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Main goal

Determine if solutions, starting from u0 ≥ 0, to

∂tu = D[u] + u1+p, t > 0, x ∈ Ω, (p > 0),

are global in time or not.

I Direct implications on the population dynamics models

∂tu = D[u] + u1+p(1− u),

1

u

f HuL

vs. 1
u

f (u)

KPP (p = 0) vs. Allee effect (p > 0)
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The Heat equation

The solution v(t, x) to

∂tv = ∆v , v(t = 0, ·) = v0,

is given by
v(t, x) = G (t, ·) ∗ v0(x).

It is global and satisfies

‖v(t, ·)‖L∞(RN) ≤
C (v0)

(1 + t)N/2
.
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Nonlinear ODE: systematic blow up

For p > 0, the solution u(t) to

du

dt
= u1+p, u(0) = u0 > 0,

always blows up in finite time.
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∂tu = ∆u + u1+p, p > 0

Starting from a nontrivial compactly supported u0 ≥ 0, what
happens to the Cauchy problem?

Theorem (Fujita 1966)

Define pF := 2
N .

(i) 0 < p ≤ pF =⇒ all solutions blow up in finite time.

(ii) p > pF =⇒ some solutions (”small” u0) are global and get
extinct “like the Heat equation”.
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Proof for the case p > pF

I Look for a supersolution in the form u+(t, x) := g(t)v(t, x)
where v := et∆u0, g(0) = 1, and hope that g is global...

I This requires
g ′(t)

g1+p(t)
≥ vp(t, x).

I It is enough to select

g ′(t)

g1+p(t)
=

(
C (u0)

(1 + t)N/2

)p

, g(0) = 1,

whose solution is computable and global (thanks to p > 2
N ) if “u0

is small enough”.
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Proof for the case p < pF
Assume u is global and consider f (t) :=

∫
RN G (t, y)u0(y) dy .

I Linear argument: f (t) is nothing else than v(t, 0) where
v = et∆u0 so that

f (t) &
1

tN/2
.

I Nonlinear argument: f (t) is nothing else than g(0) where

g(s) :=

∫
RN

G (t − s, y)u(s, y)dy .

Compute

g ′(s) =

∫
−∆Gu+G∆u+Gu1+p =

∫
Gu1+p ≥

(∫
Gu

)1+p

= g1+p(s).

Based on this, find

f (t) .
1

t1/p
.
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Nonlocal dispersal (seeds)

∂tv = J ∗ v − v .

J is a probability density on RN .

J(x − y) is the probability of “jumping” from y to x .∫
RN J(x − y)v(t, y) dy = J ∗ v(t, x) is the rate at which individuals

arrive at x from all other positions.

−
∫
RN J(y − x)v(t, x) dy = −v(t, x) is the rate at which

individuals leave x to reach any other positions.
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Integro differentiel equations ∂tu = J ∗ u − u + u1+p

Starting from a nontrivial compactly supported u0 ≥ 0, what
happens to the Cauchy problem?

By nonlocal diffusion, individuals are sent in the region u ≈ 0
where growth is not optimal (Allee effect) so it is more difficult to
blow up.

The heavier the tails of J, the smaller should be the Fujita
exponent...
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On the linear equation ∂tv = J ∗ v − v

Assumption

Ĵ(ξ) = 1− A|ξ|β + o(|ξ|β), as ξ → 0,

for some 0 < β ≤ 2, A > 0.

Rk: if J has a second momentum then β = 2, but for heavier tails
0 < β < 2. In many cases β can be explicitly computed from the
tails of J (see stable laws in probability theory).

Theorem (Chasseigne, Chaves and Rossi 2006)

Solutions to ∂tv = J ∗ v − v decrease like
1

(1 + t)N/β
.
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∂tu = J ∗ u − u + u1+p, p > 0

Theorem (A. 2015)

Define pF := β
N .

(i) 0 < p ≤ pF =⇒ all solutions blow up in finite time.

(ii) p > pF =⇒ some solutions (“small” u0) are global and get
extinct “like the Heat equation”.

Rk: as expected

pF (NONLOCAL) ≤ pF (LOCAL).
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A general framework

We now work in the half-space RN
+ and consider

∂tu = Au + |u|pu t > 0, x ∈ RN
+,

u(0, x) = u0(x) ≥ 0 x ∈ RN
+,

u(t, x) = 0 t > 0, x ∈ ∂RN
+.

where Au = ∆u or Au = −(−∆)β/2u or Au = J ∗ u − u.

I This Cauchy problem in RN
+ is understood as the restriction of

the Cauchy problem in RN obtained by anti-symmetrization.
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Fujita critical exponent

Lemma (A., Kavian 2021)

Solutions to ∂tv = Av decrease like 1
(1+t)(N+1)/β .

Theorem (A., Kavian 2021)

pF (half-space) =
β

N + 1
.

Rk: as expected

pF (half-space) ≤ pF (whole space).
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Rk 1: where to evaluate v?

The proof of the blow-up relies on a lower bound “with the good
magnitude” of v the solution to the linear diffusion equation.

I In RN , considering v(t, 0) was enough.

I In RN
+, we need to evaluate v(t, ·) at an appropriate moving

point:

Lemma (Pointwise estimate from below)

There exist two constants γ > 0 and C = C (γ) > 0 such that

v
(
t, γt1/βeN

)
≥ Cm1(v0)

t(N+1)/β
, ∀t � 1.
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Rk 2: role of the boundary conditions

Thus, in the half-space (say for A = ∆):

pF (Dirichlet) =
2

N + 1
.

But

pF (Neumann) =
2

N
,

and

pF (Robin) =
2

N + 1
.
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The road-field model (Berestycki, Roquejoffre and Rossi)


∂tv = d∆x ,yv + fKPP(v), t > 0, x ∈ RN−1, y > 0,

−d∂yv |y=0 = µu − νv |y=0, t > 0, x ∈ RN−1,

∂tu = D∆xu + νv |y=0 − µu, t > 0, x ∈ RN−1.

I D > 2d =⇒ acceleration of invasion.
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The purely diffusive road-field model


∂tv = d∆x ,yv , t > 0, x ∈ RN−1, y > 0,

−d∂yv |y=0 = µu − νv |y=0, t > 0, x ∈ RN−1,

∂tu = D∆xu + νv |y=0 − µu, t > 0, x ∈ RN−1.

Movie

I Fourier (on the road variable)/Laplace (on time) transform is a
good strategy and provides:
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The solution explicitly

Theorem (A., Ducasse, Tréton 2022)

v(t,X ) = V(t,X ) +
µ√
d

∫
RN−1

Λ(t, z , y) u0(x − z) dz

+
µ ν√
d

∫ t

0

∫
RN−1

Λ(s, z , y) V|y=0(t − s, x − z) dz ds,

u(t, x) = e−µtU(t, x)

+ ν

∫ t

0
e−µ(t−s)

∫
RN−1

GR(t − s, x − z) v |y=0(s, z) dz ds,

where V, U, GR are well-known while Λ, the keystone for writing
the solution, is explicit but “not so nice”...
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Λ = Λ(t, x , y) is defined as

e−
y2

4dt

(2π)N−1

∫
RN−1

[
aαΦα + bβΦβ + cγΦγ

]
(t, ξ, y) e−dt‖ξ‖

2+iξ·x dξ,

with (α, β, γ) = (α, β, γ)(ξ) being the three complex roots of the
δ-indexed polynomials

Pδ(σ) = σ3 +
ν√
d
σ2 + (µ+ δ)σ +

νδ√
d
, with δ = (D − d)‖ξ‖2,

(a, b, c) = (a, b, c)(ξ) being given by

a =
1

(α− β)(α− γ)
, b =

1

(β − α)(β − γ)
, c =

1

(γ − α)(γ − β)
,

and for • ∈ {α, β, γ},

Φ•(t, ξ, y) =
Erfc

Γ

(
−2 •

√
dt + y

2
√
dt

)
,

where Γ(`) = e−`
2
, and Erfc is the complementary error function.
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Asymptotic decay

Theorem (A., Ducasse, Tréton 2022)

We have

‖v(t, ·)‖L∞(RN
+) .

Cv0 ln(1 + t) + Cu0,v0

(1 + t)N/2
, ∀t > 0,

‖u(t, ·)‖L∞(RN−1) .
Cv0 ln(1 + t) + Cu0,v0

(1 + t)N/2
, ∀t > 0.
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Fujita blow-up phenomena on the road-field


∂tv = d∆x ,yv + v1+p, t > 0, x ∈ RN−1, y > 0,

−d∂yv |y=0 = µu − νv |y=0, t > 0, x ∈ RN−1,

∂tu = D∆xu + νv |y=0 − µu, t > 0, x ∈ RN−1.

I Ongoing work by Samuel Tréton...
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Thanks for your attention.
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