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Goal and outline

Goal

How to use “nonlinear eigenvectors” in core-periphery classification
of hypergraphs

Outline

Review of graph clustering via nonlinear eigenvectors

Extension to hypergraphs

Core-periphery classification of hypergraphs via nonlinear eigenvectors

Numerical examples



“Nonlinear eigenvector”

Solution to F(x) = A\ x, where:

® F(x) = composition of linear and point-wise nonlinear mappings
= 0,(A102(AxX))
Generalized linear models in deep learning

* F(x) = action of a matrix valued operator
= M(x)x
Nonlinear eigenvalue problems with eigenvector nonlinearity



Nonlinear Laplacians

B = incidence, boundary, gradient operator
L(x) =Bg(B'f(x))  B:edges — nodes

Different choices of fand g are used in several different settings:

o f=1d,g(x) = |X|P7'SIN(X) verriiiii i graph p-Laplacian
[Biihler&Hein, 2009], [Elmoataz et al, 2008], [Zhang, 2016], [T&Hein, 2018], ...

e expandlog ................ consensus dynamics and chemical reactions
[Neuhauser et al, 2021], [Rao et al, 2013], [Van Der Schaft et al, 2016], ...

e Trigonometric functions ................cooiiiin.n. network oscillators
[Battiston et al, 2021], [Millan et al, 2020], [Schaub et al, 2016], ...

e Polynomials .....oovviiiiiiiiiiiiiiiieenes semi-supervised learning

[Arya et al, 2021], [Ibrahim&Gleich, 2019], [Prokopchick et al, 2021], ...

e p-norm-based ............. ...l centrality and core-periphery



(HYPER)GRAPH CLASSIFICATION



Unsupervised classification via graph clustering
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Unsupervised classification via graph clustering

/,/r/————f*/«\iimilarity graph <> A = adjacency mx

N . \‘
/ /\<.\-/ " cut(S) = #edges between Sand V\ S
7(> )/ cut(s) = #edg \

\

Formulation as combinatorial optimization problem:

min {K(S) — cut(S)/IS| : SC{1,....n},|S| < n/z}



Matrix reordering

Clusters C,, C,: many edges C; +» C; and few edges C; « C; (i 4 )



Extensions: discrete — continuous optimization




Extensions: discrete — continuous optimization

Fiedler extension: min {f(x) = A —X)? - X1 =0, |x], = 1}

* minf(x) < minK(S) < /2 minf(x)
* |t boils down to a matrix-eigenvalue problem which we know how to
solve very efficiently to arbitrary precision



Extensions: discrete — continuous optimization

Fiedler extension: min {f(x) = A —X)? - X1 =0, |x], = 1}

* minf(x) < minK(S) < /2 minf(x)
* |t boils down to a matrix-eigenvalue problem which we know how to
solve very efficiently to arbitrary precision

Lovasz Extension: min {f(x) = YA — x| - X1 =0, |x]; = 1}

* min{(x) = min K(S)
* |t can be interpreted as a nonlinear eigenvector problem, but it cannot
be solved in polynomial time



How do we extend to hypergraphs?

Hypergraph:

* H=(V,E) where e € E can contain an arbitrary number of nodes
H is a standard graph if |e] =2, foralle € E




Why hypergraphs?

Relational data is full of interactions that happen in groups




Why hypergraphs?

Directly considering graph motifs brings a great deal of new insight

Example: Triangle hypergraph

N

S

Hyperedge e = {ijR} € E if the graph contains all three edges ij, jk and ki
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Hypergraph cut

How to quantify the strength of a cut in the hypergraph case?
Nice recent review: [Veldt,Benson,Kleinberg, SIREV, 2022]
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All-or-nothing hypergraph cut

Directly formulate a hypergraph cut by extending the notion of graph cut

e Graph:
0S={ijj€E:i€S,jeSY, cuts(S) = > jicos A

e All-or-nothing hypergraph cut:
OS={ecE:enS#0,enS #0}, cuty(S) = .cosAe
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Graph projection

A standard approach to represent and deal with hypergraphs

Example: Clique-expansion.
Form a graph where all nodes in an hyperedge are fully connected.

Cut on the clique-expanded graph: cutc(S) = > .55 [€ N S||le N S¢|A.
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Hypergraph vs projected graph

How do cutc and cuty compare?

Semi-supervised classification with ~ 2% input labels
Rice31 Caltech36 FMNIST
n=3560 N=590 N = 60000

cuty Lovasz 82.6+0.1 66.1+0.3 79.7+ 1.1
cutee Fiedler 80.5 +£2.7 553 +2.9 705+ 3.3

Criticism: the additional complication of H is not justified
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CORE-PERIPHERY CLASSIFICATION



Clustering vs core-periphery

Clusters C,, C,: many edges C; +» C; and few edges C; +» C; (i # )

Core-periphery C, P: many edges C <> Cand C <+ P, few P <+ P
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Core-periphery in networks

@ Borgatti, Everett, Social Networks, 1999

Core / periphery structure in a citation network
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Combinatorial optimization formulation

Writing the problem in terms of cut(S) leads to a two-variable
combinatorial problem, for which the Lovasz approach does not work

Matrix reordering formulation:

Find the permutation i — p; that solves

max { >_jAjmax{p;.p;} : p = permutation of {1,..., n}}
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Coreness score relaxation

Relax the constraint p = permutation into “nonnegative with fixed norm”

max {ZUA,-,- max{x;, x;} : X > 0, x| = 1}
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Coreness score relaxation

Relax the constraint p — permutation into “nonnegative with fixed norm”
max {ZUA,-,- max{x;, x;} : X > 0, x| = 1}
Use a “softmax”: for e = (i,j) and x|e = (x;, X;) we have max{x;, Xj} = [|X[e||s
max { S Ae [Xellp - x2 0.l =1} (plarge)

We obtain a model for coreness score: “x; > x; if i is more in the core than j”
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Hypergraph case

All-or-nothing core-periphery model:

e is a “good” hyperedge if it contains at least one core node

xle = (Xi, ..., Xi,)

max {w(x) =S Ac|Xelly st x>o0,llx] = 1}

ecE
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Questions for the remaining slides

* How can we solve max p(x)?

* How does it compare with doing core-periphery classification on the
projected graph?
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Nonlinear eigenvector formulation

Let || - || = |- lq be the norm defining the constraint.

¢(ax) = ap(x) = look at the unconstrained problem max, ¢(x)/||x]|q

) _ e —
v{ ||x||q} —0 < Bg(BTf(x)) = \x

* B: hyperedges — nodes hypergraph incidence operator
* f(x) = Xp-a (entrywise)
° g(x) = xa7 (entrywise)

21



Nonlinear eigenvalue formulation (cont.)

max {io(x) = Y w(e) [Xlell, st x>0, [xlq =1}

ecE

is equivalent to
L(x) = Bg(B'f(x)) = Ax, X>0

Flavor of Perron-Frobenius problem:
we look for a nonnegative solution which is maximal (in some sense)

22



If p > q > 1, there exists a unique nonnegative eigenvector x* of L(x).

Moreover:

® Xx* is entrywise positive
e the iterative method
e y « Diag(x)~"B (B"x9)7 "
o X<+ (y/lly p*)ﬁ, p* = dual norm of p
converges to x* for any positive starting point x(°), with linear rate
of convergence O(|p —1|/|g — 1).

Note: cost per iteration = O(B, B" x vector)
23



G VS H: EXAMPLES




Examples: hyperplane and hypercycle

SO
17 (L)
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Core-periphery profile

Extension of the core-periphery profile for graphs [DellaRosa et al, 2013]
For any subset of nodes S C V consider the quantity

(S) = # edges all contained in S
TRy edges with at least one node in S

Hypergraph core-periphery profile:

function y(R) that to any k € {1,...,n} associates the value v(Sg(x))
where Si(x) is the set of k nodes with smallest coreness score in x

v(S) is small if S is largely contained in the periphery of the hypergraph
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Real-world datasets

Core-Periphery Profile

Core-Periphery Profile
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Conclusions and questions

e When dealing with classification problems on graphs and hypergraphs
we end up nonlinear eigenvector problems
* One example is core-periphery. Here, unlike clustering:
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:Q? What are other settings where graph projections fail?
:Q? What is a tight convergence rate for the iterative method?
:Q? Is there a better method than (nonlinear) power method?
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Conclusions and questions

e When dealing with classification problems on graphs and hypergraphs
we end up nonlinear eigenvector problems
* One example is core-periphery. Here, unlike clustering:
e we have guarantees for uniquenes and computation of the
solution to the nonlinear eigenvector problem
e the results are very different on the projected graph

:Q? What are other settings where graph projections fail?
:Q? What is a tight convergence rate for the iterative method?
:Q? Is there a better method than (nonlinear) power method?

Thank you!
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