The question of uniqueness of steady states for Reaction–Diffusion Equations in General Domains

Henri Berestycki

Centre d'Analyse et Mathématique Sociales CNRS – EHESS, Paris

Mostly Maximum Principle Cortona, 30 May 2022

Joint work with Cole GRAHAM (Brown Univ.)

Stationary states of Reaction-diffusion Equations

 $\partial_t u - \Delta u = f(u)$, in general domains $\Omega \subset \mathbb{R}^N$ Stationary states \rightarrow semi-linear elliptic equations :

$$\begin{cases} -\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega \\ u = 0 \quad \text{on} \quad \partial \Omega. \end{cases}$$

¹HB & C. Graham, Annales IHP Analyse non lin., 2022

3/31

Stationary states of Reaction-diffusion Equations

 $\partial_t u - \Delta u = f(u)$, in general domains $\Omega \subset \mathbb{R}^N$ Stationary states \rightarrow semi-linear elliptic equations :

$$\begin{cases} -\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega \\ u = 0 \quad \text{on} \quad \partial \Omega. \end{cases}$$

General question: When is a positive stationary solution unique?

¹HB & C. Graham, Annales IHP Analyse non lin., 2022

3/31

Stationary states of Reaction-diffusion Equations

 $\partial_t u - \Delta u = f(u)$, in general domains $\Omega \subset \mathbb{R}^N$ Stationary states \rightarrow semi-linear elliptic equations :

$$\begin{cases} -\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega \\ u = 0 \quad \text{on} \quad \partial \Omega. \end{cases}$$

General question: When is a positive stationary solution unique?

Various types of reaction terms f, domains Ω , and boundary conditions on boundary $\partial \Omega$:

- Dirichlet: u = 0,
- Neumann: $\partial_{\nu} u = 0$,
- Robin: $\rho \partial_{\nu} u + (1 \rho) u = 0$, $(\rho \in [0, 1])^1$.

¹HB & C. Graham, Annales IHP Analyse non lin., 2022

Classical types of reaction terms

Look for $0 \le u \le 1$; f is $C^1[0,1]$, f(0) = f(1) = 0.

Classical types of reaction terms

Look for $0 \le u \le 1$; f is $C^1[0,1]$, f(0) = f(1) = 0.

- Bistable f
- Positive f
 - General
 - Weak KPP
 - Strong KPP

Classical types of reaction terms: bistable, positive

KPP reaction terms

A classical result: strong KPP in bounded domains

$$\begin{cases} -\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega \\ u = 0 \quad \text{on} \quad \partial \Omega. \end{cases}$$

Assume that f is strongly KPP:

$$s\in (0,1)\mapsto rac{f(s)}{s}$$
 is decreasing on $(0,1).$

Theorem

Under this assumption, suppose that Ω is a **bounded** smooth domain. Then, when it exists, the positive solution u is unique.^a

^aHB, *Le nombre de solutions de certains problèmes semi-linéaires elliptiques*, J. Funct. Anal. **40**, 1981.

Remarks

- Nec. and suff. cond. for existence: $\lambda_1^D(-\Delta, \Omega) < f'(0)$.
- The result is true for a general elliptic operator:

$$\begin{cases} -a_{i,j}(x)\partial_{i,j}u + b_i(x)\partial_i u = f(x,u), & u > 0 \quad \text{in} \quad \Omega \\ u = 0 \quad \text{on} \quad \partial\Omega. \end{cases}$$

- Extensions to unbounded domains not straightforward. Think e.g. of -u'' cu' = f(u) on \mathbb{R} with f KPP. It has multiple positive solutions when $c \ge 2\sqrt{f'(0)}$.²
- In all of space for $-\Delta u = f(u)$:

Theorem

Assume f is positive with f'(0) > 0. In \mathbb{R}^N , there is only one bounded positive solution of the equation $-\Delta u = f(u)$, namely $u \equiv 1$.

²HB, F. Hamel & L. Rossi, Ann. Mat. Pura Appl. (2007).

I. Strong KPP equations, unbounded domains (Dirichlet cond.)

What about general unbounded Ω ?

$$\begin{cases} -\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega \\ u = 0 \quad \text{on} \quad \partial \Omega. \end{cases}$$

Consider the case *f* is of strong KPP type. We require an additional non-degeneracy condition.

Generalized principal Dirichlet eigenvalue

[HB, L.Nirenberg and S. Varadhan, CPAM 1994] and unbounded domains [HB, L. Rossi, CPAM 2015]

Definition

$$\lambda_1(-L,\Omega) := \sup \big\{ \lambda \mid \exists \phi > 0 \text{ in } W^{2,N}_{loc}(\Omega) \cap C(\bar{\Omega}) \text{ such that } (L+\lambda)\phi \leq 0 \big\}.$$

 $\lambda_1(-L, \Omega)$ is the limit of the principal **Dirichlet eigenvalues** of -L on $\Omega \cap B_R$ as $R \to \infty$ [S. Agmon, 1983].

Proposition

Suppose f is of weak KPP type. Then the equation admits a positive bounded solution if $\lambda_1(-\Delta - f'(0), \Omega) < 0$. Conversely, it has no positive bounded solution if $\lambda_1(-\Delta - f'(0), \Omega) > 0$.

- Critical case λ₁ = 0 varies; conjecture: no positive bounded solutions if f is strong KPP.
- Proposition analogous to results³ for variable-coefficient operators in \mathbb{R}^n .

³[HB, F. Hamel and L. Rossi, Ann. Mat. Pura Appl. 2007].

H. Berestycki (EHESS, Paris)

uniqueness elliptic equ. unbounded domains

Strong KPP equations, Dirichlet cond. unbounded domains

- The behavior of $\boldsymbol{\Omega}$ at infinity plays a major role
- Limits of translations of Ω may be disconnected; we call their connected components *connected limits*
- Consider the "principal limiting spectrum"

 $\Sigma^*(f'(0),\Omega) \coloneqq \{\lambda_1(f'(0),\Omega^*) \mid \Omega^* \text{ a connected limit of } \Omega\}.$

Theorem

Suppose that f is of strong KPP type and that Ω is strongly noncritical in the sense that 0 is not in the closure of $\Sigma^*(f'(0), \Omega)$. Then, when it exists, the positive bounded solution of the equation is unique.

Strong KPP equations, Dirichlet cond. unbounded domains

- The behavior of $\boldsymbol{\Omega}$ at infinity plays a major role
- Limits of translations of Ω may be disconnected; we call their connected components *connected limits*
- Consider the "principal limiting spectrum"

 $\Sigma^*(f'(0),\Omega) \coloneqq \{\lambda_1(f'(0),\Omega^*) \mid \Omega^* \text{ a connected limit of } \Omega\}.$

Theorem

Suppose that f is of strong KPP type and that Ω is strongly noncritical in the sense that 0 is not in the closure of $\Sigma^*(f'(0), \Omega)$. Then, when it exists, the positive bounded solution of the equation is unique.

Conjecture

In a general domain Ω , or, at least, in a uniformly smooth domain Ω , if f is strong KPP, then the equation admits at most one positive bounded solution.

Sketch of proof in noncritical domains

If $0 \notin \overline{\Sigma}^*(f'(0), \Omega)$, then limits of Ω have a "spectral gap" around 0. We use this gap to write Ω as the union of two smooth open sets Ω_+ and Ω_- that satisfy

$$\lambda_1(-\Delta-f'(0),\Omega_+)>0 \quad \text{and} \quad \Sigma^*(f'(0),\Omega_-)\subset (-\infty,0).$$

This decomposition is delicate; we rely on a beautiful result of Lieb^a:

$$\inf_{\boldsymbol{\kappa}\in\mathbb{R}^N}\lambda_1(-\Delta,A\cap(B+\boldsymbol{\kappa}))\leq\lambda_1(-\Delta,A)+\lambda_1(-\Delta,B).$$

^aInventiones, 1983

Solutions cannot vanish at infinity in $\Omega_-,$ and the uniqueness proof from bounded domains goes through.

The equation satisfies the maximum principle on Ω_+ , so we can "transfer uniqueness" from the overlap $\Omega_- \cap \Omega_+$ to all of Ω_+ , and thus all of Ω .

12/31

Narrow and ample domains

We term the components Ω_+ and Ω_- "narrow" and "ample."

Definition

Given $\mu > 0$, we say that the domain is μ -narrow if $\lambda_1(-\Delta - \mu, \Omega) > 0$. We say it is μ -ample if $\lambda_1(-\Delta - \mu, \Omega^*) < 0$, for every connected limit Ω^* of Ω .

- Balance between μ -growth in interior and absorption at the boundary
- Narrow: every point of Ω relatively close to $\partial \Omega$
- Ample: Ω sufficiently capacious even at infinity
- $\lambda_1(-\Delta \mu, \Omega) > 0$ (narrow) iff $\lambda_1(-\Delta \mu, \Omega^*) > 0$ for every connected limit Ω^* of Ω .

Examples of domains

Examples of domains

II. Positive reaction terms

Subtle interaction between positive reactions and Dirichlet conditions. Example of *non-uniqueness*:

Proposition

Consider Dirichlet conditions. On every bounded domain Ω , there exists a positive reaction f such that the equation with Dirichlet conditions has multiple stable positive bounded solutions. In fact, f can be chosen to satisfy the weak KPP condition : $f(u) \leq f'(0)u$.

Sketch of proof

H. Berestycki (EHESS, Paris)

Positive reactions, Dirichlet, Lipschitz epigraphs

Theorem (HB, L. Caffarelli & L. Nirenberg, CPAM 1997)

Consider Dirichlet b.c. and f of positive type. If $\Omega = \{x_N > \Phi(x_1, \dots, x_{N-1})\}$ for some globally Lipschitz function $\Phi \colon \mathbb{R}^{d-1} \to \mathbb{R}$, then the equation has a unique positive bounded solution. Moreover, this solution is strictly increasing in x_N and $u(x) \to 1$ as $\operatorname{dist}(x, \partial \Omega) \to \infty$.

Positive reactions, Dirichlet, half-space

Theorem (HB, L. Caffarelli & L. Nirenberg, CPAM 1997)

Consider Dirichlet b.c. and f of positive type. If $\Omega = \{x_N > 0\}$ is a half-space, then the solution of the equation has a unique positive bounded solution. Moreover, this solution has one-dimensional symmetry (i.e. $u = u(x_N)$) and is strictly increasing in x_N .

III. General equations in a half space

Theorem (HB, L. Caffarelli & L. Nirenberg, Ann. Sc. Norm. Sup. Pisa, 1997)

Consider a half-plane in \mathbb{R}^2 or a half-space in \mathbb{R}^3 , i.e. $\Omega = \mathbb{R}^d \times \mathbb{R}_+$ for d = 1 or 2, and Dirichlet b.c. Then all bounded positive solutions are one-dimensional: $u = u(x_N)$.

Corollary

For Dirichlet conditions, $\Omega = \mathbb{R}^d \times \mathbb{R}_+$ for d = 1 or 2, and f is bistable, ignition, or positive, then the equation has a unique bounded positive solution.

III. General equations in a half space

Theorem (HB, L. Caffarelli & L. Nirenberg, Ann. Sc. Norm. Sup. Pisa, 1997)

Consider a half-plane in \mathbb{R}^2 or a half-space in \mathbb{R}^3 , i.e. $\Omega = \mathbb{R}^d \times \mathbb{R}_+$ for d = 1 or 2, and Dirichlet b.c. Then all bounded positive solutions are one-dimensional: $u = u(x_N)$.

Corollary

For Dirichlet conditions, $\Omega = \mathbb{R}^d \times \mathbb{R}_+$ for d = 1 or 2, and f is bistable, ignition, or positive, then the equation has a unique bounded positive solution.

Open problem

What about higher dimensions?

It is related to the De Giorgi conjecture.

IV. Bistable equations

We assume the non-linearity is *unbalanced*, i.e.

$$\int_0^1 f(s)ds > 0,$$

(unlike the Allen-Cahn equation).

Bistable equations – non-uniqueness bounded domains

$$\begin{cases} -\Delta u = \lambda f(u), \quad u > 0 \quad \text{in} \quad \Omega \\ u = 0 \quad \text{on} \quad \partial \Omega. \end{cases}$$

Theorem (P. Rabinowitz)

Assume that f is bistable unbalanced. Let Ω be a bounded smooth domain. There exists λ^* such that

- **(**) the equ. does not have positive solutions for $\lambda < \lambda^*$,
- 2 the equ. has (at least) one positive solutions for $\lambda = \lambda^*$,
- § the equ. has (at least) two distinct positive solutions for $\lambda > \lambda^*$,

(Weakly) stable maximum solution when $\lambda \geq \lambda^*$; second solution is unstable.

Topological degree argument.

Bistable reaction terms, blocking

Bistable reaction terms, blocking

Theorem

When ε is sufficiently small, there are two stable solution u_i with $u_1(x) \to 0$ as $x_1 \to +\infty$ and $u_1(x) \to w_0(y) > 0$ as $x_1 \to -\infty$, and the reverse for u_2 .

Related to [HB, J. Bouhours, G. Chapuisat, Calc. Var. PDE, 2016] and [HB, F. Hamel, H. Matano, CPAM, 2009] that considered Neumann cond.

Coercive Lipschitz epigraphs

• Epigraph:

$$\Omega = \{x \in \mathbb{R}^N; x_N > \phi(x_1, \ldots, x_{N-1})\}$$

- Lipschitz: ϕ globally Lipschitz
- coercive;

$$\lim_{x'\in\mathbb{R}^{N-1},|x'|\to\infty}\phi(x')=+\infty$$

• strongly coercive: Can be written as a coercive epigraph for directions in an open cone around *e_N*.

Bistable reactions, Dirichlet cond., coercive Lipschitz epigraphs

Theorem

Consider Dirichlet b.c. and f of bistable unbalanced type. In such a strongly coercive epigraph, the equation has a unique positive bounded solution. Moreover, this solution is strictly increasing in x_N and $u(x) \to 1$ as $dist(x, \partial\Omega) \to \infty$.

Bistable reaction terms, cones

Consider a cone K included in a circular cone of opening angle less than $\pi/2$ around some axis.

Theorem

For the bistable case, the equation with Dirichlet condition in K has a unique bounded positive solution.

Bistable reaction terms, cones

Consider a cone K included in a circular cone of opening angle less than $\pi/2$ around some axis.

Theorem

For the bistable case, the equation with Dirichlet condition in K has a unique bounded positive solution.

Corollary

The scalar field equation $-\Delta u = u^p - u$ does not have bounded positive solutions with Dirichlet cond. in such a cone or in a Lipschitz epigraph contained in such a graph.

Bistable reaction terms, epigraph, Moving planes

Bistable reaction terms, epigraphs, sliding 1

Bistable reaction terms, sliding 2

Bistable reaction terms, sliding 3

