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Outline

▶ A new family of geometries on Pn (positive definite matrices
of size n);

▶ Explicit geodesics and distances;

▶ A new power mean of matrices.

Why a new geometry on Pn?

Why on Pn? How is this related to scientific computing?

2 / 72



Outline

▶ A new family of geometries on Pn (positive definite matrices
of size n);

▶ Explicit geodesics and distances;

▶ A new power mean of matrices.

Why a new geometry on Pn?

Why on Pn? How is this related to scientific computing?

3 / 72



Outline

▶ A new family of geometries on Pn (positive definite matrices
of size n);

▶ Explicit geodesics and distances;

▶ A new power mean of matrices.

Why a new geometry on Pn?

Why on Pn? How is this related to scientific computing?

4 / 72



Outline

▶ A new family of geometries on Pn (positive definite matrices
of size n);

▶ Explicit geodesics and distances;

▶ A new power mean of matrices.

Why a new geometry on Pn?

Why on Pn? How is this related to scientific computing?

5 / 72



Outline

▶ A new family of geometries on Pn (positive definite matrices
of size n);

▶ Explicit geodesics and distances;

▶ A new power mean of matrices.

Why a new geometry on Pn?

Why on Pn? How is this related to scientific computing?

6 / 72



Geometry of Pn

The set of real symmetric matrices, Hn, is a Euclidean space

⟨H,K ⟩ = trace(HK ).

Pn is an open cone in Hn

and it is convex.

We can treat it as an open subset of Rn.

Why a new geometry on Pn?

Euclidean geometry is not always the best model.
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Why a new geometry on Pn?

Euclidean geometry is not always the best model.

But first...

Why on Pn? How is this related to scientific computing?
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Geometry

Geodesics

Mean, Interpolation

Data Science
Signal processing

Distance

Neighbourhood, Nearness

Clustering

A new geometry with explicit geodesics and distances related to a
common mean may be useful
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A non-Euclidean geometry on Pn

The most celebrated non-Euclidean geometry, the affine-invariant
geometry, on Pn arises in

▶ Geometry [Lang, Fundamentals of Differential Geometry, Ch.
XII, ’99];

▶ Optimization [Nesterov-Todd, ’02];

▶ Information Geometry [Ohara-Suda-Amari, ’96];

▶ Matrix Analysis [Lawson-Lim] (with an eye to functional
analysis).
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A non-Euclidean geometry on Pn

Define the (convex) self-concordant barrier for Pn

φ(X ) = − log det(X ).

The Hessian

D2φ(X )[H,K ] = trace(X−1HX−1K ),

is a scalar product on Hn.

Defines a Riemannian geometry on Pn.
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Riemannian geometry

Riemannian geometry on M:

A scalar product gX on the tangent space TxM that smoothly
varies as X .

For our case we do not need abstraction.
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Riemannian geometry on Pn

▶ The tangent space to Pn is Hn (THn
x
∼= Hn ∼= Rn(n+1)/2);

▶ Pn ⊂ Hn and the inclusion is a chart (we need only one chart);

▶ A Riemannian geometry on Pn is a smooth function
f : Pn → Pn2 .

Examples:

▶ The affine-invariant geometry X → X−1 ⊗ X−1;

▶ The Euclidean geometry X → I ;

▶ Bures-Wasserstein geometry X → (I ⊗ X 1/2 + X ⊗ X−1/2)2

(optimal transport).
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The affine-invariant geometry and the geometric mean

The resulting geometry has explicit geodesics

γ(t) = A(A−1B)t =: A#tB, t ∈ [0, 1],

the (weighted) matrix geometric mean.

Explicit distance, the trace metric

δ(A,B) = ∥ log(A−1/2BA−1/2)∥F =
( ∑
µ∈σ(A−µB)

log2(µ)
)1/2

.

More geometric properties (worth of a chapter in Lang’s book)

▶ Cartan-Hadamard (compare the Poincaré disk);

▶ Symmetric space.
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Computational problems

▶ Compute A#tB (Cholesky factorization, Schur form);

▶ Compute (A#tB)v (Rational Krylov subspaces) [Fasi, I., 16];

▶ Compute the geometric mean of A1, . . . ,Am

argminX

m∑
i=1

δ(Ai ,X ),

(Riemannian Barzilai-Borwein [Porcelli, I., 18]), (Riemannian
LBFGS [Absil et al., 21]);

▶ Compute means with further structures or with
(quasi-)Toeplitz operators.
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An application of the geometry

DTI problems: affine-invariant vs. Euclidean interpolation

[Moakher et al., 04], [I., Jeuris, Pompili, 19].
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An application of the geometry

DTI problems: affine-invariant vs. Euclidean interpolation

Euclidean interpolation (below), (1− t)A+ tB (swelling effect).
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An application of the geometry

DTI problems: affine-invariant vs. Euclidean interpolation

Affine-invariant interpolation (above),
A#tB → det(A#tB) = (1− t) det(A) + t det(B).
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Applications

Why new means and new distances?

New tools for engineers and scientists
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The power potential

The power potential

φβ(X ) =
1− det(X )β

β

is such that
lim
β→0

φβ(X ) = − log det(X ).

Also known in Tsallis statistics as q-logarithm, with q = 1− β ⇒
potential application
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Riemannian geometry from the power potential

For H,K ∈ Hn the derivative D2φβ(X )[H,K ] is

det(X )β
(
trace(X−1HX−1K )− β trace(X−1H) trace(X−1K )

)︸ ︷︷ ︸
gβ
X (H,K)

that is positive definite for β ∈ (−∞, 0) ∪ (0, 1/n).

In our notation, we get a family of Riemannian geometries on
Pn

X → det(X )β(X−1 ⊗ X−1 − β vec(X−1) vec(X−1)T ).

Conformal to a rank-one modification of the affine invariant
geometry (X−1 ⊗ X−1).
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First problem: find geodesics

A geodesic between A and B is a (smooth) curve γ : [0, 1] → Pn

such that γ(0) = A, γ(1) = B and

L(γ) =
∫ 1

0

√
gβ
γ(t)(γ

′(t), γ′(t))dt

is minimum.

▶ Reduce the problem to A = I , B = D;

▶ Prove that the geodesic between diagonal matrices is diagonal;

▶ Reduce the variational problem to a BVP;

▶ Solve the BVP.
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Reduce the problem to diagonal matrices

There exists M such that MTAM = I and MTBM = D.

If γ(t) is such that γ(0) = A and γ(1) = B, then the curve
φ(t) := MTγ(t)M joins I with D and

L(φ(t)) = | det(M)|βL(γ(t)).

γ(t) is a geodesic from A to B ⇐⇒ φ(t) is a geodesic from I to D
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Reduce the problem to diagonal matrices
An isometry on the Riemannian manifold M is a function
f : M → M such that

gf (X )(df (X )[H], df (X )[K ]) = gX (H,K )

Fixed points of any set of isometries are totally geodesic subman-
ifolds of M

If M is such that det(M) = ±1, then f : X → MXMT is an

isometry of Pn with the metric gβ
X (X ∈ Pn, A,B ∈ Hn)

gβ
MXMT (MAMT ,MBMT ) = (det(M)2)βgβ

X (A,B)

Positive-definite diagonal matrices are a totally geodesic submani-
fold ⇒ the geodesic between I and D is made of diagonal matrices

We can find in this way other totally geodesic submanifold such as
the positive multiples of a matrix. (Similar results for g0

X ).
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Solve the variational equation

The Euler-Lagrange equation gives the equivalent BVP
α′ = −nβ

(
1
2α

2 − 1
n(1−nβ)

∑n
i=1 ν

2
i

)
,

ν ′ = −nβανi , i = 1, . . . , n,
ν1 + · · ·+ νn = 0,
λ′
i/λi = νi + α, i = 1, . . . , n,

λi (0) = 1, λi (1) = di , i = 1, . . . , n,

with D = diag(d1, . . . , dn)

This is a Riccati (differential not algebraic) equation

Commercial programs did not find the explicit solution,

but we were able to find it.
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Special cases: positive numbers

The geodesic (with arc length parametrization) joining a, b ∈ P1 is

Gβ(a, b; t) =
(
(1− t)aβ/2 + tbβ/2

)2/β
, t ∈ [0, 1],

▶ It is the weighted power mean of a and b;

▶ Suggests that for matrices it might be a power mean of
matrices in Pn;

▶ Mathematical curiosity: interesting per se.
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Special cases: a ray

Let A and B be linearly dependent in Pn then

Gβ(A,B; t) =
(
(1− t)Anβ/2 + tBnβ/2

)2/(nβ)
.

Still a “power mean” with parameter nβ/2.

We will show that also in the general case this is a power mean with
parameter nβ/2
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The general case

Theorem

Let A,B ∈ Pn linearly independent and β ∈ (β1, 0) ∪ (0, β2).
There exists a unique geodesic joining A and B given by

Gβ(A,B; t) = η(t)(A#α(t)B) = η(t)A(A−1B)α(t), t ∈ [0, 1],

where

α(t) =
1

γ
arctan

( tσ sin γ

1− t + tσ cos γ

)
,

η(t) =
((1− t)2 + 2t(1− t)σ cos γ + t2σ2

σ2α(t)

)1/(nβ)
,

with σ = det(A−1B)β/2 and γ = |β|δ(A/ det(A)1/n,B/ det(B)1/n)

2
√

1/n−β
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The general case
We introduce a measure of linear independence

γβ(A,B) :=
|β|δ(Ã, B̃)
2
√
1/n − β

,

where Ã = A/ det(A)1/n and B̃ = B/ det(B)1/n.

γβ is 0 if and only if and only if A and B are linearly dependent.

β ∈ (β1, 0) ∪ (0, β2) ⇐⇒ 0 < γ < π/2.
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The geodesic

For 0 < γ < π/2

Gβ(A,B; t) = η(t)(A#α(t)B) = η(t)A(A−1B)α(t), t ∈ [0, 1],

Can be extended to γ < π, but not further.

A =

[
2 0
0 1

]
, B =

[
1 0
0 2

]
.
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Properties

For a given couple there exist β1 < 0 < β2 such that

Gβ(A,B; t), t ∈ [0, 1]

exists.

For β → 0 converges to the weighted geometric mean

lim
β→0

Gβ(A,B; t) = A#tB

For a given β, the mean exists for γ < π, for matrices not “greatly
independent”.

Analysis shows that the space is not complete.

Experiments suggest negative curvature.
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Distance

The distance associated with gβ between A and B with γ < π

2
√
1/n − β

|β|

(
(det(A)

β
2 − det(B)

β
2 )2 + 4(det(A) det(B))

β
2 sin2

γ

2

) 1
2

︸ ︷︷ ︸
dβ(A,B)

det
(A)

β/
2

de
t(
B
)
β
/
2

|β|
2
√

1/n−β
dβ(A,B)

γ
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Distance

When det(A) = det(B) = ∆,

dβ(A,B) =
4
√
1/n − β

|β|
∆β/2 sin

γ

2
.

Moreover,
lim
β→0

dβ(A,B) = δ(A,B).

It generalizes the geometric mean distance.
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The power mean

The geodesic can be seen as a weighted power mean of positive
definite matrices with parameter p = nβ/2.

Euclidean power mean

Rp(A,B; t) :=
(
(1− t)Ap + tBp

)1/p
, p = nβ/2;

Lim-Pálfia power mean [Lim-Palfia ’12]

Qp(A,B; t) := Af (A−1B), f (z) =
(
(1−t)+tzp

)1/p
, p = nβ/2.

are different from our mean for linearly independent matrices.
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Properties

▶ Gβ(M
TAM,MTBM; t) = MTGβ(A,B; t)M, with M

invertible (commutativity with congruences);

▶ Gβ(A,B; t) = Gβ(B,A; 1− t) (symmetry);

▶ Gβ(aA, bB; t) =(
(1− t)anβ/2 + tbnβ/2

)2/(nβ)
Gβ

(
A,B; tbnβ/2

(1−t)anβ/2+tbnβ/2

)
, for

a, b > 0 (homogeneity);

▶ Gβ(A
−1,B−1, t) = A−1Gβ(A,B, 1− t)B−1 (inversion).
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Comparison

With p = nβ/2; Pp Euclidean power mean; Qp Lim-Palfia mean

Property Pp Qp Gβ
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Comparison

With p = nβ/2; Pp Euclidean power mean; Qp Lim-Palfia mean

Property Pp Qp Gβ

commutativity with congruences no yes yes
inversion no yes yes
symmetry yes yes yes
homogeneity yes yes yes
consistency with scalars yes yes no

The mean of two diagonal matrices is the diagonal matrix with the
mean of the corresponding entries in the diagonal.
Our mean mixes the components.
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Comparison

With p = nβ/2; Pp Euclidean power mean; Qp Lim-Palfia mean

Property Pp Qp Gβ

commutativity with congruences no yes yes
inversion no yes yes
symmetry yes yes yes
homogeneity yes yes yes
consistency with scalars yes yes no
global yes yes no

Our mean has a restriction on the parameter / matrices.
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Comparison

With p = nβ/2; Pp Euclidean power mean; Qp Lim-Palfia mean

Property Pp Qp Gβ

commutativity with congruences no yes yes
inversion no yes yes
symmetry yes yes yes
homogeneity yes yes yes
consistency with scalars yes yes no
global yes yes no
Riemannian geodesic ? ? yes

Our mean is ennobled by a Riemannian structure.

66 / 72



What’s next

▶ A new family of geometries on Pn

▶ Explicit geodesics and distances

▶ A new power mean of positive definite matrices

The power mean is flexible because of a free parameter
([Mercado,Tudisco,Hein,18-19],[Fasi,I.,18]).

▶ Try it on problems from applications (statistics, network
theory,. . .).
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Extra time: a conformal geometry

We can consider the geometry conformal to the one that defines
the power mean

⟨H,K ⟩X = trace(X−1HX−1K )− β trace(X−1H) trace(X−1K ),

For β = 0 is the affine-invariant geometry with distance δ.

69 / 72



The Karcher mean

The Karcher mean is the barycenter of A1, . . . ,Am ∈ Pn with the
affine-invariant geometry. It minimizes

f (X ) =
n∑

i=1

δ2(X ,Ai ) =
n∑

i=1

∥ log(A−1/2
i XA

−1/2
i )∥2F

over Pn.

It is computed with Riemannian optimization

▶ Riemannian gradient descent [Bini-I., ’13];

▶ Riemannian Barzilai-Borwein [I.-Porcelli, ’16];

▶ Riemannian L-BFGS [Yuan-Huang-Absil-Gallivan, ’20]
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The Karcher mean computation

Lemma

The barycenter with respect to the conformal geometry is the
Karcher mean for β ∈ (−∞, 0) ∪ (0, 1/n).

A new parameter to set.
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The Karcher mean computation

Left: Riemannian gradient descend
Right: Riemannian Barzilai-Borwein method
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