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I. Weak convergence and products

Assume {
uε ⇀ u

v ε ⇀ v
as ε→ 0.

QUESTION

When is it true that
uεv ε ⇀ uv ??

FALSE IN GENERAL: High frequencies in uε and v ε may “resonate”.

EXAMPLE:
uε = v ε = sin( x

ε ) ⇀ 0, uεv ε = sin2( x
ε ) ⇀ 1

2 .
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THEOREM

Let n = 2 and assume

uεt + b(x , t)uεx = 0, v εt + c(x , t)v εx = 0.

If
b 6= c ,

then
uεv ε ⇀ uv .

PROOF: (L. Tartar) Define

Uε = [buε, uε]T ,V ε = [v ε,−cv ε]T .

We have {
divUε = (buε)x + uεt = bxu

ε

curl V ε = v εt − (−cv ε)x = cxv
ε.

By Div-Curl Lemma,
Uε · V ε ⇀ U · V .
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This says
(b − c)uεv ε ⇀ (b − c)uv .

ANOTHER PROOF: Change variables:

Convert to uε = uε(x), v ε = v ε(t). Easy to see that

uε(x)v ε(t) ⇀ u(x)v(t).
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II. Weak convergence and triple products

Assume 
uε ⇀ u

v ε ⇀ v

w ε ⇀ w

as ε→ 0.

QUESTION

When is it true that
uεv εw ε ⇀ uvw ??

REFERENCES: J.-L. Joly, G. Metivier and J. Rauch, “Trilinear compensated
compactness and nonlinear geometric optics”, Annals of Math. 142 (1995),
121–169.

M. Christ, “On trilinear oscillatory integral inequalities and related topics”,
preprint (2021)

5 / 15



THEOREM (Joly–Metivier–Rauch)

Assume
uε = uε(x), v ε = v ε(t), w ε

t + a(x , t)w ε
x = 0.

If a > 0 and
(log a)xt 6= 0,

then
uεv εw ε ⇀ uvw .

WHAT IS THE MEANING OF THE CONDITION

κ = (log a)xt 6= 0 ?

This is a formula for the curvature of the 3-web comprising the horizontal lines,
the vertical lines and the trajectories of the ODE

γ̇ = a(γ, t).
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Introduce the simple transport PDE

φt + aφx = 0 in R2,

any solution φ = φ(x , t) of which is constant along the flow lines of the ODE
γ̇ = a(γ, t).

LEMMA

Assume
φx > 0, φt < 0

and define

z =
φxt
φt
.

Then
zt + (az)x = κ.
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III. 3-webs in the plane

THEOREM

(i) If κ ≡ 0, then the points A,B,C ,D,E ,F are the vertices of a closed
“hexagon”.

(ii) If instead κ 6= 0, the points A,B,C ,D,E ,F are not the vertices of a closed
hexagon.
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PROOF: 1. Assume O = (0, 0) and let φ solve the transport PDE with initial
conditions

φ(x , 0) =

∫ x

0

1

a(y , 0)
dy .

Then

φt(x , 0) = −a(x , 0)φx(x , 0) = −a(x , 0)
1

a(x , 0)
= −1,

and so φxt(x , 0) = 0. Thus
z(x , 0) = 0,

where z = φxt

φt
.

2. Assume κ ≡ 0. It follows from the Lemma that z ≡ 0. Therefore φxt ≡ 0 and
consequently

0 =

∫∫
OABC

φxt dxdt = φ(B) + φ(O)− φ(A)− φ(C ),

0 =

∫∫
ODEF

φxt dxdt = φ(E ) + φ(O)− φ(D)− φ(F ).

Since φ(O) = φ(B) = φ(E ) = 0 and φ(C ) = φ(D), it follows that φ(F ) = φ(A).
So the points A and F are on the same flow line.
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3. Suppose instead that κ < 0. Since zt + (az)x = κ in R2, with z = 0 on the
horizontal line {t = 0}, we have{

z < 0 in R× {t > 0}
z > 0 in R× {t < 0}.

As φxt = φtz and φt < 0,{
φxt > 0 in R× {t > 0}
φxt < 0 in R× {t < 0}.

Therefore

0 <

∫∫
OABC

φxt dxdt = φ(B) + φ(O)− φ(A)− φ(C ),

0 >

∫∫
ODEF

φxt dxdt = φ(E ) + φ(O)− φ(D)− φ(F ).

Since φ(O) = φ(B) = φ(E ) = 0 and φ(C ) = φ(D), we have φ(A) < φ(F ). So A
and F are not on the same flow line: the hexagon does not close up.
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Zero curvature gives resonances

It turns out that if κ ≡ 0 (equivalently, all the hexagons close up), then there exist
3 functions

ψ1(x), ψ2(t), ψ3(x , t),

with non vanishing gradients, such that ψ3,t + aψ3,x = 0 and

ψ1(x) + ψ2(t) + ψ3(x , t) ≡ 0. (Resonance condition)

Let
uε(x) = e i

ψ1(x)
ε , v ε(t) = e i

ψ2(t)
ε ,w ε(x , t) = e i

ψ3(x,t)
ε .

Then
uε, v ε,w ε ⇀ 0

by (non) stationary phase estimates, but

uεv εw ε ≡ 1.
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IV. Compactness and curvature

Assume {uε(x)} is bounded in L2(R), w ε = w ε(x , t) solves the PDE

w ε
t + a(x , t)w ε

x = 0,

and
w ε ⇀ 0.

Let χ : R2 → R be a smooth cutoff function and introduce the nonlinear
correlation function

λε(t) =

∫
R
uε(x)w ε(x , t)χ(x , t) dx .

THEOREM

Assume that
κ 6= 0 in R2.

Then
λε → 0 strongly in L2(R2).
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OUTLINE OF PROOF:
1. Write

I ε =

∫ T

0

(λε)2 dt =

∫ T

0

∫∫
R2

uε(x)uε(y)w ε(x , t)w ε(y , t)χ(x , t)χ(y , t) dxdydt.

We have
w ε(x , t) = v ε(φ(x , t)),

where φ solves the transport PDE and v ε ⇀ 0. Also,

v ε(z) =
1√
2π

∫
R
e iξz v̂ ε(ξ) dξ,

where
v̂ ε → 0 uniformly on bounded sets.

Hence

I ε =

∫∫∫∫
R4

ΛεJ1 dxdydξdη,

for
Λε = uε(x)uε(y)v̂ ε(ξ)(v̂ ε(η))−,

J1 =

∫ T

0

e i(ξφ(x,t)−ηφ(y ,t))b1 dt.
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2. Assume that for each (x , y , ξ, η), the mapping

t 7→ ξφ(x , t)− ηφ(y , t)

has a unique, nondegenerate minimum at τ = τ(x , y , ξ, η). Then standard
stationary phase estimates show

I ε =

∫∫∫∫
R4

ΛεJ2 dxdydξdη + o(1),

where
J2 = e iΨ(x,y ,ξ,η)b2|ξ|−

1
2

for
Ψ(x , y , ξ, η) = ξφ(x , τ)− ηφ(y , τ).

3. Now define the Fourier integral operator

T f (x , y) =

∫∫
R2

e iΨ(x,y ,ξ,η)b2f (ξ, η) dξdη.

I claim that
T : L2(R2

ξη)→ L2(R2
xy )

is a bounded linear operator.
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The key observation for showing this is that

detA = g

∫ y

x

κ(r , τ) dr 6= 0,

where

A =

(
Ψxξ Ψxη

Ψyξ Ψyη

)
and g denotes some nonvanishing expression.

Since T is a bounded linear operator on L2, the extra term |ξ|− 1
2 above lets us

show that
I ε → 0.

REMARK In the real proof, we have to factor

w ε(x , t) = v ε(φ(x , t)) = ṽ ε(φ̃(x , t))

for two different solutions of the transport PDE, to get to the situation stated in
blue on the previous slide.
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