Hyperparameter selection comes for free with Sequential Monte Carlo samplers

Alberto Sorrentino

Dipartimento di Matematica, Università di Genova

Bayesian Estimation for Engineering Solutions (BEES)

A multi-source problem: many inverse/inference problems can be written as

$$y = \sum_{s=1}^{S} f(p_s) \cdot x_s + N$$

with

y measured data

A multi-source problem: many inverse/inference problems can be written as

$$y = \sum_{s=1}^{S} f(p_s) \cdot x_s + N$$

A multi-source problem: many inverse/inference problems can be written as

$$y = \sum_{s=1}^{S} f(\rho_s) \cdot x_s + N$$

- y measured data
- ► S <u>unknown</u> number of sources

A multi-source problem: many inverse/inference problems can be written as

$$y = \sum_{s=1}^{S} f(\rho_s) \cdot x_s + N$$

- y measured data
- ► S <u>unknown</u> number of *sources*
- $ightharpoonup f(\cdot)$ known forward model

A multi-source problem: many inverse/inference problems can be written as

$$y = \sum_{s=1}^{S} f(p_s) \cdot x_s + N$$

- y measured data
- ► S <u>unknown</u> number of sources
- $ightharpoonup f(\cdot)$ known forward model
- ► *N* is noise
- p_s, x_s unknown parameters identifying a single source

A multi-source problem: many inverse/inference problems can be written as

$$y = \sum_{s=1}^{S} f(p_s) \cdot x_s + N$$

- y measured data
- S unknown number of sources
- $ightharpoonup f(\cdot)$ known forward model
- ► *N* is noise
- p_s, x_s unknown parameters identifying a single source
- ▶ non-linear part p: location, shape of the source

A multi-source problem: many inverse/inference problems can be written as

$$y = \sum_{s=1}^{S} f(p_s) \cdot x_s + N$$

- y measured data
- ► S <u>unknown</u> number of sources
- $ightharpoonup f(\cdot)$ known forward model
- N is noise
- p_s, x_s unknown parameters identifying a single source
- ▶ non-linear part p: location, shape of the source
- linear part x: strength of the source

► y electric/magnetic field

- ► y electric/magnetic field
- $ightharpoonup f(\cdot)$ Biot Savart

- ▶ y electric/magnetic field
- $ightharpoonup f(\cdot)$ Biot Savart
- parametric model: point-like (dipolar) currents

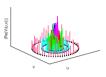
- ▶ y electric/magnetic field
- $ightharpoonup f(\cdot)$ Biot Savart
- parametric model: point-like (dipolar) currents
- p neural current location

- ▶ y electric/magnetic field
- $ightharpoonup f(\cdot)$ Biot Savart
- parametric model: point-like (dipolar) currents
- p neural current location
- x neural current intensity

- ▶ y electric/magnetic field
- $ightharpoonup f(\cdot)$ Biot Savart
- parametric model: point-like (dipolar) currents
- p neural current location
- x neural current intensity

S. et al. Inverse Problems 2014

Solar (flare) imaging

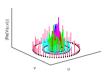


y visibilities

- ▶ y electric/magnetic field
- $ightharpoonup f(\cdot)$ Biot Savart
- parametric model: point-like (dipolar) currents
- p neural current location
- x neural current intensity

S. et al. Inverse Problems 2014

Solar (flare) imaging

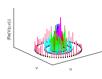


- y visibilities
- $ightharpoonup f(\cdot)$ Fourier Transform

- ▶ y electric/magnetic field
- $ightharpoonup f(\cdot)$ Biot Savart
- parametric model: point-like (dipolar) currents
- p neural current location
- x neural current intensity

S. et al. Inverse Problems 2014

Solar (flare) imaging

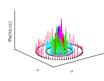


- y visibilities
- $ightharpoonup f(\cdot)$ Fourier Transform
- parametric model: geometric shapes
- p flare location, shape

- ▶ y electric/magnetic field
- $ightharpoonup f(\cdot)$ Biot Savart
- parametric model: point-like (dipolar) currents
- p neural current location
- x neural current intensity

S. et al. Inverse Problems 2014

Solar (flare) imaging



- y visibilities
- $ightharpoonup f(\cdot)$ Fourier Transform
- parametric model: geometric shapes
- p flare location, shape
- x flare intensity

Sciacchitano, Lugaro and \underline{S} . SIAM Journal of Imaging Science 2019

Parallel with linear inverse problems (Austin et al. 2010)

NB: the multi-source model

$$y = \sum_{s=1}^{S} f(p_s) \cdot x_s + N$$

is just an uncommon, explicit representation of the linear inverse model on the right:

Parallel with linear inverse problems (Austin et al. 2010)

NB: the multi-source model

$$y = \sum_{s=1}^{S} f(\rho_s) \cdot x_s + N$$

is just an uncommon, explicit representation of the linear inverse model on the right:

$$y = \sum_{b=1}^{B} f(p_b) \cdot x_b + N = F \cdot X + N$$

with B (large) number of basis elements (voxels/pixels/other) for which a sparse solution is sought

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} f_1(p_1) & f_1(p_2) & \dots & f_1(p_B) \\ f_2(p_1) & f_2(p_2) & \dots & f_2(p_B) \\ \vdots & \vdots & \ddots & \vdots \\ f_n(p_1) & f_n(p_2) & \dots & f_n(p_B) \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_B \end{pmatrix}$$

NB: the multi-source model

$$y = \sum_{s=1}^{S} f(\rho_s) \cdot x_s + N$$

is just an uncommon, explicit representation of the linear inverse model on the right:

(in red: unknowns)

$$y = \sum_{b=1}^{B} f(p_b) \cdot \mathbf{x}_b + N = F \cdot \mathbf{X} + N$$

with B (large) number of basis elements (voxels/pixels/other) for which a sparse solution is sought

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} f_1(\rho_1) & f_1(\rho_2) & \dots & f_1(\rho_B) \\ f_2(\rho_1) & f_2(\rho_2) & \dots & f_2(\rho_B) \\ \vdots & \vdots & \ddots & \vdots \\ f_n(\rho_1) & f_n(\rho_2) & \dots & f_n(\rho_B) \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_B \end{pmatrix}$$

Multi-source model

Aim: to estimate S and $\{p_1, x_1, \dots, p_S, x_S\}$.

 $\mathcal S$ single source parameter space (e.g. $\mathbb R^n$); then configuration space:

$$\mathcal{X} = \bigcup_{k} \mathcal{S}^{k}$$

Why stick with the explicit representation?

Multi-source model

Aim: to estimate S and $\{p_1, x_1, \dots, p_S, x_S\}$.

S single source parameter space (e.g. \mathbb{R}^n); then configuration space:

$$\mathcal{X} = \bigcup_{k} \mathcal{S}^{k}$$

Why stick with the explicit representation? things get more involved

Multi-source model

Aim: to estimate S and $\{p_1, x_1, \dots, p_S, x_S\}$.

S single source parameter space (e.g. \mathbb{R}^n); then configuration space:

$$\mathcal{X} = \bigcup_{k} \mathcal{S}^{k}$$

Why stick with the explicit representation? things get more involved non-linearity is bad

S single source parameter space (e.g. \mathbb{R}^n); then configuration space:

$$\mathcal{X} = \bigcup_{k} \mathcal{S}^{k}$$

Why stick with the explicit representation? things get more involved non-linearity is bad interpretation is straightforward

S single source parameter space (e.g. \mathbb{R}^n); then configuration space:

$$\mathcal{X} = \bigcup_{k} \mathcal{S}^{k}$$

Why stick with the explicit representation? things get more involved non-linearity is bad interpretation is straightforward we can go bayesian

 $\mathcal S$ single source parameter space (e.g. $\mathbb R^n$); then configuration space:

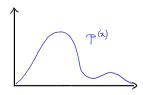
$$\mathcal{X} = \bigcup_{k} \mathcal{S}^{k}$$

Why stick with the explicit representation? things get more involved non-linearity is bad interpretation is straightforward we can go bayesian

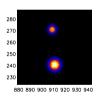
Change of perspective: from point estimate \hat{x}

to whole

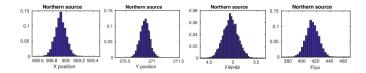
probability distribution $\pi(x) \forall x \in \mathcal{X}$



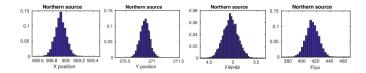
More than imaging

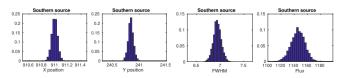


More than imaging



More than imaging





Bayesian multi-source model

Choose a prior distribution on \mathcal{X} (from here on, x is the whole set of unkonwns)

$$\pi(x) = \mathbb{P}(s)\pi(p_1, x_1, \ldots, p_s, x_s)$$

- $ightharpoonup \mathbb{P}(s)$ probability of s sources
- $\blacktriangleright \pi(p_1, x_1, \dots, p_s, x_s)$ prior of specific configuration

Bayesian multi-source model

Choose a prior distribution on \mathcal{X} (from here on, x is the whole set of unkonwns)

$$\pi(x) = \mathbb{P}(s)\pi(p_1, x_1, \ldots, p_s, x_s)$$

with

- $ightharpoonup \mathbb{P}(s)$ probability of s sources
- $\blacktriangleright \pi(p_1, x_1, \dots, p_s, x_s)$ prior of specific configuration

Choose a likelihood

$$\pi(y|x) \propto \exp\left(-\frac{\|y-\sum_s f(p_s)x_s\|^2}{\sigma^2}\right)$$

 $ightharpoonup \sigma^2$ noise variance

Choose a prior distribution on \mathcal{X} (from here on, x is the whole set of unkonwns)

$$\pi(x) = \mathbb{P}(s)\pi(p_1, x_1, \ldots, p_s, x_s)$$

with

- $ightharpoonup \mathbb{P}(s)$ probability of s sources
- $\blacktriangleright \pi(p_1, x_1, \dots, p_s, x_s)$ prior of specific configuration

Choose a likelihood

$$\pi(y|x) \propto \exp\left(-rac{\|y-\sum_s f(p_s)x_s\|^2}{\sigma^2}
ight)$$

 $ightharpoonup \sigma^2$ noise variance

Compute/Characterize the posterior

$$\pi(x|y) \propto \pi(y|x)\pi(x)$$

Choose a prior distribution on \mathcal{X} (from here on, x is the whole set of unkonwns)

$$\pi(x) = \mathbb{P}(s)\pi(p_1, x_1, \ldots, p_s, x_s)$$

with

- $ightharpoonup \mathbb{P}(s)$ probability of s sources
- $\blacktriangleright \pi(p_1, x_1, \dots, p_s, x_s)$ prior of specific configuration

Choose a likelihood

$$\pi(y|x) \propto \exp\left(-\frac{\|y-\sum_s f(p_s)x_s\|^2}{\sigma^2}\right)$$

 $ightharpoonup \sigma^2$ noise variance

Compute/Characterize the posterior

$$\pi(x|y) \propto \pi(y|x)\pi(x)$$

NB: it depends on (at least) one (hyper)parameter

Parallel with sparse linear inverse problems

► sparse linear ip

$$\arg\min \|y - \sum_{b=1}^{B} f(p_b) \cdot x_b\|^2 \ + \ \lambda \sum_{b=1}^{B} |x_b|$$

Parallel with sparse linear inverse problems

sparse linear ip

$$\arg \min \|y - \sum_{b=1}^{B} f(p_b) \cdot x_b\|^2 + \lambda \sum_{b=1}^{B} |x_b|$$

Bayesian multi-source model

$$\pi(x|y) \propto \exp\left(-rac{\|y-\sum_{s=1}^{S}f(p_s)\cdot x_s\|^2}{\sigma^2}
ight) \quad \mathbb{P}(s)\pi(x_1,\ldots,x_s)$$

Parallel with sparse linear inverse problems

sparse linear ip

$$\arg \min \|y - \sum_{b=1}^{B} f(p_b) \cdot x_b\|^2 + \lambda \sum_{b=1}^{B} |x_b|$$

Bayesian multi-source model

$$\pi(x|y) \propto \exp\left(-rac{\|y-\sum_{s=1}^{\mathcal{S}}f(p_s)\cdot x_s\|^2}{\sigma^2}
ight) \quad \mathbb{P}(s)\pi(x_1,\ldots,x_s)$$

 $\mathbb{P}(s)$ can penalize larger models, e.g. $\mathbb{P}(s) = Poiss(\gamma)$ with $\gamma < 1$.

Monte Carlo approximation

We aim at characterizing

$$\pi(x|y) \propto \pi(y|x)\pi(x)$$

Monte Carlo approximation

We aim at characterizing

$$\pi(x|y) \propto \pi(y|x)\pi(x)$$

Goal (of Monte Carlo methods): obtain a set of weighted points $\{x^{(p)}\}_{p=1,...,P}$ (particles) that represent the posterior distribution, i.e. such that

$$\sum_{p} h(x^{(p)}) w^{(p)} \to \int h(x) \pi(x|y) dx$$

for any (well behaved) function $h(\cdot)$

Monte Carlo approximation

We aim at characterizing

$$\pi(x|y) \propto \pi(y|x)\pi(x)$$

Goal (of Monte Carlo methods): obtain a set of weighted points $\{x^{(p)}\}_{p=1,...,P}$ (particles) that represent the posterior distribution, i.e. such that

$$\sum_{p} h(x^{(p)}) w^{(p)} \to \int h(x) \pi(x|y) dx$$

for any (well behaved) function $h(\cdot)$

$$\pi(x|y) \simeq \sum_{p} w^{(p)} \delta(x - x^{(p)})$$

 $sampling \longleftrightarrow approximating$

Basic Monte Carlo – Importance Sampling

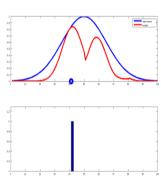
$$\int h(x)\pi(x|y)dx = \int h(x)\frac{\pi(x|y)}{\eta(x)}\eta(x)dx$$

$$\eta(x)$$
 importance density s.t. $\pi(x|y) > 0 \rightarrow \eta(x) > 0$;

if
$$\{x^{(p)}\}_{p=1,...,P}$$
 i.i.d. from $\eta(x)$ LLN guarantees

$$\sum_{p} \frac{1}{P} \frac{\pi(x^{(p)}|y)}{\eta(x^{(p)})} h(x^{(p)}) \to \int h(x) \pi(x|y) dx$$

global and parallel



Basic Monte Carlo - Markov Chain Monte Carlo

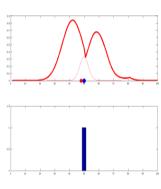
An *irreducible*, *aperiodic* Markov Chain has *invariant* distribution.

Build a $\pi(x|y)$ -invariant kernel K(x'|x), then sample $x^{(p+1)}$ from $K(\cdot|x^{(p)})$ ergodic theorem

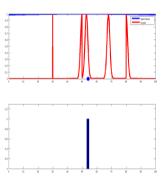
$$\sum_{p} \frac{1}{P} \delta(x - x^{(p)}) \simeq \pi(x|y)$$

Example: Metropolis-Hastings proposal+acceptance/rejection.

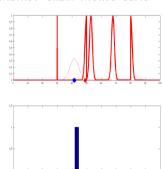
► local and serial



Importance Sampling

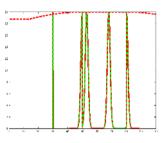


Markov Chain Monte Carlo



Sequential Monte Carlo (Del Moral et al. 2006) construct a sequence of distributions $\pi_1(x), \ldots, \pi_I(x)$ such that

- $\pi_1(x) = \pi(x)$ is the prior distribution
- $\pi_I(x) = \pi(x|y)$ is the posterior distribution

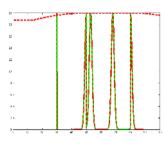


Sequential Monte Carlo (Del Moral et al. 2006) construct a sequence of distributions $\pi_1(x), \ldots, \pi_I(x)$ such that

- $\pi_1(x) = \pi(x)$ is the prior distribution
- $\pi_I(x) = \pi(x|y)$ is the posterior distribution
- $\blacktriangleright \pi_i(x) \sim \pi_{i-1}(x)$

$$\pi_i(x) \propto \pi(y|x)^{\alpha_i}\pi(x)$$

$$\alpha_i \in [0,1], \alpha_i < \alpha_{i+1}$$

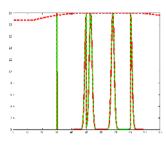


Sequential Monte Carlo (Del Moral et al. 2006) construct a sequence of distributions $\pi_1(x), \ldots, \pi_I(x)$ such that

- $\pi_1(x) = \pi(x)$ is the prior distribution
- $\pi_I(x) = \pi(x|y)$ is the posterior distribution
- $\blacktriangleright \pi_i(x) \sim \pi_{i-1}(x)$

$$\pi_i(x) \propto \pi(y|x)^{\alpha_i}\pi(x)$$

$$\alpha_i \in [0,1], \ \alpha_i < \alpha_{i+1}$$
 (\sim simulated annealing, tempering,...)



General scheme:

0 Initialization: sample *P* particles $\{x_1^{(p)}\}_{p=1,\ldots,P}$ from the prior distribution $\pi_1(x)$;

General scheme:

- 0 Initialization: sample P particles $\{x_1^{(p)}\}_{p=1,\ldots,P}$ from the prior distribution $\pi_1(x)$; then iterate
 - i MCMC step: for every sample (particle) propose and accept/reject

General scheme:

- 0 Initialization: sample P particles $\{x_1^{(p)}\}_{p=1,\ldots,P}$ from the prior distribution $\pi_1(x)$; then iterate
 - i MCMC step: for every sample (particle) propose and accept/reject
 - ii importance sampling step: update the particle weight

$$w_i^{(p)} = w_{i-1}^{(p)} \frac{\pi_i(x_{i-1}^{(p)})}{\pi_{i-1}(x_{i-1}^{(p)})}$$

General scheme:

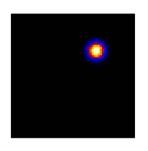
- 0 Initialization: sample P particles $\{x_1^{(p)}\}_{p=1,\ldots,P}$ from the prior distribution $\pi_1(x)$; then iterate
 - i MCMC step: for every sample (particle) propose and accept/reject
 - ii importance sampling step: update the particle weight

$$w_i^{(p)} = w_{i-1}^{(p)} \frac{\pi_i(x_{i-1}^{(p)})}{\pi_{i-1}(x_{i-1}^{(p)})}$$

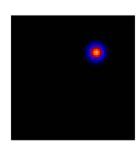
N.B.: at iteration i, $\{x_i^{(p)}, w_i^{(p)}\}_{p=1,...,P}$ approximate

$$\pi_i(x) \propto \pi(y|x)^{\gamma_i}\pi(x)$$

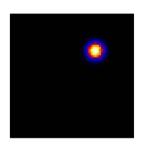
MCMC moves Exploring the configuration space

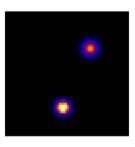


Classic parameter update

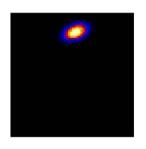


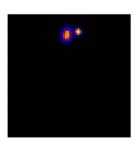
MCMC moves Exploring the configuration space

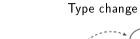




MCMC moves Exploring the configuration space







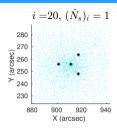


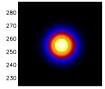
An insight into the iterative procedure (Sciacchitano et al. 2019)

True image

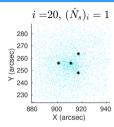
An insight into the iterative procedure (Sciacchitano et al. 2019)

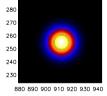
True image

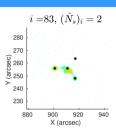


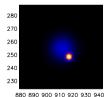


True image

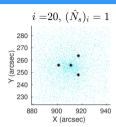


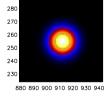


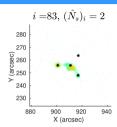


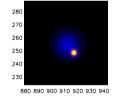


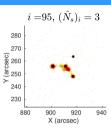
True image

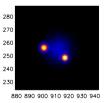






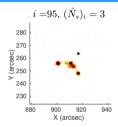


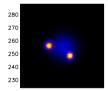




An insight into the iterative procedure (Sciacchitano et al. 2019)

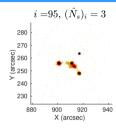
True source

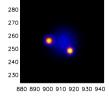


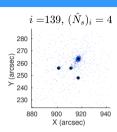


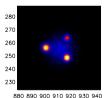
True source

Alberto Sorrentino

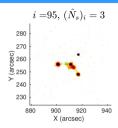


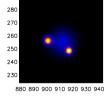


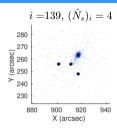


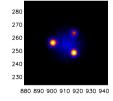


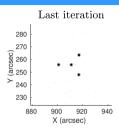
True source

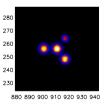






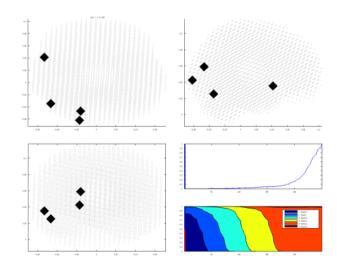






Example on brain imaging (Sorrentino et al. 2014)

True locations. Density $\geq 1/1000$. Point estimates.



Better exploiting SMC samplers Viani and \underline{S} , in preparation

Problem/opportunity: Intermediate distributions are typically discarded But they look nice! Can we use them?

Problem/opportunity: Intermediate distributions are typically discarded But they look nice! Can we use them?

Typical construction of the sequence is

$$\pi_i(x) = \frac{\pi(x)\pi(y|x)^{\alpha_i}}{\pi_i(y)}$$

with

- $ightharpoonup \alpha_1 = 0$ start from the prior $\pi(x)$
- $ightharpoonup \alpha_I = 1$ last distribution is the posterior $\pi(x|y)$

Two key observations Observation 1

$$\pi_i(x) = \frac{\pi(x)\pi(y|x)^{\alpha_i}}{\pi_i(y)}$$

$$\pi_i(x) = \frac{\pi(x)\pi(y|x)^{\alpha_i}}{\pi_i(y)}$$

For a likelihood in the natural exponential family with natural parameter θ

$$\pi_{\theta}(y|x)^{\alpha_i} \propto \pi_{\alpha_i\theta}(y|x)$$

raising to a power corresponds to rescaling the parameter!

$$\pi_i(x) = \frac{\pi(x)\pi(y|x)^{\alpha_i}}{\pi_i(y)}$$

For a likelihood in the natural exponential family with natural parameter θ

$$\pi_{\theta}(y|x)^{\alpha_i} \propto \pi_{\alpha_i\theta}(y|x)$$

raising to a power corresponds to rescaling the parameter!

Example: for a Gaussian likelihood, $\theta = 1/\sigma^2$ and

$$\left(\exp{-\frac{(y-f(x))^2}{2\sigma^2}}\right)^{\alpha_i} = \exp{\left(-\frac{(y-f(x))^2}{2\left(\frac{\sigma}{\sqrt{\alpha_i}}\right)^2}\right)}$$

Intermediate distributions are posterior distributions with a different value of the hyperparameter!

$$\pi_i(x) = \frac{\pi(x)\pi(y|x)^{\alpha_i}}{\pi_i(y)}$$

For a likelihood in the natural exponential family with natural parameter θ

$$\pi_{\theta}(y|x)^{\alpha_i} \propto \pi_{\alpha_i\theta}(y|x)$$

raising to a power corresponds to rescaling the parameter!

Example: for a Gaussian likelihood, $\theta = 1/\sigma^2$ and

$$\left(\exp{-\frac{(y-f(x))^2}{2\sigma^2}}\right)^{\alpha_i} = \exp{\left(-\frac{(y-f(x))^2}{2\left(\frac{\sigma}{\sqrt{\alpha_i}}\right)^2}\right)}$$

Intermediate distributions are posterior distributions with a different value of the hyperparameter!

For Gaussian likelihood, we have shrinking effective variance $\sigma_i = \frac{\sigma}{\sqrt{\alpha_i}}$

Two key observations Observation 2

$$\pi_i(x) = \frac{\pi(x)\pi(y|x)^{\alpha_i}}{\pi_i(y)}$$

Two key observations Observation 2

$$\pi_i(x) = rac{\pi(x)\pi(y|x)^{lpha_i}}{\pi_i(y)} = rac{\pi(x)\pi(y|x,lpha_i heta)}{\pi_i(y|lpha_i heta)}$$

$$\pi_i(x) = rac{\pi(x)\pi(y|x)^{lpha_i}}{\pi_i(y)} = rac{\pi(x)\pi(y|x,lpha_i heta)}{\pi_i(y|lpha_i heta)}$$

the normalization constant (denominator) becomes

$$\pi_i(y) = \pi(y|\theta_i)$$
 $\theta_i = \theta\alpha_i$

and SMC samplers provide an estimate of the normalization constant!

$$\pi_i(x) = \frac{\pi(x)\pi(y|x)^{\alpha_i}}{\pi_i(y)}$$
$$= \frac{\pi(x)\pi(y|x,\alpha_i\theta)}{\pi_i(y|\alpha_i\theta)}$$

the normalization constant (denominator) becomes

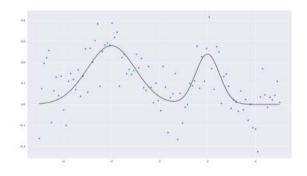
$$\pi_i(y) = \pi(y|\theta_i)$$
 $\theta_i = \theta \alpha_i$

and SMC samplers provide an estimate of the normalization constant! We therefore have the *evidence* for θ for free (evaluated at $\{\theta_i = \alpha_i \theta\}_{i=1,...,l}$)

$$\pi(\theta_i|y) \propto \pi(y|\theta_i)\pi(\theta_i)$$

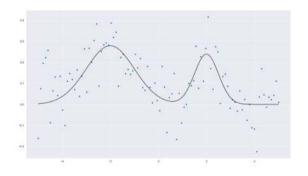
Given a hyperprior $\pi(\theta)$, we can select the hyperparameter, or average across it! We can embody uncertainty on the hyperparameter.

Numerical experiments A toy example



Uknown parameters: number of Gaussian functions; mean, variance and height of each Gaussian function;

Numerical experiments A toy example



Uknown parameters: number of Gaussian functions; mean, variance and height of each Gaussian function;

measured data: perturbed samples of the mixture, Gaussian noise

Numerical experiments Standard approach

We compare our method with a standard approach:

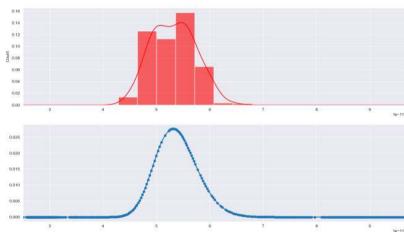
- ightharpoonup augment state space with σ
- ▶ use Monte Carlo to sample from

$$\pi(s, x_1, \ldots, x_s, \sigma|y)$$

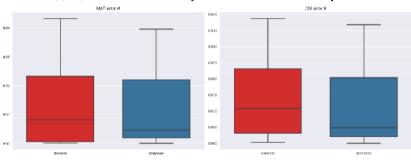
Computationally (somewhat) heavier

Numerical experiments A toy example

The posterior distribution of the hyperparameter [top: standard; bottom: new]

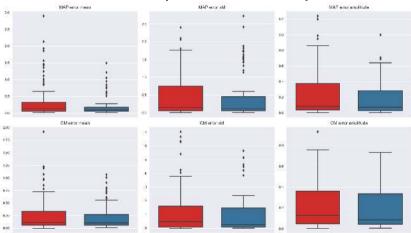


Error on hyperparameter estimate [red: standard; blue: new]



Numerical experiments A toy example

Error on parameter estimates [red: standard; blue: new]

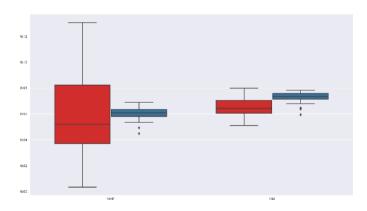


Numerical experiments Brain imaging

More accurate probability maps [top: new; bottom: standard;



Standard approach provides higher variance, often better estimates of the hyperparameter [red: standard; blue: new]



Perspectives

▶ understand imaging application (...)

Perspectives

- ▶ understand imaging application (...)
- ▶ work on the adaptive choice of $\{\alpha_i\}_{i=1,...,l}$

Perspectives

- ▶ understand imaging application (...)
- ▶ work on the adaptive choice of $\{\alpha_i\}_{i=1,...,l}$
- ► find reasonable hyperpriors

Perspectives

- ▶ understand imaging application (...)
- work on the adaptive choice of $\{\alpha_i\}_{i=1,...,l}$
- ► find reasonable hyperpriors

Conclusions

regularization parameter selected for free

Perspectives

- ▶ understand imaging application (...)
- work on the adaptive choice of $\{\alpha_i\}_{i=1,...,l}$
- ► find reasonable hyperpriors

Conclusions

- regularization parameter selected for free
- averaging across different values embodies uncertainty

growing need for sound statistical models

- growing need for sound statistical models
- widening gap btw theory and applications

- growing need for sound statistical models
- widening gap btw theory and applications
- ▶ different problems, same methods

- growing need for sound statistical models
- widening gap btw theory and applications
- ▶ different problems, same methods
- startup, born June 2021 as a spinoff of UNIGE

- growing need for sound statistical models
- widening gap btw theory and applications
- ▶ different problems, same methods
- startup, born June 2021 as a spinoff of UNIGE
- explore commercial potential of Bayesian models and Monte Carlo algorithms

- growing need for sound statistical models
- widening gap btw theory and applications
- ▶ different problems, same methods
- startup, born June 2021 as a spinoff of UNIGE
- explore commercial potential of Bayesian models and Monte Carlo algorithms
- nothing to do with actual bees...

Acknowledgements

Riccardo Aramini Silvio Lugaro Gianvittorio Luria Michele Piana Federica Sciacchitano Sara Sommariva Alessandro Viani

Acknowledgements

Riccardo Aramini Silvio Lugaro Gianvittorio Luria Michele Piana Federica Sciacchitano Sara Sommariva Alessandro Viani

That's all!

Thank you