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Application context

A multi-source problem: many
inverse/inference problems can be
written as

S

y=Y f(ps) xs+N

s=1
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Application context

» y measured data
A multi-source problem: many

: ; » S unknown number of sources
inverse/inference problems can be > f :
written as () known forward model
s » N is noise
y= Z F(ps) - xs + N » ps, xs unknown parameters identifying a single
] source

» non-linear part p: location, shape of the source
» linear part x: strength of the source
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Two examples

Brain imaging M/EEG

> y electric/magnetic field
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Two examples

Brain imaging M/EEG

> y electric/magnetic field
> f(-) Biot Savart

» parametric model: point-like (dipolar)
currents

» p neural current location

» x neural current intensity

S. et al. Inverse Problems 2014
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Solar (flare) imaging

dlls -
>y visibilities

» f(-) Fourier Transform

» parametric model: geometric shapes
» p flare location, shape

» x flare intensity

Sciacchitano, Lugaro and S. SIAM Journal of Imaging
Science 2019
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Parallel with linear inverse problems (Austin et al. 2010)

NB: the multi-source
model

S
}’:Zf(PS)'XS"‘N

s=1

is just an uncommon,
explicit representation of
the linear inverse model on
the right:
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- Parallel with linear inverse problems (Austin et al. 2010)

NB: the multi-source

©

y=Y flps) xo+N=F-X+N

model
b=1
s
_ with B (large) number of basis elements
Y= ; Flps) X+ N (voxels/pixels/other) for which a sparse solution is
sought
is just an uncommon,
explicit representation of n h(p)  hA(p2) .. fi(ps) X1
the linear inverse model on Y2 _ B(p1) f(p2) .. flps) || x
therlght
. Yn fn(pl) fn(p2) ce fa (pB) XB
(in red: unknowns)
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Multi—source model

Aim: to estimate S and
{p17xlv°"7p55XS}-
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Multi—source model

Change of perspective: from point
Aim: to estimate S and estimate X

{Pl; X1,---5PS, XS}-
S single source parameter space (e.g.
R");
then configuration space:
3
X = USk to whole
k probability distribution 7(x)Vx € X

Why stick with the explicit
representation?
things get more involved P
non-linearity is bad
interpretation is straightforward
we can go bayesian
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More than imaging
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Bayesian multi-source model

Choose a prior distribution on X
(from here on, x is the whole set of unkonwns)

7T(X) = ]P’(s)ﬂ-(plvxly .- ~,P57Xs)

with
> P(s) probability of s sources
» 7(p1,x1,--.,Ps,Xs) prior of specific configuration
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Bayesian multi-source model

Choose a prior distribution on X
(from here on, x is the whole set of unkonwns)

7T(X) = P(s)ﬂ-(plvxly .- ~,P57Xs)

with
> P(s) probability of s sources
» 7(p1,x1,--.,Ps,Xs) prior of specific configuration

Choose a likelihood

Cly =32, f(ps)XsII2>

g

7(ylx) o exp (

» 2 noise variance
Compute/Characterize the posterior

m(x]y) o< w(y[x)m(x)
NB: it depends on (at least) one (hyper)parameter
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Parallel with sparse linear inverse problems

» sparse linear ip

B B
argmin ||y — Z f(pp) - xp|* + )\Z |xp|

b=1 b=1
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Parallel with sparse linear inverse problems

» sparse linear ip

B B
argminly — Y f(py) - x> + A ||

b=1 b=1
» Bayesian multi-source model

s 2
m(x]y) o exp <— by =2 g(Ps) ” > P(s)m(x1, ..., Xs)

a

P(s) can penalize larger models, e.g. P(s) = Poiss(~y) with v < 1.
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Monte Carlo approximation

We aim at characterizing
m(x]y) o< m(y[x)m(x)
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represent the posterior distribution, i.e. such that
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- Monte Carlo approximation

We aim at characterizing
m(x]y) o< m(y[x)m(x)

Goal (of Monte Carlo methods): obtain a set of weighted points {x(P)},_;  p (particles) that
represent the posterior distribution, i.e. such that

S h(x®)wl®) / h(x)m(x]y ) dx
p
for any (well behaved) function h(-)
m(x|y) ~ Z wP)§(x — x(P))
p

sampling «<— approximating
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- Basic Monte Carlo — Importance Sampling

/ h(x)7(x]y)dx = / h(x )”(E‘g) (x)dx

=

n(x) importance density s.t.
w(x|ly) > 0 — n(x) > 0;

if {x(”)}pzl ,,,,, p i.i.d. from n(x)
LLN guarantees

7(x(P)
2 P ) = [ heyaely)a

» global and parallel
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Basic Monte Carlo — Markov Chain Monte Carlo

An irreducible, aperiodic Markov
Chain has invariant distribution.

Build a 7(x|y)-invariant kernel
K(x'|x), then sample x(P*1) from
K(-|x(P) ergodic theorem

Z %5(x —xP)) ~ w(x|y)

Example: Metropolis-Hastings
proposal+acceptance/rejection.

» local and serial
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Limitations of basic MC

Importance Sampling Markov Chain Monte Carlo
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Sequential Monte Carlo samplers

Sequential Monte Carlo (Del
Moral et al. 2006) construct a -
sequence of distributions

m1(x), ..., m(x) such that

-t B = & @

» my(x) = 7(x) is the prior
distribution

» 7;(x) = m(x|y) is the
posterior distribution o |

> mi(x) ~ mi1(x)
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Sequential Monte Carlo samplers

Sequential Monte Carlo (Del
Moral et al. 2006) construct a
sequence of distributions

m1(x), ..., m(x) such that

» my(x) = 7(x) is the prior
distribution

» 7;(x) = m(x|y) is the
posterior distribution o | | [_

> mi(x) ~ mi1(x)

Our choice:

mi(x) oc w(y[x)*m(x)

Q; € [0, 1], o < Qg1
(~ simulated annealing, tempering,...)
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Sequential Monte Carlo samplers

General scheme:
0 Initialization: sample P particles {xl(p)}pzl,m,p from the prior distribution 7y (x);
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Sequential Monte Carlo samplers

General scheme:

0 Initialization: sample P particles {xl(p)}pzl’m,p from the prior distribution 7y (x);
then iterate

i MCMC step: for every sample (particle) propose and accept/reject

ii importance sampling step: update the particle weight

o) o) i)
(p) )

i Wl—l
mi—1(x0y
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Sequential Monte Carlo samplers

General scheme:

0 Initialization: sample P particles {xl(p)}pzl’m,p from the prior distribution 7y (x);
then iterate

i MCMC step: for every sample (particle) propose and accept/reject

ii importance sampling step: update the particle weight

() _ (P ("))

w; w;
' T (P

N.B.: at iteration i, {x"), w'"},_; _p approximate

mi(x) oc m(y[x) V7 (x)
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MCMC moves

Exploring the configuration space

Classic
parame-
ter
update
_—

<~
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MCMC moves

Exploring the configuration space

Birth

Death
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MCMC moves

Exploring the configuration space

Split

Merge
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MCMC moves

Exploring the configuration space

Type change
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An insight into the iterative procedure

(Sciacchitano et al. 2019)

True
image
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An insight into the iterative procedure
(Sciacchitano et al. 2019)
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An insight into the iterative procedure

(Sciacchitano et al. 201

Last iteration
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Example on brain imaging
(Sorrentino et al. 2014)

True locations. Density > 1/1000. Point estimates.

1 e
1 e

¢
1 %

Alberto Sorrentino - - - . - - - 21/ 34



Better exploiting SMC samplers

Viani and S., in preparation

Problem/opportunity: Intermediate distributions are typically discarded
But they look nice! Can we use them?
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Better exploiting SMC samplers

Viani and S., in preparation

Problem/opportunity: Intermediate distributions are typically discarded
But they look nice! Can we use them?
Typical construction of the sequence is

)y [x)*

) =70

with
» a; =0 - start from the prior 7(x)
» oy =1 - last distribution is the posterior 7(x|y)
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Two key observations
Observation 1
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Two key observations
Observation 1

For a likelihood in the natural exponential family with natural parameter ¢

mo(y[x)* o< Taz0(y|x)
raising to a power corresponds to rescaling the parameter!
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Two key observations

Observation 1

i(x) =
For a likelihood in the natural exponential family with natural parameter ¢
mo(y[x)* o< Taz0(y|x)

raising to a power corresponds to rescaling the parameter!
Example: for a Gaussian likelihood, 6§ = 1/02 and

< (v - f(X))2>°" Y N F(x))?

202 2 (e 2
Vai
Intermediate distributions are posterior distributions with a different value of the

hyperparameter!
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Two key observations

Observation 1

i(x) =
For a likelihood in the natural exponential family with natural parameter ¢
mo(y[x)* o< Taz0(y|x)

raising to a power corresponds to rescaling the parameter!
Example: for a Gaussian likelihood, 6§ = 1/02 and

< (v - f(X))z)a" Y N F(x))?

202 2 (e 2
Vai
Intermediate distributions are posterior distributions with a different value of the

hyperparameter!

For Gaussian likelihood, we have shrinking effective variance o; = —Z

N
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Two key observations
Observation 2
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Two key observations
Observation 2

m(x)m(y[x)*
mi(y)

_ w(x)m(y|x, a;if)

i(yleif)

7T,'(X) =
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Two key observations

Observation 2

L)
7i(ylaif)
the normalization constant (denominator) becomes

mi(y) = m(y[0;) 0; = O

and SMC samplers provide an estimate of the normalization constant!
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Two key observations

Observation 2

the normalization constant (denominator) becomes
mi(y) = m(y[6:) 0 = b

and SMC samplers provide an estimate of the normalization constant!
We therefore have the evidence for 0 for free (evaluated at {6; = aif}i=1,..1)

m(0;ly) o w(y|67)m(6;)
Given a hyperprior 7(6), we can select the hyperparameter, or average across it! We can
embody uncertainty on the hyperparameter.
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Numerical experiments

A toy example

- = ' Uknown parameters:

' number of Gaussian
functions;

mean, variance and height
of each Gaussian function;

25 / 34
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Numerical experiments

A toy example

- e ' Uknown parameters:

- e == number of Gaussian

- : functions;

mean, variance and height
of each Gaussian function;

measured data:
perturbed samples of the
mixture, Gaussian noise
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Numerical experiments

Standard approach

We compare our method with a standard approach:
> augment state space with o

» use Monte Carlo to sample from
(S, X1, ..., Xs,0ly)

Computationally (somewhat) heavier
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Numerical experiments

A toy example

The posterior distribution of the hyperparameter [top: standard; bottom: new]
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Numerical experiments

A toy example

Error on hyperparameter estimate [red: standard; blue: new]
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Numerical experiments

A toy example

Error on parameter estimates [red: standard; blue: new]
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Numerical experiments

Brain imaging

More accurate probability maps [top: new; bottom: standard;
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Numerical experiments

Brain imaging

Standard approach provides higher variance, often better estimates of the hyperparameter [red:
standard; blue: new]
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Summarizing

Perspectives
» understand imaging application (...)
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