## Mostly Maximum Principle

May 30-th-June 3th 2022

Regularity results for a free boundary problem governed by a nonstandard growth operator

## **Fausto Ferrari**

Dipartimento di Matematica Piazza di Porta S. Donato, 5, 40126 **Università di Bologna** fausto.ferrari@unibo.it

Università di Bologna

**Fausto Ferrari** 

.....

## Abstract.

We introduce some results concerning the regularity of flat or

Lipschitz free boundaries of non-homogeneous equations governed by the p(x)-Laplace operator.

The results are contained in

Regularity of flat free boundaries for a p(x)-Laplacian problem with right hand side Nonlinear Anal. 212 (2021) and in

Regularity of Lipschitz free boundaries for a p(x)-Laplacian problem with right hand side, preprint (2022) both papers have been obtained in collaboration with:

# **Claudia Lederman**

IMAS - CONICET and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina.

Università di Bologna

## Abstract.

We introduce some results concerning the regularity of flat or

Lipschitz free boundaries of non-homogeneous equations governed by the p(x)-Laplace operator.

The results are contained in

Regularity of flat free boundaries for a p(x)-Laplacian problem with right hand side Nonlinear Anal. 212 (2021) and in

Regularity of Lipschitz free boundaries for a p(x)-Laplacian problem with right hand side, preprint (2022) both papers have been obtained in collaboration with:

# Claudia Lederman

IMAS - CONICET and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina.

# The problem

- Some motivations (Thermistor problem)
- The p(x)-Laplace operator versus the *p*-Laplace operator
- An overview about two-phase problems (Prandl-Batchelor problem)

#### Università di Bologna

Sac

・ロト ・ 四ト ・ ヨト ・ ヨト

# The problem

## Some motivations (Thermistor problem)

- The p(x)-Laplace operator versus the *p*-Laplace operator
- An overview about two-phase problems (Prandl-Batchelor problem)

#### **Fausto Ferrari**

Università di Bologna

Sac

イロト イポト イヨト イヨト 三日

- The problem
- Some motivations (Thermistor problem)
- The p(x)-Laplace operator versus the *p*-Laplace operator
- An overview about two-phase problems (Prandl-Batchelor problem)

イロト イポト イヨト イヨト 三日

Sac

Università di Bologna

- The problem
- Some motivations (Thermistor problem)
- The p(x)-Laplace operator versus the *p*-Laplace operator
- An overview about two-phase problems (Prandl-Batchelor problem)

Jac.

イロト イポト イヨト イヨト 三日

## The problem

The one-phase problem that we consider is the following one:

$$\begin{cases} \Delta_{p(x)}u = f, & \text{in } \Omega^+(u) := \{x \in \Omega : u(x) > 0\}, \\ |\nabla u| = g, & \text{on } F(u) := \partial \Omega^+(u) \cap \Omega. \end{cases}$$
(1)

Here  $\Omega \subset \mathbb{R}^n$  is a bounded domain,  $p \in C^1(\Omega), f \in C(\Omega) \cap L^{\infty}(\Omega)$ and  $g \in C^{0,\beta}(\Omega), g > 0, \beta \in (0,1]$ .

Sac

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

## **First Result**

# Theorem (Flatness implies $C^{1,\alpha}$ -F- Claudia Lederman)

Let u be a viscosity solution to (1) in  $B_1$ . Assume that  $0 \in F(u)$ , g(0) = 1 and  $p(0) = p_0$ . There exists a universal constant  $\overline{\varepsilon} > 0$  such that, if the graph of u is  $\overline{\varepsilon}$ -flat in  $B_1$ , in the direction  $e_n$ , that is

$$(x_n - \bar{\varepsilon})^+ \le u(x) \le (x_n + \bar{\varepsilon})^+, \quad x \in B_1,$$
(2)

and

$$\|\nabla p\|_{L^{\infty}(B_1)} \leq \bar{\varepsilon}, \quad \|f\|_{L^{\infty}(B_1)} \leq \bar{\varepsilon}, \quad [g]_{C^{0,\beta}(B_1)} \leq \bar{\varepsilon}, \quad (3)$$

then F(u) is  $C^{1,\alpha}$  in  $B_{1/2}$ .

Università di Bologna

イロト イポト イヨト イヨ

#### **Fausto Ferrari**

••••

# Second Result

Theorem (Optimal regularity-F- Claudia Lederman)

Let u be a viscosity solution to (1) in  $B_1$ . There exists a constant C > 0 such that

 $\|\nabla u\|_{L^{\infty}(B_{1/2})} \leq C.$ 

#### **Fausto Ferrari**

3 Università di Bologna

nac

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

## **Third Result**

Theorem (Lipschitz implies  $C^{1,\alpha}$ -F- Claudia Lederman)

Let u be a viscosity solution to (1) in  $B_1$ , with  $0 \in F(u)$ . If F(u) is a Lipschitz graph in a neighborhood of 0, then F(u) is  $C^{1,\alpha}$  in a (smaller) neighborhood of 0.

**Fausto Ferrari** 

Università di Bologna

イロト イポト イヨト イヨト

## Comment: we exploited some recent results by [Si] and [SS]

Fausto Ferrari

Università di Bologna

# Some Motivations: the thermistor problem

Let  $\Omega \subset \mathbb{R}^n$  be smooth. The system

$$\begin{cases} -\operatorname{div}(|\nabla u(x)|^{\sigma(\theta(x))-2}\nabla u(x)) = \tilde{f}, \quad u_{|\partial\Omega} = 0\\ -\Delta\theta(x) = \lambda |\nabla u(x)|^{\sigma(\theta(x))}, \quad \theta_{|\partial\Omega} = 0 \end{cases}$$
(4)

gives a joint description, [V.V. Zhikov, Solvability of the three-dimensional thermistor problem. (Russian. Russian summary) Tr. Mat. Inst. Steklova 261 (2008), Differ. Uravn. i Din. Sist., 101–114; translation in Proc. Steklov Inst. Math. 261 (2008), no. 1, 98–111], of the electric field (with potential u) and the temperature  $\theta$  in a thermistor.

... a thermistor is a type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors...

A D F A B F A B F A B F

Here  $\lambda > 0$  is a parameter and  $\sigma : [0, +\infty) \to \mathbb{R}$ , is a bounded function so that there exist *a*, *b* positive numbers 1 < a < b such that  $a \le \sigma(s) \le b$  for every  $s \in [0, \infty)$ .

Sac

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Assuming that the temperature  $\theta$  is known and denoting  $p(x) = \sigma(\theta(x))$ , then we obtain the free boundary problem

$$\begin{cases} \operatorname{div}(|\nabla u(x)|^{p(x)-2}\nabla u(x)) = -\tilde{f}, & \Omega\\ u = 0, & \operatorname{on} \partial\Omega, \\ |\nabla u(x)| = g(x) := \left(-\frac{\Delta\theta(x)}{\lambda}\right)^{\frac{1}{p(x)}}, & \operatorname{on} \partial\Omega, \end{cases}$$
(5)

that is

$$\begin{cases} \Delta_{p(x)}u = f, & \text{in } \Omega^+(u) := \{x \in \Omega : u(x) > 0\}, \\ |\nabla u| = g, & \text{on } F(u) := \partial \Omega^+(u) \cap \Omega. \end{cases}$$
(6)

where  $\Delta_{p(x)}u := \operatorname{div}(|\nabla u(x)|^{p(x)-2}\nabla u(x))$  and  $f := -\tilde{f}$ .

Università di Bologna

Sac

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

# A variational approach

Problem (1) comes out also naturally from limits of a singular perturbation problem with forcing term as in [LW1], arising in the study of flame propagation with nonlocal and electromagnetic effects. (1) appears by minimizing the following functional

$$\mathcal{E}(v) = \int_{\Omega} \left( \frac{|\nabla v|^{p(x)}}{p(x)} + \chi_{\{v>0\}} + f(x)v \right) dx \tag{7}$$

studied in [LW3], as well as in the seminal paper by Alt and Caffarelli [AC] in the case  $p(x) \equiv 2$  and  $f \equiv 0$ . In [LW4], (1) appears in the study of an optimal design problem

In [LW4], (1) appears in the study of an optimal design problem.

・ロト ・ 四ト ・ ヨト ・ ヨト

# A variational approach

Problem (1) comes out also naturally from limits of a singular perturbation problem with forcing term as in [LW1], arising in the study of flame propagation with nonlocal and electromagnetic effects. (1) appears by minimizing the following functional

$$\mathcal{E}(v) = \int_{\Omega} \left( \frac{|\nabla v|^{p(x)}}{p(x)} + \chi_{\{\nu > 0\}} + f(x)v \right) dx \tag{7}$$

studied in [LW3], as well as in the seminal paper by Alt and Caffarelli [AC] in the case  $p(x) \equiv 2$  and  $f \equiv 0$ .

In [LW4], (1) appears in the study of an optimal design problem.

Sac

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

# A variational approach

Problem (1) comes out also naturally from limits of a singular perturbation problem with forcing term as in [LW1], arising in the study of flame propagation with nonlocal and electromagnetic effects. (1) appears by minimizing the following functional

$$\mathcal{E}(v) = \int_{\Omega} \left( \frac{|\nabla v|^{p(x)}}{p(x)} + \chi_{\{\nu > 0\}} + f(x)v \right) dx \tag{7}$$

studied in [LW3], as well as in the seminal paper by Alt and Caffarelli [AC] in the case  $p(x) \equiv 2$  and  $f \equiv 0$ . In [LW4], (1) appears in the study of an optimal design problem.

Sac

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

## Remarks on the p constant case

# The homogeneous two phase case ( $f \equiv 0$ ) for the p-Laplace operator (*p* here is constant) has been studied by John Lewis and Kay Nystrom,[LN],[LN2].

The p-Laplace non-homogeneous one phase case (p here is constant) has been dealt with in a paper by Leitão R, Ricarte G. [LR] (2018) on IFB.

$$\begin{cases} \Delta_p u = f, & \text{in } \Omega^+(u) := \{ x \in \Omega : u(x) > 0 \}, \\ |\nabla u| = g, & \text{on } F(u) := \partial \Omega^+(u) \cap \Omega. \end{cases}$$
(8)

There  $\Omega \subset \mathbb{R}^n$  is a bounded domain, p > 1 is a constant.  $f \in C(\Omega) \cap L^{\infty}(\Omega)$  and  $g \in C^{0,\beta}(\Omega), g \ge 0$ . The authors proved that flat free boundaries are  $C^{1,\alpha}$  and that Lipschitz free boundaries are  $C^{1,\alpha}$ .

#### Università di Bologna

Sac

Remarks on the p constant case

The homogeneous two phase case  $(f \equiv 0)$  for the p-Laplace operator (*p* here is constant) has been studied by John Lewis and Kay Nystrom, [LN], [LN2]. The *p*-Laplace non-homogeneous one phase case (*p* here is constant) has been dealt with in a paper by Leitão R, Ricarte G. [LR] (2018) on

IFB.

$$\begin{cases} \Delta_p u = f, & \text{in } \Omega^+(u) := \{ x \in \Omega : u(x) > 0 \}, \\ |\nabla u| = g, & \text{on } F(u) := \partial \Omega^+(u) \cap \Omega. \end{cases}$$
(8)

Sac

Università di Bologna

There  $\Omega \subset \mathbb{R}^n$  is a bounded domain, p > 1 is a constant.  $f \in C(\Omega) \cap L^{\infty}(\Omega)$  and  $g \in C^{0,\beta}(\Omega), g \ge 0$ . The authors proved that flat free boundaries are  $C^{1,\alpha}$  and that Lipschitz free boundaries are  $C^{1,\alpha}$ .

Remarks on the p constant case

The homogeneous two phase case ( $f \equiv 0$ ) for the p-Laplace operator (*p* here is constant) has been studied by John Lewis and Kay Nystrom,[LN],[LN2].

The p-Laplace non-homogeneous one phase case (p here is constant) has been dealt with in a paper by Leitão R, Ricarte G. [LR] (2018) on IFB.

$$\begin{cases} \Delta_p u = f, & \text{in } \Omega^+(u) := \{ x \in \Omega : u(x) > 0 \}, \\ |\nabla u| = g, & \text{on } F(u) := \partial \Omega^+(u) \cap \Omega. \end{cases}$$
(8)

There  $\Omega \subset \mathbb{R}^n$  is a bounded domain, p > 1 is a constant.  $f \in C(\Omega) \cap L^{\infty}(\Omega)$  and  $g \in C^{0,\beta}(\Omega)$ ,  $g \ge 0$ . The authors proved that flat free boundaries are  $C^{1,\alpha}$  and that Lipschitz free boundaries are  $C^{1,\alpha}$ .

#### Università di Bologna

Sac

# **Basic Background**

Let  $p: \Omega \to [1, \infty)$  be a measurable bounded function, called a variable exponent on  $\Omega$ .

 $p_{\text{max}} = \text{esssup } p(x) \text{ and } p_{\min} = \text{essinf } p(x).$ 

The variable exponent Lebesgue space  $L^{p(\cdot)}(\Omega)$  is defined as the set of all measurable functions  $u : \Omega \to \mathbb{R}$  for which the modular  $\varrho_{p(\cdot)}(u) = \int_{\Omega} |u(x)|^{p(x)} dx$  is finite. The Luxemburg norm on this space is defined by

 $||u||_{L^{p(\cdot)}(\Omega)} = ||u||_{p(\cdot)} = \inf\{\lambda > 0 : \varrho_{p(\cdot)}(u/\lambda) \le 1\}.$ 

This norm makes  $L^{p(\cdot)}(\Omega)$  a Banach space.

< ロ > < 回 > < 回 > < 回 > 、

# **Basic Background**

Let  $p: \Omega \to [1, \infty)$  be a measurable bounded function, called a variable exponent on  $\Omega$ .

 $p_{\text{max}} = \text{esssup } p(x) \text{ and } p_{\min} = \text{essinf } p(x).$ 

The variable exponent Lebesgue space  $L^{p(\cdot)}(\Omega)$  is defined as the set of all measurable functions  $u : \Omega \to \mathbb{R}$  for which the modular  $\varrho_{p(\cdot)}(u) = \int_{\Omega} |u(x)|^{p(x)} dx$  is finite.

The Luxemburg norm on this space is defined by

 $||u||_{L^{p(\cdot)}(\Omega)} = ||u||_{p(\cdot)} = \inf\{\lambda > 0 : \varrho_{p(\cdot)}(u/\lambda) \le 1\}.$ 

This norm makes  $L^{p(\cdot)}(\Omega)$  a Banach space.

イロト イポト イモト イモト 二日

# **Basic Background**

Let  $p: \Omega \to [1, \infty)$  be a measurable bounded function, called a variable exponent on  $\Omega$ .

 $p_{\text{max}} = \text{esssup } p(x) \text{ and } p_{\min} = \text{essinf } p(x).$ 

The variable exponent Lebesgue space  $L^{p(\cdot)}(\Omega)$  is defined as the set of all measurable functions  $u : \Omega \to \mathbb{R}$  for which the modular  $\varrho_{p(\cdot)}(u) = \int_{\Omega} |u(x)|^{p(x)} dx$  is finite. The Luxemburg norm on this space is defined by

$$||u||_{L^{p(\cdot)}(\Omega)} = ||u||_{p(\cdot)} = \inf\{\lambda > 0 : \varrho_{p(\cdot)}(u/\lambda) \le 1\}.$$

ヘロト 人間 ト イヨト イヨト

Università di Bologna

This norm makes  $L^{p(\cdot)}(\Omega)$  a Banach space.

There holds the following relation between  $\varrho_{p(\cdot)}(u)$  and  $||u||_{L^{p(\cdot)}}$ :

$$\min\left\{\left(\int_{\Omega}|u|^{p(x)} dx\right)^{1/p_{\min}}, \left(\int_{\Omega}|u|^{p(x)} dx\right)^{1/p_{\max}}\right\} \le \|u\|_{L^{p(\cdot)}(\Omega)}$$
  
$$\le \max\left\{\left(\int_{\Omega}|u|^{p(x)} dx\right)^{1/p_{\min}}, \left(\int_{\Omega}|u|^{p(x)} dx\right)^{1/p_{\max}}\right\}.$$

Moreover, the dual of  $L^{p(\cdot)}(\Omega)$  is  $L^{p'(\cdot)}(\Omega)$  with  $\frac{1}{p(x)} + \frac{1}{p'(x)} = 1$ .

#### Università di Bologna

Sac

イロト イポト イヨト イヨト 三日

 $W^{1,p(\cdot)}(\Omega)$  denotes the space of measurable functions u such that u and the distributional derivative  $\nabla u$  are in  $L^{p(\cdot)}(\Omega)$ . The norm

 $||u||_{1,p(\cdot)} := ||u||_{p(\cdot)} + |||\nabla u||_{p(\cdot)}$ 

makes  $W^{1,p(\cdot)}(\Omega)$  a Banach space.

The space  $W_0^{1,p(\cdot)}(\Omega)$  is defined as the closure of the  $C_0^{\infty}(\Omega)$  in  $W^{1,p(\cdot)}(\Omega)$ .



ヘロト ヘロト ヘビト ヘビト

 $W^{1,p(\cdot)}(\Omega)$  denotes the space of measurable functions u such that u and the distributional derivative  $\nabla u$  are in  $L^{p(\cdot)}(\Omega)$ . The norm

$$||u||_{1,p(\cdot)} := ||u||_{p(\cdot)} + |||\nabla u||_{p(\cdot)}$$

makes  $W^{1,p(\cdot)}(\Omega)$  a Banach space. The space  $W_0^{1,p(\cdot)}(\Omega)$  is defined as the closure of the  $C_0^{\infty}(\Omega)$  in  $W^{1,p(\cdot)}(\Omega)$ .

#### Università di Bologna

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

## Basic differences with respect to the *p* constant case.

If  $u \ge 0$  is a weak solution to

$$\Delta_{p(\cdot)}u=0, \quad \Omega,$$

then there exists a positive constant C = C(u) such that for  $B_{4R}(x_0) \subset \subset \Omega$ 

$$\sup_{B_R(x_0)} u \leq C(\inf_{B_R(x_0)} u + R).$$

The dependence of C on u can not be removed, see [HKLMP]. [HKLMP] = Harjulehto P., Kuusi T., Lukkari T., Marola N., Parviainen M.

nan

・ロト ・ 四ト ・ ヨト ・ ヨト

## Basic differences with respect to the *p* constant case.

If  $u \ge 0$  is a weak solution to

$$\Delta_{p(\cdot)}u=0, \quad \Omega,$$

then there exists a positive constant C = C(u) such that for  $B_{4R}(x_0) \subset \subset \Omega$ 

$$\sup_{B_R(x_0)} u \leq C(\inf_{B_R(x_0)} u + R).$$

The dependence of C on u can not be removed, see [HKLMP]. [HKLMP] = Harjulehto P., Kuusi T., Lukkari T., Marola N., Parviainen M.

Università di Bologna

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

If  $u \ge 0$  is a weak solution to

$$\Delta_{p(\cdot)}u=f\in L^q, \quad \Omega,$$

and  $||u||_{L^{\infty}} < +\infty$ , then there exists a positive constant C = C(u) such that for  $B_{4R}(x_0) \subset \subset \Omega$ 

$$\sup_{B_R(x_0)} u \leq C(\inf_{B_R(x_0)} u + R + \mu R).$$

where  $\mu = \mu(||f||_{L^q}, p_{\min}, p_{\max}, R)$  and *C* depends on *u* and the other parameters as well in a complicate, but clear way, as well, see [Wo].

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

## Definition

Given  $u, \varphi \in C(\Omega)$ , we say that  $\varphi$  touches *u* from below (resp. above) at  $x_0 \in \Omega$  if  $u(x_0) = \varphi(x_0)$ , and

 $u(x) \ge \varphi(x)$  (resp.  $u(x) \le \varphi(x)$ ) in a neighborhood *O* of  $x_0$ .

If this inequality is strict in  $O \setminus \{x_0\}$ , we say that  $\varphi$  touches *u* strictly from below (resp. above).

Sac

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

# Definition

Assume that  $1 < p_{\min} \le p(x) \le p_{\max} < \infty$  with p(x) Lipschitz continuous in  $\Omega$  and  $\|\nabla p\|_{L^{\infty}} \le L$ , for some L > 0 and  $f \in L^{\infty}(\Omega)$ . We say that u is a weak solution to  $\Delta_{p(x)}u = f$  in  $\Omega$  if  $u \in W^{1,p(\cdot)}(\Omega)$ and, for every  $\varphi \in C_0^{\infty}(\Omega)$ , there holds that

$$-\int_{\Omega} |\nabla u(x)|^{p(x)-2} \nabla u \cdot \nabla \varphi \, dx = \int_{\Omega} \varphi f(x) \, dx.$$

Università di Bologna

<ロト < 四ト < 三ト < 三ト

# Definition

Let *u* be a continuous nonnegative function in  $\Omega$ . We say that *u* is a viscosity solution to (1) in  $\Omega$ , if the following conditions are satisfied:

- 1.  $\Delta_{p(x)}u = f$  in  $\Omega^+(u)$  in the weak sense.
- 2. For every  $\varphi \in C(\Omega)$ ,  $\varphi \in C^2(\overline{\Omega^+(\varphi)})$ . If  $\varphi^+$  touches *u* from below (resp. above) at  $x_0 \in F(u)$  and  $\nabla \varphi(x_0) \neq 0$ , then

$$|\nabla \varphi(x_0)| \le g(x_0) \quad (\text{resp.} \ge g(x_0)).$$

・ロト ・ 一下・ ・ ヨト ・ ヨト・

## Theorem

Assume that  $1 < p_{\min} \le p(x) \le p_{\max} < \infty$  with p(x) Lipschitz continuous in  $\Omega$  and  $\|\nabla p\|_{L^{\infty}} \le L$ , for some L > 0 and  $f \in L^{\infty}(\Omega)$ . Assume moreover that  $f \in C(\Omega)$  and  $p \in C^{1}(\Omega)$ . Let  $u \in W^{1,p(\cdot)}(\Omega) \cap C(\Omega)$  be a weak solution to  $\Delta_{p(x)}u = f$  in  $\Omega$ . Then uis a viscosity solution to  $\Delta_{p(x)}u = f$  in  $\Omega$ .

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

## Theorem

Let u be a viscosity solution to (1) in  $\Omega$ . Then the following conditions are satisfied:

- 1.  $\Delta_{p(x)}u = f$  in  $\Omega^+(u)$  in the viscosity sense, that is:
  - (ia) for every  $\varphi \in C^2(\Omega^+(u))$  and for every  $x_0 \in \Omega^+(u)$ , if  $\varphi$  touches u from above at  $x_0$  and  $\nabla \varphi(x_0) \neq 0$ , then  $\Delta_{p(x_0)}\varphi(x_0) \geq f(x_0)$ , that is, u is a viscosity subsolution;
  - (ib) for every  $\varphi \in C^2(\Omega^+(u))$  and for every  $x_0 \in \Omega^+(u)$ , if  $\varphi$  touches u from below at  $x_0$  and  $\nabla \varphi(x_0) \neq 0$ , then  $\Delta_{p(x_0)}\varphi(x_0) \leq f(x_0)$ , that is, u is a viscosity supersolution.
- 2. For every  $\varphi \in C(\Omega)$ ,  $\varphi \in C^2(\overline{\Omega^+(\varphi)})$ . If  $\varphi^+$  touches u from below (resp. above) at  $x_0 \in F(u)$  and  $\nabla \varphi(x_0) \neq 0$ , then

$$|\nabla \varphi(x_0)| \leq g(x_0) \quad (resp. \geq g(x_0)).$$

イロト イポト イヨト イヨト

### Lemma

Assume that  $1 < p_{\min} \le p(x) \le p_{\max} < \infty$  with p(x) Lipschitz continuous in  $\Omega$  and  $\|\nabla p\|_{L^{\infty}} \le L$ , for some L > 0. Let  $x_0 \in \Omega$  and  $0 < R \le 1$  such that  $B_{4R}(x_0) \subset \Omega$ . Let  $v \in W^{1,p(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$  be a nonnegative solution to

$$\operatorname{div}(|\nabla v + e|^{p(x)-2}(\nabla v + e)) = f \quad in \ \Omega,$$
(9)

where  $f \in L^{\infty}(\Omega)$  with  $||f||_{L^{\infty}(\Omega)} \leq 1$  and  $e \in \mathbb{R}^n$  with |e| = 1. Then, there exists *C* such that

$$\sup_{B_{R}(x_{0})} v \leq C \Big[ \inf_{B_{R}(x_{0})} v + R \Big( ||f||_{L^{\infty}(B_{4R}(x_{0}))} \Big)^{\frac{1}{p_{\max}-1}} + C \Big) \Big].$$
(10)

The constant C depends only on n,  $p_{\min}$ ,  $p_{\max}$ ,  $||v||_{L^{\infty}(B_{4R}(x_0))}$  and L.

イロト イポト イヨト イヨト

#### **Fausto Ferrari**

•••••
### Lemma

Let  $x_0 \in B_1$  and  $0 < \bar{r}_1 < \bar{r}_2 \le 1$ . Assume that  $1 < p_{\min} \le p(x) \le p_{\max} < \infty$  and  $\|\nabla p\|_{L^{\infty}} \le \varepsilon^{1+\theta}$ , for some  $0 < \theta \le 1$ . Let  $c_0, c_1, c_2$  be positive constants and let and  $c_3 \in \mathbb{R}$ . There exist positive constants  $\gamma \ge 1$ ,  $\bar{c}$ ,  $\varepsilon_0$  and  $\varepsilon_1$  such that the functions

$$w(x) = c_1 |x - x_0|^{-\gamma} - c_2,$$
  
$$v(x) = q(x) + \frac{c_0}{2} \varepsilon(w(x) - 1), \quad q(x) = x_n + c_3$$

satisfy, for  $\bar{r}_1 \leq |x - x_0| \leq \bar{r}_2$ ,

$$\Delta_{p(x)} w \ge \bar{c}, \quad for \ 0 < \varepsilon \le \varepsilon_0, \tag{11}$$

$$\frac{1}{2} \le |\nabla v| \le 2, \qquad \Delta_{p(x)} v > \varepsilon^2, \quad \text{for } 0 < \varepsilon \le \varepsilon_1.$$
 (12)

Here  $\gamma = \gamma(n, p_{\min}, p_{\max}), \ \bar{c} = \bar{c}(p_{\min}, p_{\max}, c_1),$ 

Fausto Ferrari

Università di Bologna

Lemma (Improvement of flatness, F-Claudia Lederman) Let u satisfy (1) in  $B_1$  and  $||f||_{L^{\infty}(B_1)} \leq \varepsilon^2$ ,  $||g-1||_{L^{\infty}(B_1)} \leq \varepsilon^2$ ,  $||\nabla p||_{L^{\infty}(B_1)} \leq \varepsilon^{1+\theta}, ||p-p_0||_{L^{\infty}(B_1)} \leq \varepsilon$ , (13) for  $0 < \varepsilon < 1$ , for some constant  $0 < \theta \leq 1$ . Suppose that

$$(x_n - \varepsilon)^+ \le u(x) \le (x_n + \varepsilon)^+ \quad in B_1, \quad 0 \in F(u).$$
(14)

If  $0 < r \le r_0$  for  $r_0$  universal, and  $0 < \varepsilon \le \varepsilon_0$  for some  $\varepsilon_0$  depending on r, then

$$(x \cdot \nu - r\varepsilon/2)^+ \le u(x) \le (x \cdot \nu + r\varepsilon/2)^+ \quad in B_r, \tag{15}$$

with  $|\nu| = 1$  and  $|\nu - e_n| \leq \tilde{C}\varepsilon$  for a universal constant  $\tilde{C}$ .

Università di Bologna

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

The basic step in the improvement of flatness. Let

$$U_{\beta}(t) = \alpha t^{+} - \beta t^{-}, \ \beta \ge 0, \ \alpha = G(\beta) \equiv \sqrt{1 + \beta^{2}}$$

and  $\nu$  is a unit vector which plays the role of the normal vector at the origin.  $U_{\beta}(x \cdot \nu)$  is a so-called *two plane solution*.

Sac

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

## The classical two-phase inhomogeneous problem

$$\begin{cases} \Delta u = f_{+} & \text{in } B_{1}^{+}(u) := \{x \in B_{1} : u(x) > 0\}, \\ \Delta u = f_{-} & \text{in } B_{1}^{-}(u) := \{x \in B_{1} : u(x) \le 0\}^{\circ}, \\ u_{\nu}^{+} = \sqrt{1 + (u_{\nu}^{-})^{2}} & \text{on } F(u) := \partial B_{1}^{+}(u) \cap B_{1}. \end{cases}$$
(16)

 $B_1$  is the unit ball in  $\mathbb{R}^n$ , centered at the origin. Instead of  $r \to \sqrt{1+r^2}$  we may consider a continuous function  $r \to G(r)$  such that *G* is strictly increasing and such that G(0) > 0 as well.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

## The classical two-phase inhomogeneous problem

$$\begin{cases} \Delta u = f_{+} & \text{in } B_{1}^{+}(u) := \{x \in B_{1} : u(x) > 0\}, \\ \Delta u = f_{-} & \text{in } B_{1}^{-}(u) := \{x \in B_{1} : u(x) \le 0\}^{\circ}, \\ u_{\nu}^{+} = \sqrt{1 + (u_{\nu}^{-})^{2}} & \text{on } F(u) := \partial B_{1}^{+}(u) \cap B_{1}. \end{cases}$$
(16)

 $B_1$  is the unit ball in  $\mathbb{R}^n$ , centered at the origin. Instead of  $r \to \sqrt{1 + r^2}$  we may consider a continuous function  $r \to G(r)$  such that *G* is strictly increasing and such that G(0) > 0 as well.

Università di Bologna

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

# Moreover: $f_{\pm} \in C(B_1) \cap L^{\infty}(B_1),$ $B_1^+(u) := \{x \in B_1 : u(x) > 0\}, \quad B_1^-(u) := \{x \in B_1 : u(x) \le 0\}^\circ.$

 $u_{\nu}^+$  and  $u_{\nu}^-$  denote the normal derivatives in the inward direction to  $B_1^+(u)$  and  $B_1^-(u)$  respectively.

200

イロト イポト イヨト イヨト 三日

The problem comes from several applied contexts: the Prandtl-Bachelor model in fluid-dynamics (see e.g. [B1],[EM]), the eigenvalue problem in magnetohydrodynamics ([FL]), or in flame propagation models ([LW]). B=Batchelor; EM= Elcrat-Miller; FL=Friedman-Liu; LW=Lederman-Wolanski

200

イロト イポト イヨト イヨト 三日

### **Batchelor model**

A bounded 2-dimensional domain is delimited by two simple closed curves  $\gamma$ ,  $\Gamma$ . For given constants  $\mu < 0, \omega > 0$ , consider functions  $\psi_1, \psi_2$  satisfying

$$\Delta \psi_1 = 0 \text{ in } \Omega_1, \psi_1 = 0 \text{ on } \gamma, \psi_1 = \mu \text{ on } \Gamma,$$
$$\Delta \psi_2 = \omega \text{ in } \Omega_2, \psi_2 = 0 \text{ on } \gamma.$$
and  $\Omega_1 := \{\psi_1 < 0\}, \Omega_2 := \{\psi_2 > 0\}.$ 

Università di Bologna



### Prandtl-Batchelor flow configuration

<ロト < □ > < 三 > < 三 > < 三 > 三 の へ ○ Università di Bologna

- $\psi_1$  is the stream functions of an irrotational flow in  $\Omega_1$
- $\psi_2$  is the stream of a constant vorticity flow in  $\Omega_2$ .

The model proposed by Batchelor comes from the limit of large Reynold number in the steady Navier-Stokes equation.

### Università di Bologna

Sac

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

## • $\psi_1$ is the stream functions of an irrotational flow in $\Omega_1$

### $\blacktriangleright \psi_2$ is the stream of a constant vorticity flow in $\Omega_2$ .

### 3 Università di Bologna

nac

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

## • $\psi_1$ is the stream functions of an irrotational flow in $\Omega_1$

•  $\psi_2$  is the stream of a constant vorticity flow in  $\Omega_2$ .



Sac

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- $\psi_1$  is the stream functions of an irrotational flow in  $\Omega_1$
- $\psi_2$  is the stream of a constant vorticity flow in  $\Omega_2$ .

The model proposed by Batchelor comes from the limit of large Reynold number in the steady Navier-Stokes equation.

Sac

イロト イポト イヨト イヨト 三日

For the flow of that type is hypothesized that there is a jump in the tangential velocity along  $\gamma$ , namely

 $|\nabla \psi_2|^2 - |\nabla \psi_1|^2 = \sigma$ 

for some positive constant  $\sigma$  and  $\gamma$  had to be determined:

 $\gamma$ :=Free boundary.

200

イロト イポト イヨト イヨト 三日

$$\begin{cases} \Delta \psi_2 = \omega & \text{in } \Omega_2 \equiv \Omega^+(\psi_2) := \{x \in \Omega : \psi_2(x) > 0\}, \\ \Delta \psi_1 = 0 & \text{in } \Omega_1 \equiv \Omega^-(\psi_1) := \{x \in \Omega : \psi_1(x) \le 0\}^\circ, \\ \psi_2 = 0 = \psi_1, & \text{on } \gamma \equiv F(\psi_2) := \partial \Omega_2^+(\psi_2) \cap \Omega, \\ |\nabla \psi_2|^2 - |\nabla \psi_1|^2 = \sigma & \text{on } \gamma \equiv F(\psi_2) := \partial \Omega_2^+(\psi_2) \cap \Omega, \\ \psi_1 = \mu, & \text{on } \Gamma \equiv \partial \Omega \end{cases}$$

(17)

• Existence of Lipschitz viscosity solutions and weak regularity properties of the free boundary.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Sac

Università di Bologna

- Strong regularity results.
- ► Higher regularity results for the free boundary.

- Existence of Lipschitz viscosity solutions and weak regularity properties of the free boundary.
- Strong regularity results.
- ► Higher regularity results for the free boundary.

Sac

・ロト ・ 四ト ・ ヨト ・ ヨト

- Existence of Lipschitz viscosity solutions and weak regularity properties of the free boundary.
- Strong regularity results.
- ► Higher regularity results for the free boundary.

Sac

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Existence of Lipschitz viscosity solutions and weak regularity properties of the free boundary.
- Strong regularity results.
- ► Higher regularity results for the free boundary.

200

・ロト ・ 四ト ・ ヨト ・ ヨト



5900

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

- ► Homogeneous case, i.e. f<sub>±</sub> ≡ 0 for Δ : strong regularity properties of the f.b., Louis Caffarelli, [C1],[C2].
- Existence of Lipschitz viscosity solutions, [C3] based on [ACF].
- ► Inhomogeneous case: Lipschitz regularity was obtained by Caffarelli, Jerison and Kenig in [CJK].
- Further results for homogeneous free boundary problem (for fully nonlinear operators) see for example: [Fe1,Fe2, CFS, FS1,F1, W1, W2, MT].
- In the case of the non-homogeneous setting: [D], in one phase, and [DFS, DFS2,DFS3, DFS4, DFS5] for two-phase problems (linear operators with variable coefficients, fully nonlinear operators).
- ▶ Recently: [LaYoTe]

D=Daniela De Silva, S:= Sandro Salsa, W=Wang, 얇두다일이다일까

- ► Homogeneous case, i.e. f<sub>±</sub> ≡ 0 for Δ : strong regularity properties of the f.b., Louis Caffarelli, [C1],[C2].
- Existence of Lipschitz viscosity solutions, [C3] based on [ACF].
- Inhomogeneous case: Lipschitz regularity was obtained by Caffarelli, Jerison and Kenig in [CJK].
- Further results for homogeneous free boundary problem (for fully nonlinear operators) see for example: [Fe1,Fe2, CFS, FS1,F1, W1, W2, MT].
- In the case of the non-homogeneous setting: [D], in one phase, and [DFS, DFS2,DFS3, DFS4, DFS5] for two-phase problems (linear operators with variable coefficients, fully nonlinear operators).
- ▶ Recently: [LaYoTe]

D=Daniela De Silva, S:= Sandro Salsa, W=Wang, Fg=Feldman, 🛓

- ► Homogeneous case, i.e. f<sub>±</sub> ≡ 0 for Δ : strong regularity properties of the f.b., Louis Caffarelli, [C1],[C2].
- ► Existence of Lipschitz viscosity solutions, [C3] based on [ACF].
- ► Inhomogeneous case: Lipschitz regularity was obtained by Caffarelli, Jerison and Kenig in [CJK].
- Further results for homogeneous free boundary problem (for fully nonlinear operators) see for example: [Fe1,Fe2, CFS, FS1,F1, W1, W2, MT].
- In the case of the non-homogeneous setting: [D], in one phase, and [DFS, DFS2,DFS3, DFS4, DFS5] for two-phase problems (linear operators with variable coefficients, fully nonlinear operators).
- ▶ Recently: [LaYoTe]

D=Daniela De Silva, S:= Sandro Salsa, W=Wang, Ee=Feldman, 🛓

....

- ► Homogeneous case, i.e. f<sub>±</sub> ≡ 0 for Δ : strong regularity properties of the f.b., Louis Caffarelli, [C1],[C2].
- ► Existence of Lipschitz viscosity solutions, [C3] based on [ACF].
- Inhomogeneous case: Lipschitz regularity was obtained by Caffarelli, Jerison and Kenig in [CJK].
- Further results for homogeneous free boundary problem (for fully nonlinear operators) see for example: [Fe1,Fe2, CFS, FS1,F1, W1, W2, MT].
- In the case of the non-homogeneous setting: [D], in one phase, and [DFS, DFS2,DFS3, DFS4, DFS5] for two-phase problems (linear operators with variable coefficients, fully nonlinear operators).
- ► Recently: [LaYoTe]

D=Daniela De Silva, S:= Sandro Salsa, W=Wang, Ee=Feldman, a 2000

- ► Homogeneous case, i.e. f<sub>±</sub> ≡ 0 for Δ : strong regularity properties of the f.b., Louis Caffarelli, [C1],[C2].
- ► Existence of Lipschitz viscosity solutions, [C3] based on [ACF].
- Inhomogeneous case: Lipschitz regularity was obtained by Caffarelli, Jerison and Kenig in [CJK].
- Further results for homogeneous free boundary problem (for fully nonlinear operators) see for example: [Fe1,Fe2, CFS, FS1,F1, W1, W2, MT].
- In the case of the non-homogeneous setting: [D], in one phase, and [DFS, DFS2,DFS3, DFS4, DFS5] for two-phase problems (linear operators with variable coefficients, fully nonlinear operators).
- ► Recently: [LaYoTe]

D=Daniela De Silva, S:= Sandro Salsa, W=Wang, Fe=Feldman,

### Theorem (Flatness $\rightarrow C^{1,\gamma}$ , [De Silva-F-Salsa])

Let u be a solution of our n.h.f.b. problem (16). There exists a universal constant  $\overline{\delta} > 0$  such that, if  $0 \le \delta \le \overline{\delta}$  and

$$\{x_n \le -\delta\} \subset B_1 \cap \{u^+(x) = 0\} \subset \{x_n \le \delta\}, \quad (\delta - flatness)$$
(18)

then F(u) is  $C^{1,\gamma}$  in  $B_{1/2}$ , with  $\gamma$  universal.

### Theorem

Let u be a solution of our n.h.f.b. problem (16). If F(u) is a Lipschitz graph in  $B_1$ , then F(u) is  $C^{1,\gamma}$  in  $B_{1/2}$ , with  $\gamma$  universal.

イロト イロト イヨト イヨト

### Theorem ([De Silva-F-Salsa-5])

Let u be a (Lipschitz) viscosity solution to (16) in  $B_1$ . There exists a universal constant  $\bar{\eta} > 0$  such that, if

$$\{x_n \leq -\eta\} \subset B_1 \cap \{u^+(x) = 0\} \subset \{x_n \leq \eta\}, \quad \text{for } 0 \leq \eta \leq \bar{\eta},$$

$$(19)$$
*then F(u) is C*<sup>2, \gamma^\*</sup> *in B*<sub>1/2</sub> *for a small* \gamma^\* *universal, with the C*<sup>2, \gamma^\*</sup>

norm bounded by a universal constant.

### Università di Bologna

nan

イロト イロト イヨト イヨト

### Theorem ([De Silva-F-Salsa-5])

Let k be a nonnegative integer. Assume that u is a solution of (16) and it is endowed by a flat free boundary and  $f_{\pm} \in C^{k,\gamma}(B_1)$ . Then  $F(u) \cap B_{1/2}$  is  $C^{k+2,\gamma^*}$ . If  $f_{\pm}$  are  $C^{\infty}$  or real analytic in  $B_1$ , then  $F(u) \cap B_{1/2}$  is  $C^{\infty}$  or real analytic, respectively.



イロト 不得 トイヨト イヨト

### Lemma ([De Silva-F-Salsa])

Let u satisfy (16) and

$$U_{\beta}(x_n-\varepsilon) \le u(x) \le U_{\beta}(x_n+\varepsilon), \quad in \quad B_1, \quad 0 \in F(u),$$

with  $0 < \beta \leq L$  and

$$||f||_{L^{\infty}(B_1)} \leq \varepsilon^2 \beta.$$

If  $0 < r \le r_0$  for  $r_0$  universal, and  $0 < \varepsilon \le \varepsilon_0$  for some  $\varepsilon_0$  depending on r, then

$$U_{\beta'}(x \cdot \nu_1 - r\frac{\varepsilon}{2}) \le u(x) \le U_{\beta'}(x \cdot \nu_1 + r\frac{\varepsilon}{2}) \quad in \ B_r, \qquad (20)$$

with  $|\nu_1| = 1$ ,  $|\nu_1 - e_n| \leq \tilde{C}\varepsilon$ , and  $|\beta - \beta'| \leq \tilde{C}\beta\varepsilon$  for a universal constant  $\tilde{C}$ .

Università di Bologna

イロト イロト イヨト イヨト

### Consequence

Assume the lemma above holds. To prove the Theorem "Flatness  $\rightarrow C^{1,\gamma}$ " in hypotheses of flatness conditions. We rescale considering a blow up sequence

$$u_k(x) = \frac{u(\rho_k x)}{\rho_k} \quad \rho_k = \overline{r}^k, \ x \in B_1$$
(21)

for suitable  $\overline{r} \leq \min \{r_0, \frac{1}{16}\}$ ,  $\tilde{\varepsilon} \leq \varepsilon_0(\overline{r})$ , as required

Università di Bologna

Sac

・ロト ・ 四ト ・ ヨト ・ ヨト

### Consequence

Assume the lemma above holds. To prove the Theorem "Flatness  $\rightarrow C^{1,\gamma}$ " in hypotheses of flatness conditions.

We rescale considering a blow up sequence

$$u_k(x) = \frac{u(\rho_k x)}{\rho_k} \quad \rho_k = \overline{r}^k, \ x \in B_1$$
(21)

for suitable  $\overline{r} \leq \min \{r_0, \frac{1}{16}\}$ ,  $\tilde{\varepsilon} \leq \varepsilon_0(\overline{r})$ , as required

Università di Bologna

Sac

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

### Consequence

Assume the lemma above holds. To prove the Theorem "Flatness  $\rightarrow C^{1,\gamma}$ " in hypotheses of flatness conditions. We rescale considering a blow up sequence

$$u_k(x) = \frac{u(\rho_k x)}{\rho_k} \quad \rho_k = \overline{r}^k, \ x \in B_1$$
(21)

for suitable  $\bar{r} \leq \min\{r_0, \frac{1}{16}\}, \tilde{\varepsilon} \leq \varepsilon_0(\bar{r})$ , as required

Università di Bologna

Sac

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

We iterate to get, at the *k*th step,

$$U_{\beta_k}(x \cdot \nu_k - \rho_k \varepsilon_k) \le u_k(x) \le U_{\beta_k}(x \cdot \nu_k + \rho_k \varepsilon_k) \quad \text{in } B_{\rho_k},$$
  
with  $\varepsilon_k = 2^{-k} \tilde{\varepsilon}, |\nu_k| = 1, |\nu_k - \nu_{k-1}| \le \tilde{C} \varepsilon_{k-1},$   
 $|\beta_k - \beta_{k-1}| \le \tilde{C} \beta_{k-1} \varepsilon_{k-1}, \ \varepsilon_k \le \beta_k \le L.$ 

### Thus, since

$$f_k(x) = \rho_k f(\rho_k x), \ x \in B_1$$

(recall that  $\bar{\eta} = \tilde{\varepsilon}^3$ )

$$\|f_k\|_{L^{\infty}(B_1)} \le \rho_k \tilde{\varepsilon}^3 \le \tilde{\varepsilon}_k^2 \beta_k = \tilde{\varepsilon}_k^2 \min\left\{\alpha_k, \beta_k\right\}.$$

The figure below describes the step from k to k + 1.

### Fausto Ferrari

.....



Università di Bologna

DQC

This implies that F(u) is  $C^{1,\gamma}$  at the origin. Repeating the procedure for points in a neighborhood of x = 0, (all estimates are universal), we conclude that there exists a unit vector  $\nu_{\infty} = \lim \nu_k$  and C > 0,  $\gamma \in (0, 1]$ , both universal, such that, in the coordinate system  $e_1, \dots, e_{n-1}, \nu_{\infty}, \nu_{\infty} \perp e_j, e_j \cdot e_k = \delta_{jk}, F(u)$  is  $C^{1,\gamma}$  graph, say  $x_n = g(x')$ , with g(0') = 0 and

$$\left|g\left(x'\right)-
u_{\infty}\cdot x'\right|\leq C\left|x'\right|^{1+\gamma}$$

in a neighborhood of x = 0.

Università di Bologna

ヘロト 人間 ト イヨト イヨト
## Proof of Lemma [De Silva-F-Salsa]

We argue by contradiction.

**Step 1.** Fix  $r \le r_0$ , to be chosen suitably. Assume that for a sequence  $\varepsilon_k \to 0$  there is a sequence  $u_k$  of solutions of our free boundary problem in  $B_1$ , with right hand side  $f_k$  such that  $\|f_k\|_{L^{\infty}(B_1)} \le \varepsilon_k^2 \min\{\alpha_k, \beta_k\}$ , and

$$U_{\beta_k}(x_n - \varepsilon_k) \le u_k(x) \le U_{\beta_k}(x_n + \varepsilon_k) \quad \text{in } B_1, \ 0 \in F(u_k), \quad (22)$$

with  $0 \le \beta_k \le L$ ,  $\alpha_k = \sqrt{1 + \beta_k^2}$ , but the conclusion of Lemma (Main) does not hold for every  $k \ge 1$ .

・ロト ・ 四ト ・ ヨト ・ ヨト

## Construct the corresponding sequence of renormalized functions

$$ilde{u}_k(x) = \left\{ egin{array}{c} rac{u_k(x) - lpha_k x_n}{lpha_k arepsilon_k}, & x \in B_1^+(u_k) \cup F(u_k) \ & \ rac{u_k(x) - eta_k x_n}{eta_k arepsilon_k}, & x \in B_1^-(u_k). \end{array} 
ight.$$

and

$$-1 \leq \tilde{u}_k(x) \leq 1$$
, for  $x \in B_1$ .

Università di Bologna

At this point we need compactness to show that the graphs of  $\tilde{u}_k$  converge in the Hausdorff distance to a Hölder continuous  $\tilde{u}$  in  $B_{1/2}$ . The compactness is provided by an appropriate Harnack result and a sharp version of Ascoli Arzelà's theorem.

Moreover, up to a subsequence  $\beta_k \to \tilde{\beta}$  so that  $\alpha_k \to \tilde{\alpha} = \sqrt{1 + \tilde{\beta}^2}$ .

イロト イロト イヨト イヨト

At this point we need compactness to show that the graphs of  $\tilde{u}_k$  converge in the Hausdorff distance to a Hölder continuous  $\tilde{u}$  in  $B_{1/2}$ . The compactness is provided by an appropriate Harnack result and a sharp version of Ascoli Arzelà's theorem.

Moreover, up to a subsequence  $\beta_k \to \tilde{\beta}$  so that  $\alpha_k \to \tilde{\alpha} = \sqrt{1 + \tilde{\beta}^2}$ 

#### Università di Bologna

・ロト ・ 一下・ ・ ヨト ・ ヨト・

At this point we need compactness to show that the graphs of  $\tilde{u}_k$  converge in the Hausdorff distance to a Hölder continuous  $\tilde{u}$  in  $B_{1/2}$ . The compactness is provided by an appropriate Harnack result and a sharp version of Ascoli Arzelà's theorem.

Moreover, up to a subsequence  $\beta_k \to \tilde{\beta}$  so that  $\alpha_k \to \tilde{\alpha} = \sqrt{1 + \tilde{\beta}^2}$ .

・ロト ・ 四ト ・ ヨト ・ ヨト

Step 2: Transmission problem.  $\tilde{u}$  solves the "linearized problem" ( $\tilde{\alpha} \neq 0$ )

$$\begin{cases} \Delta \tilde{u} = 0 & \text{in } B_1 \cap \{x_n \neq 0\}, \\ \tilde{\alpha}^2 (\tilde{u}_n)^+ - \tilde{\beta}^2 (\tilde{u}_n)^- = 0 & \text{on } B_1 \cap \{x_n = 0\}. \end{cases}$$
(23)

3 Università di Bologna

996

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Fausto Ferrari

.....

## Moreover according with the following result

## Theorem (Regularity of the transmission problem)

Let  $\tilde{u}$  be a viscosity solution to (23) in  $B_1$  such that  $\|\tilde{u}\|_{\infty} \leq 1$ . Then  $\tilde{u} \in C^{\infty}(\bar{B}_1^{\pm})$  and in particular, there exists a universal positive constant  $\bar{C}$  such that

$$|\tilde{u}(x) - \tilde{u}(0) - (\nabla_{x'}\tilde{u}(0) \cdot x' + \tilde{p}x_n^+ - \tilde{q}x_n^-)| \le \bar{C}r^2, \quad in \ B_r \quad (24)$$

for all  $r \leq 1/2$  and with  $\tilde{\alpha}^2 \tilde{p} - \tilde{\beta}^2 \tilde{q} = 0$ .

Università di Bologna

ヘロト 人間 トイヨト イヨト

## Step 3 (Contradiction). We can prove the last step. We can show that (for *k* large and $r \le r_0$ )

$$\widetilde{U}_{\beta'_k}(x \cdot \nu_k - \varepsilon_k \frac{r}{2}) \le \widetilde{u}_k(x) \le \widetilde{U}_{\beta'_k}(x \cdot \nu_k + \varepsilon_k \frac{r}{2}), \text{ in } B_r$$

where again we are using the notation:

$$\widetilde{U}_{\beta'_k}(x) = \begin{cases} \frac{U_{\beta'_k}(x) - \alpha_k x_n}{\alpha_k \varepsilon_k}, & x \in B_1^+(U_{\beta'_k}) \cup F(U_{\beta'_k}) \\ \frac{U_{\beta'_k}(x) - \beta_k x_n}{\beta_k \varepsilon_k}, & x \in B_1^-(U_{\beta'_k}). \end{cases}$$

Università di Bologna

nan

イロト イポト イヨト イヨト

This will clearly imply that

$$U_{\beta'_k}(x \cdot \nu_k - \varepsilon_k \frac{r}{2}) \le u_k(x) \le U_{\beta'_k}(x \cdot \nu_k + \varepsilon_k \frac{r}{2}), \quad \text{in } B_r$$

leading to a contradiction with the assumption that the thesis of the Lemma is false.

## Indeed, recalling the Theorem (Regularity of the transmission problem), it is sufficient to show that in $B_r$ :

$$\widetilde{U}_{\beta_k'}(x \cdot \nu_k - \varepsilon_k \frac{r}{2}) \le (x' \cdot \nu' + \widetilde{p}x_n^+ - \widetilde{q}x_n^-) - Cr^2$$

and

$$\widetilde{U}_{eta_k'}(x\cdot 
u_k+arepsilon_krac{r}{2})\geq (x'\cdot 
u'+ ilde{p}x_n^+- ilde{q}x_n^-)+Cr^2.$$

This can be shown after some elementary calculations as long as  $r \leq r_0, r_0$  universal, and  $\varepsilon \leq \varepsilon_0 (r)$ .

Sac

イロト イポト イヨト イヨト 三日

#### **Fausto Ferrari**

----

# **Improvement of flatness proof in the** p(x)-Laplace **one-phase case**

Step 1: Compactness. Fix  $r \le r_0$  with  $r_0$  universal. Assume by contradiction that there exists a sequence  $\varepsilon_k \to 0$  and a sequence  $u_k$  of solutions to (1) in  $B_1$  with right hand side  $f_k$ , exponent  $p_k$  and free boundary condition  $g_k$  satisfying (13) with  $\varepsilon = \varepsilon_k$ , such that  $u_k$  satisfies (14), i.e.,

 $(x_n - \varepsilon_k)^+ \le u_k(x) \le (x_n + \varepsilon_k)^+$  for  $x \in B_1, 0 \in F(u_k)$ , (25) but  $u_k$  does not satisfy the conclusion (15) of the lemma. Set

$$\widetilde{u}_k(x) = \frac{u_k(x) - x_n}{\varepsilon_k}, \quad x \in \Omega_1(u_k).$$

Then, (25) gives

$$-1 \leq \tilde{u}_k(x) \leq 1 \quad \text{for } x \in \Omega_1(\underline{u}_k). \quad \text{for } x \in \mathbb{R}$$

Università di Bologna

With a compactness argument and Ascoli-Arzelà theorem it is possible to prove that there exists a convergent subsequence to a function  $\tilde{u}$ .

Step 2. Transmission problem. The function  $\tilde{u}$  solves the following linearized problem

$$\begin{cases} \mathcal{L}_{p_0} \tilde{u} = 0 & \text{in } B_{1/2} \cap \{x_n > 0\}, \\ \tilde{u}_n = 0 & \text{on } B_{1/2} \cap \{x_n = 0\}. \end{cases}$$
(27)

Here  $1 < p_{\min} \le p_0 \le p_{\max} < \infty$ ,  $\tilde{u}_n$  denotes the derivative in the  $e_n$  direction of  $\tilde{u}$  and

$$\mathcal{L}_{p_0}u := \Delta u + (p_0 - 2)\partial_{nn}u.$$
(28)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

## Definition

Let  $\tilde{u}$  be a continuous function on  $B_{\rho} \cap \{x_n \ge 0\}$ . We say that  $\tilde{u}$  is a viscosity solution to (28), if given a quadratic polynomial P(x) touching  $\tilde{u}$  from below (resp. above) at  $\bar{x} \in B_{\rho} \cap \{x_n \ge 0\}$ ,

- (i) if  $\bar{x} \in B_{\rho} \cap \{x_n > 0\}$  then  $\mathcal{L}_{p_0}P \leq 0$  (resp.  $\mathcal{L}_{p_0}P \geq 0$ ), i.e.  $\mathcal{L}_{p_0}\tilde{u} = 0$  in the viscosity sense in  $B_{\rho} \cap \{x_n > 0\}$ ;
- (ii) if  $\bar{x} \in B_{\rho} \cap \{x_n = 0\}$  then  $P_n(\bar{x}) \leq 0$  (resp.  $P_n(\bar{x}) \geq 0$ ).

#### Università di Bologna

Step 3: Improvement of flatness. From the previous step,  $\tilde{u}$  solves (28) and from (26),

$$-1 \le \tilde{u}(x) \le 1$$
 in  $B_{1/2} \cap \{x_n \ge 0\}$ .

From

### Theorem

Let  $\tilde{u}$  be a viscosity solution to (28) in  $B_{1/2} \cap \{x_n \ge 0\}$ . Then,  $\tilde{u} \in C^2(B_{1/2} \cap \{x_n \ge 0\})$  and it is a classical solution to (28). Moreover, if  $\|\tilde{u}\|_{\infty} \le 1$ , then there exists a constant  $\bar{C} > 0$ , depending only on  $n, p_{\min}$  and  $p_{\max}$ , such that

$$\tilde{u}(x) - \tilde{u}(0) - \nabla \tilde{u}(0) \cdot x | \leq \overline{C}r^2 \quad in \ B_r \cap \{x_n \ge 0\},$$
(29)

for all  $r \leq 1/4$ .

Università di Bologna

イロト イロト イヨト イヨ

by the bound above (29) in Theorem 19 we find that, for the given r,

$$|\tilde{u}(x) - \tilde{u}(0) - \nabla \tilde{u}(0) \cdot x| \le C_0 r^2 \quad \text{in } B_r \cap \{x_n \ge 0\}$$

and now the iterative argument is the same that has been applied in the linear case.

Sac

(□) (∅) (Ξ) (Ξ) (Ξ)

[AC] Alt H. W., L. A. Caffarelli, *Existence and regularity for a minimum problem with free boundary*, J. Reine Angew. Math 325 (1981) 105–144.

[**ADN**]: Agmon S., Douglis A., Nirenberg L., *Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I.*, Comm. Pure Appl. Math. 12, 1959, 623–727.

[ACF]: Alt H.W., Caffarelli L.A., Friedman A., *Variational problems with two phases and their free boundaries*. Trans. Amer. Math. Soc. **282** (1984), no. 2, 431–461.

**[B1]**: Batchelor G.K., *On steady laminar flow with closed streamlines at large Reynolds number*, J. Fluid.Mech. **1** (1956), 177–190.

**[C1]**: Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are  $C^{1,\alpha}$ , Rev. Mat. Iberoamericana **3** (1987) no. 2, 139–162.

**[C2]**: Caffarelli L.A., *A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz*, Comm. Pure Appl. Math. **42** (1989), no.1, 55–78.

**[C3]**: Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness and dependence on x, Ann. Sc. Norm. (1988), serie IV, Vol XV, 583–602.

**[CFS]**: Cerutti, M. C.; Ferrari, F.; Salsa, S. *Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are*  $C^{1,\gamma}$  Arch. Ration. Mech. Anal. 171 (2004), no. 3, 329–348

**[CJK]**: Caffarelli L.A., Jerison D., Kenig C.E., *Some new monotonicity theorems with applications to free boundary problems*, Ann. of Math. (2) **155** (2002), no. 2, 369–404.

**[CJK2]**: Caffarelli L.A., Jerison D., Kenig C.E., *Global energy minimizers for free boundary problems and full regularity in three dimensions*. Noncompact problems at the intersection of geometry, analysis, and topology, 83–97, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004.

**[D]**: De Silva D., *Free boundary regularity for a problem with right hand side*, Interfaces and free boundaries **13** (2011), 223–238.

**[DJ]**: De Silva D., Jerison, D. *A singular energy minimizing free boundary*, J. Reine Angew. Math. **635** (2009), 1-21.

**[DFS]**: De Silva D., Ferrari F., Salsa S., *Two-phase problems with distributed source: regularity of the free boundary*, Anal. PDE 7 (2014), no. 2, 267–310.

**[DFS2]**: De Silva D., Ferrari F., Salsa S., *Perron's solutions for two-phase free boundary problems with distributed sources*, Nonlinear Anal. 121 (2015), 382–402.

イロト イポト イヨト イヨト

....

**[DFS3]**: De Silva D., Ferrari F., Salsa S. *Free boundary regularity for fully nonlinear non-homogeneous two-phase problems*, J. Math. Pures Appl. (9) 103 (2015), no. 3, 658–694.

[**DFS4**]: De Silva D., Ferrari F., Salsa S. *Regularity of the free boundary for two-phase problems governed by divergence form equations and applications,* Nonlinear Analysis, 138 (2016) 3-30. [**DFS5**]: De Silva D., Ferrari F., Salsa S. *Regularity of higher order in two-phase free boundary problems,* Trans. Amer. Math. Soc. 371 (2019), no. 5, 3691–3720.

[E]: Engelstein M., A two phase free boundary problem for the harmonic measure, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 4, 859–905. arXiv:1409.4460.

[EM]: Elcrat A.R, Miller K.G., *Variational formulas on Lipschitz domains*, Trans. Amer. Math. Soc. **347** (1995), 2669–2678.

**[Fe1]**: Feldman M., *Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations*, Indiana Univ. Math. J. 50 (2001), no.3, 1171–1200

**[Fe2]**: Feldman M., *Regularity for nonisotropic two-phase problems with Lipshitz free boundaries*, Differential Integral Equations 10 (1997), no.6, 1171–1179.

**[F1]**: Ferrari F., *Two-phase problems for a class of fully nonlinear elliptic operators, Lipschitz free boundaries are*  $C^{1,\gamma}$ , Amer. J. Math. 128 (2006), 541–571.

**[FS1]**: Ferrari F., Salsa S., *Regularity of the free boundary in two-phase problems for elliptic operators*, Adv. Math. 214 (2007), 288–322.

[FL]: Friedman A., Liu Y. A free boundary problem arising in magnetoydrodynamic system, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 22 (1994), 375–448.

**[Fel]**: Feldman M., *Regularity for nonisotropic two-phase problems with Lipshitz free boundaries*, Differential Integral Equations 10 (1997), no.6, 1171–1179.

**[HKLMP]**: Harjulehto P., Kuusi T., Lukkari T., Marola N., Parviainen M. *Harnack's inequality for quasiminimizers with nonstandard growth conditions*, J. Math. Anal. Appl. 344 (2008), 504–520. **[IS]** Imbert, C. Silvestre, L.  $C^{1,\alpha}$  regularity of solutions of some degenerate fully non-linear elliptic equations, Adv. Math. 233 (2013), 196–206.

[JS]: Jerison D., Savin O., *Some remarks on stability of cones for the one-phase free boundary problem*, Geom. Funct. Anal. 25 (2015), no. 4, 1240–1257.

イロト 不得 トイヨト イヨト

**[KNS]**: Kinderlehrer D., Nirenberg L., Spruck J., *Regularity in elliptic free-boundary problems I*, Journal d'Analyse Mathematique, Vol 34 (1978) 86-118.

**[LaYoTe]** Lamboley, J.; Sire, Y.; Teixeira, E. V. *Free boundary problems involving singular weights*. Comm. Partial Differential Equations 45 (2020), no. 7, 758–775.

[LW]: Lederman C., Wolanski N., *A two phase elliptic singular perturbation problem with a forcing term*, J. Math. Pures Appl. (9) **86** (2006), no. 6, 552–589.

**[LW1]**: Lederman C., Wolanski N., *An inhomogeneous singular perturbation problem for the* p(x)*-Laplacian*, Nonlinear Anal. 138 (2016) 300–325.

**[LW3]**: Lederman C., N. Wolanski, *Inhomogeneous minimization* problems for the p(x)-Laplacian, J. Math. Anal. Appl. 475 (1) (2019) 423–463.

イロト イポト イヨト イヨト

....

[LW4]: Lederman C., N. Wolanski, *An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth*, Discrete Contin. Dyn. Syst. 41 (6) (2021) 2907–2946. [LR]: Leitão R, Ricarte G., *Free boundary regularity for a degenerate problem with right hand side*, Interfaces Free Bound. 20 (2018) 577–595.

**[LN]**: Lewis J., Nystrom K., *Regularity of Lipschitz free boundaries in two phases Problems for the p Laplace operator*, Adv. in Math. 225, (2010) 2565-2597.

[LN1]: Lewis J, Nystrom K., *Regularity of flat free boundaries in two-phase problems for the p-Laplace operator*, Ann. Inst. H. Poincaré Anal. Non Lineaire 29 (2012), no. 1, 83–108.

**[M]**: Morrey C. B. Jr., *Multiple integrals in the calculus of variations*, Reprint of the 1966 edition Classics in Mathematics. Springer-Verlag, Berlin, 2008. x+506 pp.

....

[MT]: Moreira, D. R.; Teixeira, E. V. A singular perturbation free boundary problem for elliptic equations in divergence form. Calc. Var. Partial Differential Equations 29 (2007), no. 2, 161–190. [SS]: Silvestre L., Sirakov, B. Boundary regularity for viscosity solutions of fully nonlinear elliptic equations, Comm. Partial Differential Equations 39 (9) (2014), 1694–1717. [Si] B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE. Arch. Rational Mech. Anal. 195 (2010), 579-607. [W1]: Wang P.Y., Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. I. Lipschitz free boundaries are  $C^{1,\alpha}$ , Comm. Pure Appl. Math. 53 (2000), 799-810.

**[W2]**: Wang P.Y., *Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz*, Comm. Partial Differential Equations 27 (2002), 1497–1514.

**[Wo]** Wolanski N. *Local bounds, Harnack inequality and Hölder continuity for divergence type elliptic equations with non-standard growth*, Rev. Un. Mat. Argentina 56 (1) (2015) 73–105.

[Zhikov] Zhikov V.V., Solvability of the three-dimensional thermistor problem. (Russian. Russian summary) Tr. Mat. Inst. Steklova 261 (2008), Differ. Uravn. i Din. Sist., 101–114; translation in Proc. Steklov Inst. Math. 261 (2008), no. 1, 98–111.

イロト 不得 トイヨト イヨト