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introduction

Stationary states of Reaction-diffusion Equations
∂tu − ∆u = f (u), in general domains Ω ⊂ RN

Stationary states → semi-linear elliptic equations :{
−∆u = f (u), u > 0 in Ω
u = 0 on ∂Ω.

General question: When is a positive stationary solution unique?

Various types of reaction terms f , domains Ω, and boundary conditions on
boundary ∂Ω:

Dirichlet: u = 0,
Neumann: ∂νu = 0,
Robin: ρ∂νu + (1 − ρ)u = 0, (ρ ∈ [0, 1])1.

1HB & C. Graham, Annales IHP Analyse non lin., 2022
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introduction

Classical types of reaction terms

Look for 0 ≤ u ≤ 1 ; f is C1[0, 1], f (0) = f (1) = 0.

Bistable f
Positive f

General
Weak KPP
Strong KPP
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introduction

Classical types of reaction terms: bistable, positive
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introduction

KPP reaction terms
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Bounded domains and RN

A classical result: strong KPP in bounded domains

{
−∆u = f (u), u > 0 in Ω
u = 0 on ∂Ω.

Assume that f is strongly KPP:

s ∈ (0, 1) 7→ f (s)
s is decreasing on (0, 1).

Theorem
Under this assumption, suppose that Ω is a bounded smooth domain.
Then, when it exists, the positive solution u is unique.a

aHB, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,
J. Funct. Anal. 40, 1981.
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Bounded domains and RN

Remarks

Nec. and suff. cond. for existence: λD
1 (−∆, Ω) < f ′(0).

The result is true for a general elliptic operator:{
−ai ,j(x)∂i ,ju + bi(x)∂iu = f (x , u), u > 0 in Ω
u = 0 on ∂Ω.

Extensions to unbounded domains not straightforward. Think e.g. of
−u′′ − cu′ = f (u) on R with f KPP. It has multiple positive solutions
when c ≥ 2

√
f ′(0).2

In all of space for −∆u = f (u):

Theorem
Assume f is positive with f ′(0) > 0. In RN , there is only one bounded
positive solution of the equation −∆u = f (u), namely u ≡ 1.

2HB, F. Hamel & L. Rossi, Ann. Mat. Pura Appl. (2007).
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Strong KPP, unbounded domains

I. Strong KPP equations, unbounded domains (Dirichlet
cond.)

What about general unbounded Ω?{
−∆u = f (u), u > 0 in Ω
u = 0 on ∂Ω.

Consider the case f is of strong KPP type.
We require an additional non-degeneracy condition.
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Strong KPP, unbounded domains

Generalized principal Dirichlet eigenvalue
[HB, L.Nirenberg and S. Varadhan, CPAM 1994] and unbounded domains [HB, L. Rossi,
CPAM 2015]

Definition

λ1(−L, Ω) := sup
{

λ | ∃ϕ > 0 in W 2,N
loc (Ω) ∩ C(Ω̄) such that (L + λ)ϕ ≤ 0

}
.

λ1(−L, Ω) is the limit of the principal Dirichlet eigenvalues of −L on Ω ∩ BR as
R → ∞ [S. Agmon, 1983].

Proposition
Suppose f is of weak KPP type. Then the equation admits a positive bounded solution
if λ1(−∆ − f ′(0), Ω) < 0. Conversely, it has no positive bounded solution if
λ1(−∆ − f ′(0), Ω) > 0.

Critical case λ1 = 0 varies; conjecture: no positive bounded solutions if f is strong
KPP.
Proposition analogous to results3 for variable-coefficient operators in Rn.

3[HB, F. Hamel and L. Rossi, Ann. Mat. Pura Appl. 2007].
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Strong KPP, unbounded domains

Strong KPP equations, Dirichlet cond. unbounded domains

The behavior of Ω at infinity plays a major role
Limits of translations of Ω may be disconnected; we call their
connected components connected limits
Consider the “principal limiting spectrum”

Σ∗(f ′(0), Ω) :=
{
λ1(f ′(0), Ω∗) | Ω∗ a connected limit of Ω

}
.

Theorem
Suppose that f is of strong KPP type and that Ω is strongly noncritical in
the sense that 0 is not in the closure of Σ∗(f ′(0), Ω). Then, when it exists,
the positive bounded solution of the equation is unique.

Conjecture
In a general domain Ω, or, at least, in a uniformly smooth domain Ω, if f
is strong KPP, then the equation admits at most one positive bounded
solution.
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Strong KPP, unbounded domains

Sketch of proof in noncritical domains

If 0 ̸∈ Σ̄∗(f ′(0), Ω), then limits of Ω have a “spectral gap” around 0.
We use this gap to write Ω as the union of two smooth open sets Ω+ and
Ω− that satisfy

λ1(−∆ − f ′(0), Ω+) > 0 and Σ∗(f ′(0), Ω−) ⊂ (−∞, 0).

This decomposition is delicate; we rely on a beautiful result of Lieba:

inf
x∈RN

λ1(−∆, A ∩ (B + x)) ≤ λ1(−∆, A) + λ1(−∆, B).

aInventiones, 1983

Solutions cannot vanish at infinity in Ω−, and the uniqueness proof from
bounded domains goes through.
The equation satisfies the maximum principle on Ω+, so we can “transfer
uniqueness” from the overlap Ω− ∩ Ω+ to all of Ω+, and thus all of Ω.
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Strong KPP, unbounded domains

Narrow and ample domains

We term the components Ω+ and Ω− “narrow” and “ample.”

Definition
Given µ > 0, we say that the domain is µ-narrow if λ1(−∆ − µ, Ω) > 0.
We say it is µ-ample if λ1(−∆ − µ, Ω∗) < 0, for every connected limit Ω∗

of Ω.

Balance between µ-growth in interior and absorption at the boundary
Narrow: every point of Ω relatively close to ∂Ω
Ample: Ω sufficiently capacious even at infinity
λ1(−∆ − µ, Ω) > 0 (narrow) iff λ1(−∆ − µ, Ω∗) > 0 for every
connected limit Ω∗ of Ω.
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Strong KPP, unbounded domains

Examples of domains

! "
# $ # $ # # $ #

%
& ' ' ' ' ' $ (

)*+,- . /
*012 3

45-62 785/,9 ' 45-62,* : ; <-=

' >/++8? ,* :/*:

'

@

>8972A292+/*2B :** =

H. Berestycki (EHESS, Paris) uniqueness elliptic equ. unbounded domains Cortona, 30 May 2022 14 / 31



Strong KPP, unbounded domains

Examples of domains
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Positive reaction terms

II. Positive reaction terms

Subtle interaction between positive reactions and Dirichlet conditions.
Example of non-uniqueness:

Proposition
Consider Dirichlet conditions. On every bounded domain Ω, there exists a
positive reaction f such that the equation with Dirichlet conditions has
multiple stable positive bounded solutions. In fact, f can be chosen to
satisfy the weak KPP condition : f (u) ≤ f ′(0)u.

H. Berestycki (EHESS, Paris) uniqueness elliptic equ. unbounded domains Cortona, 30 May 2022 16 / 31



Positive reaction terms

Sketch of proof
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Positive reaction terms

Positive reactions, Dirichlet, Lipschitz epigraphs

! "
Theorem (HB, L. Caffarelli & L. Nirenberg, CPAM 1997)

Consider Dirichlet b.c. and f of positive type. If
Ω = {xN > Φ(x1, . . . , xN−1)} for some globally Lipschitz function
Φ: Rd−1 → R, then the equation has a unique positive bounded solution.
Moreover, this solution is strictly increasing in xN and u(x) → 1 as
dist(x , ∂Ω) → ∞.
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Positive reaction terms

Positive reactions, Dirichlet, half-space

! "
Theorem (HB, L. Caffarelli & L. Nirenberg, CPAM 1997)

Consider Dirichlet b.c. and f of positive type. If Ω = {xN > 0} is a
half-space, then the solution of the equation has a unique positive
bounded solution. Moreover, this solution has one-dimensional symmetry
(i.e. u = u(xN)) and is strictly increasing in xN .
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General equations in a half space

III. General equations in a half space

Theorem (HB, L. Caffarelli & L. Nirenberg, Ann. Sc. Norm. Sup. Pisa, 1997)

Consider a half-plane in R2 or a half-space in R3, i.e. Ω = Rd × R+ for
d = 1 or 2, and Dirichlet b.c. Then all bounded positive solutions are
one-dimensional: u = u(xN).

Corollary
For Dirichlet conditions, Ω = Rd × R+ for d = 1 or 2, and f is bistable,
ignition, or positive, then the equation has a unique bounded positive
solution.

Open problem
What about higher dimensions?

It is related to the De Giorgi conjecture.
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Bistable equations

IV. Bistable equations

!
"

We assume the non-linearity is unbalanced, i.e.∫ 1

0
f (s)ds > 0,

(unlike the Allen-Cahn equation).
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Bistable equations

Bistable equations – non-uniqueness bounded domains

{
−∆u = λf (u), u > 0 in Ω
u = 0 on ∂Ω.

Theorem (P. Rabinowitz)
Assume that f is bistable unbalanced. Let Ω be a bounded smooth
domain. There exists λ∗ such that

1 the equ. does not have positive solutions for λ < λ∗,
2 the equ. has (at least) one positive solutions for λ = λ∗,
3 the equ. has (at least) two distinct positive solutions for λ > λ∗,

(Weakly) stable maximum solution when λ ≥ λ∗; second solution is
unstable.
Topological degree argument.
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Bistable equations

Bistable reaction terms, blocking
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Bistable equations

Bistable reaction terms, blocking

Theorem
When ε is sufficiently small, there are two stable solution ui with
u1(x) → 0 as x1 → +∞ and u1(x) → w0(y) > 0 as x1 → −∞, and the
reverse for u2.

Related to [HB, J. Bouhours, G. Chapuisat, Calc. Var. PDE, 2016] and
[HB, F. Hamel, H. Matano, CPAM, 2009] that considered Neumann cond.
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Bistable equations

Coercive Lipschitz epigraphs

Epigraph:
Ω = {x ∈ RN ; xN > ϕ(x1, . . . , xN−1}

Lipschitz: ϕ globally Lipschitz
coercive;

lim
x ′∈RN−1,|x ′|→∞

ϕ(x ′) = +∞

strongly coercive: Can be written as a coercive epigraph for directions
in an open cone around eN .
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Bistable equations

Bistable reactions, Dirichlet cond., coercive Lipschitz
epigraphs

!
"

Theorem
Consider Dirichlet b.c. and f of bistable unbalanced type. In such a
strongly coercive epigraph, the equation has a unique positive bounded
solution. Moreover, this solution is strictly increasing in xN and u(x) → 1
as dist(x , ∂Ω) → ∞.
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Bistable equations

Bistable reaction terms, cones

Consider a cone K included in a circular cone of opening angle less than
π/2 around some axis.

Theorem
For the bistable case, the equation with Dirichlet condition in K has a
unique bounded positive solution.

Corollary
The scalar field equation −∆u = up − u does not have bounded positive
solutions with Dirichlet cond. in such a cone or in a Lipschitz epigraph
contained in such a graph.
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Bistable equations

Bistable reaction terms, epigraph, Moving planes
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Bistable equations

Bistable reaction terms, epigraphs, sliding 1
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Bistable equations

Bistable reaction terms, sliding 2
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Bistable equations

Bistable reaction terms, sliding 3
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