quadratic quaternion equation
utv/v
|U+ v/v|

where ¢ is a free angular variable and u is a unit vector.

AuAd™ =v is given by A= /v (cos ¢ + sin pu)
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Bézier form of spatial PH quintics

Substituting
A(t) = AoBg () + A1Bi (t) + A2 B3 (1)

into
r'(t) = A(t) i A(t)

and integrating yields the Bézier form

(6) = > piB (1)

Bernestein polynomials

Bi(t) := ( ’I’ ) t(1—t)
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Bézier form of spatial PH quintics

Substituting
A(t) = AoBj(t) + A1Bi(t) + A2B3(t)

into

r'(t) = A(t) i A(t)

and integrating yields the Bézier form

5
= Z piB7(t)
i=0

with control points

Bernestein polynomials

Bi(t) := ( ’I’ ) t(1—t)

P =po+ g Aoi A;
P> :p1+i(AoiA1‘+A1iAz;)
p3—pz+ (A0|A2+4A1|A1+A2|A0)
P4—P3+ (A1|.A2 +A2i A7)

pPs = pa + E.Az 1 Az .



Adapted frames

(1) (f1,f2,f3) is an adapted frame on r(t)
4

r'(t)
r' (1)l

t =

2 desirable properties

® rational dependence on the curve
parameter t

® rotation—minimizing property
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Adapted frames

(1) (f1,f2,f3) is an adapted frame on r(t)
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r'(t)
r' (1)l

t =

2 desirable properties

® rational dependence on the curve
parameter t

® rotation—minimizing property
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Curves with rational FF

r(t) = (x(£), y(t), (1))

I'l X I'l/

T xr”

Frenet frame (FF):- t

> PH curve < |r'(t)]
is a polynomial in t
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Curves with rational FF

r(t) = (x(£), y(t), (1))

v xr’

Frenet frame (FF):ﬂ_'. t = s

> PH curve < |r'(t)]
is a polynomial in t

> double PH curve:é Ir'(t) x r’(t)]
is also a polynomial in t

I

r(t) is a double PH (DPH) curve < r(t) has a rational FF
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Rotation-minimizing property

(f1,f2,f3) is an adapted frame on r(t)

=

20)
[6]

t =

2 desirable properties

® rational dependence on the curve
parameter t f3

® rotation—minimizing property
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Rotation-minimizing property

(f1,f2,f3) is an adapted frame on r(t)

=
/

f] =t = r/(t)

® (e1,e2,e3), 1=t Ir' ()]
Eulero-Rodriguez Frame (ERF)
AjA” Ak A*

e — 3 =
|| [r'|

® (ti,to,t3), t1 =t

Frenet Frame (FF)

¢ v’ xr”’ ¢ v’ xr”’
2 = 3
v x ¢

- [r" x r”
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Rotation-minimizing property

(f1,f2,f3) is an adapted frame on r(t)

=

40

b 6]

® (e,ez,e3), 61 =t

Eulero—Rodriguez Frame (ERF) (ri,r2,r3), n =t

AjA* Ak A* * Rotation—Minimizing Frame (RMF)
I N T
( cosf sinf ) ( to )
® (ti,to,t3), i =t —sinf cosf t3
Frenet Frame (FF) with 0 = — [ 7ds
t, = roxr” ts = rxr” [Bishop — AMM, 1975]
|I” X r//‘ |r/ x r!’

[Guggenheimer — CAGD, 1989]
[Klok — CAGD, 1986]
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RMFs on space curves

FF ERF

» the angular velocity w(t) specifies the variation of (f1,f2, f3) along r(t)
w=wf+wf+wsfs

where fi = w x f;, j =1,2,3,

w1:f3‘f§:—f2~f§ w2:f1'f§:—f3'f{ W3:f2~f;/l:—f1~fé
frame instantaneous frame instantaneous
angular speed: w = |w| rotation axis: a = w/|w|
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RMFs on space curves

(f17f27f3) isan RMF & w1 =0 & f3 fé =0
at every point of r(t), there is no instantaneous
rotation of f> and f3 about f;

I
polynomial curves with rational RMFs (RRMFs)

r(t) is an RRMF curve < r(t) has a rational RMF

» the angular velocity w(t) specifies the variation of (f1, f2, f3) along r(t)
w=wifi+wfr+wsfs

where fi = w x f;, j =1,2,3,

w1:f3~f§:ff2-f§ w2:f1‘f§:7f3‘f{ L«J3:f2~f£:7f1~fé
frame instantaneous frame instantaneous
angular speed: w = |w| rotation axis: a = w/|w|
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RMFs on space curves

(fl,f27f3) isan RMF & w; =0 & f3 fé =
at every point of r(t), there is no instantaneous
rotation of f> and f3 about f;

I
polynomial curves with rational RMFs (RRMFs)

r(t) is an RRMF curve < r(t) has a rational RMF

(e1,e2,e3) ERF on PH curves defined by A(t)
AL (@) o ADIA()
A(t) A*(t) A(t) Ax(t)
» ERF angular velocity component:
scal (A(t) 1A (t))

|A(t)[?

81(t) =

w1 (ERF) = 2
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RMFs on space curves

(fl,f27f3) isan RMF & w; =0 & f3 fé =0
at every point of r(t), there is no instantaneous
rotation of f> and f3 about f;

I
polynomial curves with rational RMFs (RRMFs)

r(t) is an RRMF curve < r(t) has a rational RMF

(e1,e2,e3) ERF on PH curves defined by A(t):= u(t) + v(t)i+ p(t)j+ q(t)k
A(t)i A*(t) A(t)jA™(t) A kAT(1)
A =0T Amam =07 Amae
» ERF angular velocity component:

_scal (A(t)iA™(t))  2(uw' —u'v—pq +p'q)
w1(ERF) = 2 (D)2 = PV

= the ERF is rational but not always RM ...

81(t) =
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ERF vs. RMF

r'(t) = A(t)iA*(t)

PH

scal (A(t)iA™(t))  scal (W(t)iW"™(t))

RRMF AR T (e

W(t) = a(t)+ib(t) ged(a(t), b(t)) = const.

(617 eo, 63) ERF
A(t)iA*(t)

A(t) k A*(t)
A(t) A*(t)

@0 = Joaw  ©0 " Ao

el(t) =
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ERF vs. RMF

PH

RRMF

(61, eo, 63) ERF

el(t) =

(r1, ra, I'3) RMF
rl(t) =

where

A(t)iA*(t)
A(t) A*(t)

B(t)iB*(t)
B(t) B*(t

)

r'(t) = A(t)iA*(t)

scal (A(t) i1 A™(t)) _ scal (W(1)iw™(1))
|A(t)[2 ()2

W(t) = a(t)+ib(t) ged(a(t), b(t)) = const.

_ A kA*(t)
) = Jmam == amam

_ B(KB (1)
() = Boewm T BoB(©
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A recent sSu rvey [Farouki, Giannelli, Sestini — in Springer INdAM Series, 2019]

Fundamentals, specializations & generalizations of polynomial PH curves

Rational orthonormal frames along PH curves

Algorithms for PH Curves

Surface constructions based on PH curves

Applications of PH curves
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A recent sSu rvey [Farouki, Giannelli, Sestini — in Springer INdAM Series, 2019]

Fundamentals, specializations & generalizations of polynomial PH curves
» DPH curves, rational PH Curves
» ATPH curves, MPH curves
» Pythagorean-Normal and Linear Normal surfaces, ...

Rational orthonormal frames along PH curves
» rotation-minimizing adapted, directed & osculating frames
» RRMFs, RMTFs
Algorithms for PH Curves
» construction algorithms (local and global interpolation schemes)

» PH Curves with prescribed arc lengths, reverse engineering of PH Curves

Surface constructions based on PH curves
» rational patches bounded by lines of curvature, rational swept surface constructions
» surface patches with PH isoparametric curves

Applications of PH curves
» real-time motion control, path planning applications

13/37



Pythagorean—hodograph curves

» smooth PH spline paths
» data stream interpolation

» real test case: Zeno AUV
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» smooth PH spline paths
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Path planning based on PH splines

Roadmap reconstruction |

\l, admissible piecewise linear paths

Path planning |

J/ collision-free piecewise linear path

Path smoothing

\L collision-free smooth path

Trajectory planning

J/ suitable path traversal time

» visibility graph + dual graph

» graph search algorithms

» G'/G? PH quintic splines

> feedrate scheduling algorithm
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Trajectory planning
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» visibility graph + dual graph

» graph search algorithms
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Path planning based on PH spline in tension

PH G1 Curve with Tension
Parameters

Static Enviroment Piecewise Linear Path
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Path planning based on PH spline in tension

RS  COmpute C-Space
Build Visibility Build Trapezoidal
Graph M

Find Feasible Path
(SP, GP, MSP)
Compute

Adm le Areas
Compute

Heights

tension parameters R
llisi id Define tension
» collision avoidance parameter boun
asymptotic analysis
» automatic choice of the

computer PHG1 | e
Spline I
[Giannelli, Mugnaini, Sestini — CAD, 2016] 16/37

tension parameters




Path planning with scene reconstruction: C° path

[Donatelli, Giannelli, Mugnaini, Sestini — CAD, 2017] 17/37



Path planning with scene reconstruction: G*! path

[Donatelli, Giannelli, Mugnaini, Sestini — CAD, 2017]
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Path planning with scene reconstruction: G? path

[Donatelli, Giannelli, Mugnaini, Sestini — CAD, 2017] 17/37



Applications to unmanned or autonomous vehicles

» maintenance of minimum safe separations within vehicle swarms

» construction of paths of different shape but identical arc length, ensuring
simultaneous arrival of vehicles travelling at a constant speed

» determination of the curvature extrema of PH paths, and their modification to
satisfy a given curvature bound

» construction of curvature-continuous paths of bounded curvature

a family of simultaneous-arrival paths for a swarm of six unmanned
constant speed vehicles, departing and arriving in different directions from a set

of corresponding equidistant points on an initial and final target circle

[Farouki, Giannelli, Mugnaini, Sestini — JAE, 2018] 18/37



Curve vs. frame construction

The construction of an RMF on a pre—defined curve is an initial value problem. ..

... the orientation of the normal-plane vectors at any curve point
determine their orientation at every other point

. it is not possible to construct RMFs along pre—defined curves
with prescribed initial and final orientations

— the curve is an outcome of the construction algorithm
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Curve vs. frame construction

The construction of an RMF on a pre—defined curve is an initial value problem. ..

... the orientation of the normal-plane vectors at any curve point
determine their orientation at every other point

. it is not possible to construct RMFs along pre—defined curves
with prescribed initial and final orientations

— the curve is an outcome of the construction algorithm

To independently specify a curve and a rational frame along it,
we consider a Minimal Twist Frame (MTF) associated with

a pre—defined curve and initial /final orientations.
[Farouki and Moon — ACOM, 2018]

— the construction of an MTF on a pre—defined curve is a boundary value problem.

19/37



Minimal twist frames

» the angular velocity w(t) specifies the variation of (f1,f2, f3) along r(t)

w=wifi +wrfr+wsfs
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Minimal twist frames

» the angular velocity w(t) specifies the variation of (f1,f2, f3) along r(t)

w=wifi +wrfr+wsfs
Definition:

» the twist of the framed
curve is the integral of
the component wi with
respect to arc length

» an MTF has the least
possible twist value, sub-
ject to prescribed initial
and final orientations

20/37



Minimal twist frames

» the angular velocity w(t) specifies the variation of (f1,f2, f3) along r(t)

w=wifi +wrfr+wsfs
MTEF:

» the angular velocity
component w - f; in the
tangent direction does not
change sign

» the total amount of ro-
tation of the normal-plane
vector about the tangent is
minimized

(A constant w - f1 can only be approximately achieved for a rational MTF)

20/37



RMFs vs. MTFs

RMF
no end—frame interpolation on a fixed curve
the curve is an outcome of the algorithm

[Farouki, Giannelli, Sestini — JCAM, 2019]
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RMFs vs. MTFs

RMF
no end—frame interpolation on a fixed curve MTF
the curve is an outcome of the algorithm end—frame interpolation on a fixed curve

different MTFs on a fixed curve

[Farouki, Giannelli, Sestini — JCAM, 2019]
21/37



Pythagorean—hodograph curves

» smooth PH spline paths
» data stream interpolation

» real test case: Zeno AUV
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» data stream interpolation
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The local interpolation problem

Construction of
x(u),u € [ui, uf]
so that
x(ui) = pi,  x(ur) = pr

x/(u,-) =V, X/(Uf) = V¢

X (u;) = w;.
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The local interpolation problem

Construction of
x(u),u € [ui, uf]
so that
x(ui) = pi,  x(ur) = pr

x/(u,-) =V, X/(Uf) = V¢

X (u;) = w;.

We consider the PH quintic biarc composed by 2 PH quintics joining at um

_f xi(u) for u € [ui, um], dxi, . dx _ -
s ={ T fru el el Sy —amiae), G = BB W),

where the quadratic quaternion polynomials

A=Y AB(D). B = BB (),

Jj=0

define the pre-image of x; and x¢, in the Bernstein basis,
23/37



Data stream interpolation: spline extension
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Data stream interpolation: spline extension




Data stream interpolation: spline extension




Data stream interpolation: spline extension




Local shape parameters

» 6 quaternion coefficients — 24 scalar degrees of freedom

» 6-3 — 18 interpolation conditions

» 6 free parameters — reduced to 4 shape parameters by imposing
C?! joint between the quaternion pre-images of x; and xf
(— construction of just one PH quintic whenever possible)
(— C* continuity of the ERF at the joint point)
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Local shape parameters

» 6 quaternion coefficients — 24 scalar degrees of freedom

» 6-3 — 18 interpolation conditions

» 6 free parameters — reduced to 4 shape parameters by imposing
ct joint between the quaternion pre-images of x; and x¢
(— construction of just one PH quintic whenever possible)
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Selection of free parameters

Biarc representation of CC C* PH quintic interpolant
[Farouki, Giannelli, Manni, Sestini — CAGD 2008]

S ={ G0 el S i) 2wt

xf(t) forteltf, 1] dr dn
where , R
AH(T) = ZAJHBJ?(T) ) BH(U) = ZBJHBJ?(U) :
j=0 =

Parameter selection strategy for the biarc

> Ao =AY — angular parameter
» min |A; — AY)? — real parameter
» min |A> — AY|? — angular parameter

> B> = BY — angular parameter
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Selection of free parameters

Biarc representation of CC C* PH quintic interpolant
[Farouki, Giannelli, Manni, Sestini — CAGD 2008]

S ={ G0 el S i) 2wt

xf(t) forteltf, 1] dr dn
where , R
AH(T) = ZAJHBJ?(T) ) BH(U) = ZBJHBJ?(U) :
j=0 =

Parameter selection strategy for the biarc
> Ao =AY — angular parameter

H

il

» min |A; — 2 5 real parameter

» min | A2 — AY[? — angular parameter

» B> = BY — angular parameter
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Approximation order

C? PH quintic spline reconstruction (solid line) of a circular helix (dashed line)
from first order Hermite data — 3 (left), 5 (center), and 9 (right) sampled locations

r(s): sufficiently smooth arc length parameterized curve, s € [0, As]
x(t): PH biarc interpolant

[[x(t) — r(tAs)|| = O(s*) Vtelo,1]

27/37



Numerical approximation order

[ curve #1 curve #2 curve #3
k1 Ek Pk [ E Pk [ Ex Pk
2 1.6891e-01 5.00 1.1459e+-01 3.76 2.7103e+00 2.78
3 1.2229e-02 3.79 2.1602e-01 2.77 3.9744e-01 5.73
4 1.0656e-03 3.52 2.3278e-02 3.32 3.9717e-02 3.21
5 8.0828e-05 3.72 2.6217e-03 4.42 1.8504e-03 3.15
6 5.5547e-06 3.86 2.1238e-04 3.01 2.3004e-04 3.63
7 3.6361e-07 3.93 1.4952e-05 3.78 1.6709e-05 3.83
8 2.3249e-08 3.97 9.8900e-07 3.94 1.0883e-06 3.92
9 1.4695e-09 3.98 6.3543e-08 3.98 6.8957e-08 3.96
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3D point stream interpolation

PH quintic splines curvature plots

C2? PH biarc (solid line) vs. C!' CC PH quintic (dashed line)
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Pythagorean—hodograph curves

» smooth PH spline paths
» data stream interpolation

» real test case: Zeno AUV
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» real test case: Zeno AUV
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Guidance, navigation & control

Guidance
» responsible of providing kinematics reference to follow
2 main approaches:
trajectory traking (TT) & path following (PF)

» TT: requires that the vehicle must track 42 both time and kinematics
states: the vehicle should be at a certain time in a certain
configuration (position/orientation)

» PF: a software module is responsible of generating a suitable velocity
profile to follow so that the vehicle moves along a desired geometric
path without any particular time constraint

Navigation

> estimates the kinematic state of the vehicle
(geodetic location and high order differential states)

Control
» combine the results of the previous ones and allocate forces

31/37



Path following scheme

» Goal: prescribe the vehicle velocity commands to achieve motion control objectives

n(t) : vehicle position, n,(t) : PH spline path, ¢’ = (s, e, h) : track error

(iny in,in) : navigation frame, (in,in,in) : path reference frame
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Kinematic simulations: C! PH spline path

path to be followed (dashed line) & path of the vehicle solid line

GL without current GL with current EGL with current
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Kinematic simulations: C? PH spline path

Curvature

60
Time[s]
Error in Position

Position[m]

Time[s]
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Zeno UAV
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Pythagorean—hodograph curves

» smooth PH spline paths
» data stream interpolation

» real test case: Zeno AUV

37/37



» smooth PH spline paths
» data stream interpolation
» real test case: Zeno AUV
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