Spreading speeds and spreading sets for reaction-diffusion equations

François Hamel

Aix-Marseille Université, France

In collaboration with Luca Rossi

Mostly Maximum Principle, 4th edition, Cortona, May-June 2022

Supported by Università degli Studi di Roma La Sapienza as Sapienza Visiting Professor

12M - Institut Archimède - ANR Resiste

I. The framework and the main questions

Reaction-diffusion equation in \mathbb{R}^N with $N \ge 2$

 $u_t = \Delta u + f(u), \quad t > 0, \ x \in \mathbb{R}^N$

Function $f : [0,1] \rightarrow \mathbb{R}$ of class C^1 and

f(0)=f(1)=0

Examples of initial conditions

$$u_0(x) = \mathbf{1}_U(x) = \begin{cases} 1 & \text{if } x \in U \\ 0 & \text{if } x \in \mathbb{R}^N \setminus U \end{cases}$$

with, typically, unbounded sets U such that |U| > 0 and $|\mathbb{R}^N \setminus U| > 0$ (other initial conditions are possible)

0 < u(t,x) < 1 for all $t > 0, x \in \mathbb{R}^N$

★ E + ★ E + Ø < @</p>

The main questions

- Location as $t \rightarrow +\infty$ of the regions where $u(t,x) \simeq 0$ or $u(t,x) \simeq 1$?
- For any $e \in \mathbb{S}^{N-1}$, is there a *spreading speed* w(e) > 0 such that

$$\begin{cases} u(t, \gamma t e) \underset{t \to +\infty}{\longrightarrow} 1 & \text{if } 0 \leq \gamma < w(e) \\ u(t, \gamma t e) \underset{t \to +\infty}{\longrightarrow} 0 & \text{if } \gamma > w(e) \end{cases}$$

- Formula for w(e) in terms of e and U?
- $w(e) = +\infty$ can happen, in directions around which "U is unbounded"
- Spreading sets describing the asymptotic global shape of the level sets of *u* ?
- Memory of the initial support *U* ?

OUTLINE OF THE TALK

I. The framework and the main questions

II. The main hypothesis and preliminary results

III. Spreading speeds and spreading sets, Freidlin-Gärtner type formulas

< ∃ >

-

II. The main hypothesis and preliminary results

Hypothesis TF: "traveling front connecting 1 to 0 with positive speed"

The equation in $\mathbb R$ admits a traveling front $\varphi(x-ct)$ such that

$$\varphi(-\infty) = 1 > \varphi(z) > 0 = \varphi(+\infty)$$

with

c > 0

Some functions f fulfiling Hypothesis TF [Aronson, Weinberger, 1978]

More general multistable functions f are possible [Fife, McLeod, 1977]

Three preliminary results

Assume that Hypothesis TF holds. Then

() there is a traveling front $\varphi^*(x-c^*t)$ with minimal speed $c^*>0$

(invasion property) there exist $\alpha \in (0,1)$ and ho > 0 such that, if

 $lpha \mathbf{1}_{B_{
ho}} \leq u_0 \leq 1$ in \mathbb{R}^N

then

 $u(t,\cdot)
ightarrow 1\,$ as $t
ightarrow +\infty$ locally uniformly in \mathbb{R}^N

(spreading) and even

 $\begin{cases} \forall 0 \leq \gamma < c^*, \min_{|x| \leq \gamma t} u(t, x) \to 1 \text{ as } t \to +\infty \\ \forall \gamma > c^*, \max_{|x| \geq \gamma t} u(t, x) \to 0 \text{ as } t \to +\infty \text{ if } \operatorname{supp}(u_0) \text{ compact} \end{cases}$ $\implies \text{spreading speed } w(e) = c^* \text{ if } u_0 \text{ is compactly supported}$

What are c^* , α and ρ in standard cases? [Aronson, Weinberger, 1978]

3 3 3

Equivalent condition to the invasion property (with $\alpha \mathbf{1}_{B_{\rho}} \leq u_0 \leq 1$)

The invasion property is satisfied if and only if:

$$\left\{ egin{array}{ll} \exists \, lpha \in (0,1), & f>0 ext{ in } [lpha,1) \ \forall \, t\in [0,1), & \int_t^1 f(s) ds>0 \end{array}
ight.$$

and α can be the same as in the statement of the invasion property

- $\implies \mbox{First property is immediate from the maximum principle} \\ \mbox{Second property: proof by contradiction (with, otherwise, steady solution $\phi: \mathbb{R} \rightarrow (0,1)$ such that $\phi(-\infty)=1$)}$
- ⇐= [Du, Poláčik, 2015]

Solutions of $\dot{\xi}(t) = f(\xi(t))$ with $\xi(0) = \alpha$: $\xi(t) \to 1$ as $t \to +\infty$

Variational solutions $\phi_R \in H^1_0(B_R)$ of

 $\Delta \phi_R + f(\phi_R) = 0 \text{ in } B_R$

with $0 < \phi_R < 1$ in B_R and $\max_{\overline{B_R}} \phi_R = \phi_R(0) > \alpha$ Solution v of the Cauchy problem emanating from ϕ_R : $v(t, \cdot) \xrightarrow{} 1$

Further comments

- The invasion property holds in particular if $f \ge 0$ in [0,1] and f > 0 in $(1 \varepsilon, 1)$ for some $\varepsilon > 0$
- The invasion property is independent of the dimension N
- Invasion property $\neq \Rightarrow$ Hypothesis TF:

examples of functions f with multiple oscillations, solutions developing into terraces of expanding fronts

[Fife, McLeod,1977] [Ducrot, Giletti, Matano,2014] [Du, Matano,2017] [Giletti, Rossi, 2020] [Poláčik, 2020]

• But invasion property \Longrightarrow

 $\min_{|x|\leq \delta t} u(t,x)
ightarrow 1$ with $\delta > 0$ for the invading solutions

Compactly supported initial conditions u_0 (or $\lim_{|x|\to+\infty} u_0(x) = 0$)

- Extinction vs. invasion, thresholds for monotone families of u₀
 [Aronson, Weinberger, 1978] [Zlatoš, 2006] [Du, Matano, 2010]
 [Muratov, Zhong, 2013, 2017]
- Further results on location and shape of level sets of invading solutions

[Gärtner, 1982] [Jones, 1983] [Uchiyama, 1985] [Roussier, 2004] [Ducrot,2015] [Rossi,2017] [Roquejoffre, Rossi, Roussier-Michon,2019]

- General result on the local convergence to steady states as $t \to +\infty$ [Du, Matano, 2010]
- Local convergence and quasiconvergence
 [Du, Matano, 2010] [Du, Poláčik, 2015]
 [Matano, Poláčik, 2016, 2020] [Poláčik, 2017] [Pauthier, Poláčik, 2020]

回 と く ヨ と く ヨ と …

I. The framework and the main questions

II. The main hypothesis and preliminary results

III. Spreading speeds and spreading sets, Freidlin-Gärtner type formulas

< ∃ > _ ∃

III. Spreading speeds and spreading sets

Freidlin-Gärtner type formulas

We assume Hypothesis TF and $u_0 = \mathbf{1}_U$ with $U \supset B_\rho(x_0)$

$$ullet \implies \min_{\overline{B_{\gamma t}}} u(t,\cdot) o 1 ext{ as } t o +\infty ext{ for any } 0 \leq \gamma < c^*$$

- More precise description of the invasion of the state 0 by the state 1?
- Are there spreading speeds $e \mapsto w(e) \ (\geq c^*)$?
- Spreading sets ?
- Description of upper level sets of u with $0 < \lambda < 1$:

 $E_{\lambda}(t) := \left\{ x \in \mathbb{R}^{N} : u(t, x) > \lambda \right\}$

< ∃ >

Some important definitions

• Directions "around which *U* is unbounded":

$$\mathcal{U}(U) := \left\{ \xi \in \mathbb{S}^{N-1} : \lim_{\tau \to +\infty} \frac{\operatorname{dist}(\tau\xi, U)}{\tau} = 0 \right\}$$
 (closed set in \mathbb{S}^{N-1})

• Directions "around which U is bounded": $\mathcal{B}(U) := \left\{ \xi \in \mathbb{S}^{N-1} : \liminf_{\tau \to +\infty} \frac{\operatorname{dist}(\tau \xi, U)}{\tau} > 0 \right\}$

(open in \mathbb{S}^{N-1} , disjoint of $\mathcal{U}(U)$) ($\mathcal{B}(U) = \mathbb{S}^{N-1}$ iff U is bounded)

$$U_{
ho} := \left\{ x \in U : \operatorname{dist}(x, \partial U) \ge
ho
ight\}$$

$$(U_
ho \subset U, \ \mathcal{U}(U_
ho) \subset \mathcal{U}(U))$$

Theorem 1 (spreading speeds)

Assume that

$$\mathcal{B}(U) \cup \mathcal{U}(U_{\rho}) = \mathbb{S}^{N-1}$$
 (1)

Then, for every $e \in \mathbb{S}^{N-1}$, there is $w(e) \in [c^*, +\infty]$ such that

$$\left\{ \begin{array}{ll} u(t,\gamma\,t\,\mathrm{e}) \underset{t \to +\infty}{\longrightarrow} 1 & \text{if } 0 \leq \gamma < w(\mathrm{e}) \\ u(t,\gamma\,t\,\mathrm{e}) \underset{t \to +\infty}{\longrightarrow} 0 & \text{if } \gamma > w(\mathrm{e}) \end{array} \right.$$

Furthermore,

$$w(\mathbf{e}) = \sup_{\xi \in \mathcal{U}(U), \, \xi \cdot \mathbf{e} \ge 0} \frac{c^*}{\sqrt{1 - (\xi \cdot \mathbf{e})^2}} = \frac{c^*}{\mathsf{dist}(\mathbf{e}, \mathbb{R}^+ \mathcal{U}(U))}$$

 $(w(e) = c^* \text{ if no } \xi \in \mathcal{U}(U) \text{ s.t. } \xi \cdot e \geq 0, w(e) = +\infty \text{ iff } e \in \mathcal{U}(U))$

э

• Freidlin-Gärtner type formula

(for solutions of periodic KPP equations with *compactly supported* u_0)

$$w(e) = \inf_{\xi \in \mathbb{S}^{N-1}, \ \xi \cdot e > 0} \ rac{c^*(\xi)}{\xi \cdot e}$$

Minimal speed $c^*(\xi)$ of pulsating fronts in the direction ξ

[Freidlin, Gärtner, 1979] [Weinberger, 2002] [Berestycki, Hamel, Nadirashvili,2005] [Berestycki, Hamel, Nadin,2008] More general reactions [Rossi, 2017]

• Result does not hold without Hypothesis TF:

examples of functions f with multiple oscillations, terrasses of expanding fronts

• $d_{\mathcal{H}}(U, U_{
ho}) < +\infty$ and U is star-shaped $\Longrightarrow \mathcal{B}(U) \cup \mathcal{U}(U_{
ho}) = \mathbb{S}^{N-1}$

Theorem 2 (spreading sets) (stronger property: uniformity in *e*)

Assume (1)

Notation: envelop set

$$\mathcal{W} := \left\{ r \mathbf{e} : \mathbf{e} \in \mathbb{S}^{N-1}, \ \mathbf{0} \le r < w(\mathbf{e}) \right\} = \mathbb{R}^+ \mathcal{U}(U) + B_c.$$

Then, for any compact set $C \subset \mathbb{R}^N$,

$$\begin{cases} \lim_{t \to +\infty} \left(\min_{x \in C} u(t, tx) \right) &= 1 \quad \text{if } C \subset \mathcal{W}, \\ \lim_{t \to +\infty} \left(\max_{x \in C} u(t, tx) \right) &= 0 \quad \text{if } C \subset \mathbb{R}^N \setminus \overline{\mathcal{W}} \end{cases}$$

Comments

- Particular case U bounded $(\mathcal{B}(U) = \mathbb{S}^{N-1}, W = B_{c^*})$: see II
- $\mathcal W$ is open, and either unbounded (iff $\mathcal U(U) \neq \emptyset$) or equal to B_{c^*}
- Freidlin-Gärtner formula $w(e) = \inf_{\xi \in \mathbb{S}^{N-1}, \xi \cdot e > 0} \frac{c^*(\xi)}{\xi \cdot e}$

(spreading speeds in periodic equations with compactly supported u_0) $\overline{\mathcal{W}}$ is the Wulff shape of the envelop set of the minimal speeds $c^*(\xi)$ $\Longrightarrow \overline{\mathcal{W}}$ is a convex compact set

- Here, $\overline{\mathcal{W}}$ is neither convex nor bounded in general
- Spreading sets for (heterogeneous) reaction-diffusion equations with compactly supported u₀
 [Evans, Souganidis, 1989] [Barles, Evans, Souganidis, 1990] [Xin, 2000]
 [Weinberger, 2002] [Liang, Matano, 2014] [Berestycki, Nadin, 2022]
 Alternate approach: scaling (t, x) = (t'/ε, x'/ε)
 For non-compactly supported u₀ which are invariant by scaling
 [Gärtner, 1983] [Barles, Bronsard, Souganidis, 1992]

Theorem 3 (upper level sets: local convergence)

Assume (1)

Notation, for t > 0, $\lambda \in (0, 1)$:

$$E_{\lambda}(t) := \left\{ x \in \mathbb{R}^{N} : u(t, x) > \lambda \right\}$$

Then, for every R > 0 and for every $0 < \lambda < 1$,

$$d_{\mathcal{H}}\Big(\overline{B_R}\cap \frac{E_{\lambda}(t)}{t},\overline{B_R}\cap \mathcal{W}\Big) \xrightarrow[t \to +\infty]{} 0$$

Remark: in general,

$$d_{\mathcal{H}}\Big(rac{E_{\lambda}(t)}{t},\mathcal{W}\Big)
eq 0 \hspace{0.2cm} ext{as} \hspace{0.2cm} t
ightarrow +\infty$$

▶ ★ Ξ ▶ ...

э

Theorem 4 (upper level sets: global approximation)

Assume that

 $d_{\mathcal{H}}(U, U_{\rho}) < +\infty$

Then, for every $0 < \lambda < 1$,

 $d_{\mathcal{H}}(E_{\lambda}(t), U + B_{c^*t}) = o(t)$ as $t \to +\infty$

- Uniform interior ball condition of radius $ho \Longrightarrow d_{\mathcal{H}}(U, U_{
 ho}) < +\infty$
- Conditions $\mathcal{B}(U) \cup \mathcal{U}(U_{\rho}) = \mathbb{S}^{N-1}$ and $d_{\mathcal{H}}(U, U_{\rho}) < +\infty$ can not be compared in general
- Without them, the results fail in general, and the limits

$$\lim_{t \to +\infty} \frac{E_{\lambda}(t)}{t} = \mathcal{W} = \lim_{t \to +\infty} \frac{U}{t} + B_{c^*}$$

do not exist or do not coincide in general

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Two steps of the proofs, using the maximum principle !

• Expanding sub-solutions emanating from $\mathbf{1}_{\mathcal{B}_{
ho}(y)}$ with speeds $\geq c^* - arepsilon$

• Retracting super-solutions in $B_{(c^*+\varepsilon)t}(y) \subset \mathbb{R}^N \setminus U$ with speeds $\leq c^* + \varepsilon$