On Bernstein type theorems for minimal graphs under Ricci lower bounds

joint works with G. Colombo, M. Magliaro and M. Rigoli

Luciano Mari Università degli Studi di Torino

Cortona, June 2022

(M, σ) complete Riemannian manifold, dimension m

endow $M imes \mathbb{R}$ with metric $\sigma + \mathrm{d}t^2$, g induced metric on Σ (on M)

<ロ> (四) (四) (三) (三) (三)

where D, div taken with respect to σ .

(M, σ) complete Riemannian manifold, dimension m

endow $M imes \mathbb{R}$ with metric $\sigma + \mathrm{d}t^2$, g induced metric on Σ (on M)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

where D, div taken with respect to σ .

(M, σ) complete Riemannian manifold, dimension m

endow $M \times \mathbb{R}$ with metric $\sigma + dt^2$, g induced metric on Σ (on M)

★週 → ★ 注 → ★ 注 → 一 注

where D, div taken with respect to σ .

(M, σ) complete Riemannian manifold, dimension m

endow $M \times \mathbb{R}$ with metric $\sigma + dt^2$, g induced metric on Σ (on M)

$$\begin{array}{c} \Sigma \text{ is minimal} \\ \text{(stationary for area)} \end{array} \iff \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) = 0 \text{ on } M$$

< ∃→

where D, div taken with respect to σ .

(M, σ) complete Riemannian manifold, dimension m

endow $M \times \mathbb{R}$ with metric $\sigma + dt^2$, g induced metric on Σ (on M)

$$\begin{array}{c} \Sigma \text{ is minimal} \\ \text{(stationary for area)} \end{array} \iff \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) = 0 \text{ on } M$$

< ∃→

where D, div taken with respect to σ .

$$\operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0 \tag{MS}$$

GENERALIZED BERNSTEIN THEOREM: property

 $(\mathscr{B}1)$ all solutions to (MS) on \mathbb{R}^m are affine

holds if and only if $m \le 7$. (Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)

(*B*2) Positive solutions to (MS) on \mathbb{R}^m are constant (Bombieri-De Giorgi-Miranda '69)

(ℬ3) Solutions to (MS) on R^m with at most linear growth on one side (that is, u(x) ≤ C(1 + |x|)) are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).

div
$$\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0$$
 (MS)

GENERALIZED BERNSTEIN THEOREM: property

 $(\mathscr{B}1)$ all solutions to (MS) on \mathbb{R}^m are affine

holds if and only if $m \le 7$. (Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)

(*B*2) Positive solutions to (MS) on \mathbb{R}^m are constant (Bombieri-De Giorgi-Miranda '69)

(ℬ3) Solutions to (MS) on R^m with at most linear growth on one side (that is, u(x) ≤ C(1 + |x|)) are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).

div
$$\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0$$
 (MS)

GENERALIZED BERNSTEIN THEOREM: property

 $(\mathscr{B}1)$ all solutions to (MS) on \mathbb{R}^m are affine

holds if and only if $m \le 7$. (Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)

(\mathscr{B} 2) Positive solutions to (MS) on \mathbb{R}^m are constant (Bombieri-De Giorgi-Miranda '69)

(ℬ3) Solutions to (MS) on R^m with at most linear growth on one side (that is, u(x) ≤ C(1 + |x|)) are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).

div
$$\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0$$
 (MS)

GENERALIZED BERNSTEIN THEOREM: property

 $(\mathscr{B}1)$ all solutions to (MS) on \mathbb{R}^m are affine

holds if and only if $m \le 7$. (Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)

- ($\mathscr{B}2$) Positive solutions to (MS) on \mathbb{R}^m are constant (Bombieri-De Giorgi-Miranda '69)
- (ℬ3) Solutions to (MS) on R^m with at most linear growth on one side (that is, u(x) ≤ C(1 + |x|)) are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).

div
$$\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0$$
 (MS)

GENERALIZED BERNSTEIN THEOREM: property

 $(\mathscr{B}1)$ all solutions to (MS) on \mathbb{R}^m are affine

holds if and only if $m \le 7$. (Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)

- ($\mathscr{B}2$) Positive solutions to (MS) on \mathbb{R}^m are constant (Bombieri-De Giorgi-Miranda '69)
- (*B*3) Solutions to (MS) on \mathbb{R}^m with at most linear growth on one side (that is, $u(x) \le C(1 + |x|)$) are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).

for which manifolds M properties $(\mathcal{B}1), (\mathcal{B}2), (\mathcal{B}3)$ hold?

If $M = \mathbb{H}^m$, completely different picture: Plateau's problem at infinity is always solvable!

 $\forall \phi \in C(\partial_{\infty} \mathbb{H}^m)$, there exists a solution *u* to (MS) on \mathbb{H}^m such that $u_{|\partial_{\infty} \mathbb{H}^m} = \phi$ continuously (Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

 Generalizations to manifolds with pinched, negative curvature (Ripoll-Telichevesky '15, Casteras-Holopainen-Ripoll-Heinonen '17-'19)

for which manifolds M properties $(\mathcal{B}1), (\mathcal{B}2), (\mathcal{B}3)$ hold?

If $M = \mathbb{H}^m$, completely different picture: Plateau's problem at infinity is always solvable!

 $\forall \phi \in C(\partial_{\infty} \mathbb{H}^m)$, there exists a solution *u* to (MS) on \mathbb{H}^m such that $u_{|\partial_{\infty} \mathbb{H}^m} = \phi$ continuously (Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

 Generalizations to manifolds with pinched, negative curvature (Ripoll-Telichevesky '15, Casteras-Holopainen-Ripoll-Heinonen '17-'19)

for which manifolds M properties $(\mathcal{B}1), (\mathcal{B}2), (\mathcal{B}3)$ hold?

If $M = \mathbb{H}^m$, *completely different picture*: Plateau's problem at infinity is always solvable!

 $\forall \phi \in C(\partial_{\infty} \mathbb{H}^m)$, there exists a solution *u* to (MS) on \mathbb{H}^m such that $u_{|\partial_{\infty} \mathbb{H}^m} = \phi$ continuously (Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

 Generalizations to manifolds with pinched, negative curvature (Ripoll-Telichevesky '15, Casteras-Holopainen-Ripoll-Heinonen '17-'19)

for which manifolds M properties $(\mathscr{B}1), (\mathscr{B}2), (\mathscr{B}3)$ hold?

If $M = \mathbb{H}^m$, completely different picture: Plateau's problem at infinity is always solvable!

 $\forall \phi \in C(\partial_{\infty} \mathbb{H}^m)$, there exists a solution *u* to (MS) on \mathbb{H}^m such that $u_{|\partial_{\infty} \mathbb{H}^m} = \phi$ continuously (Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

• Generalizations to manifolds with pinched, negative curvature (Ripoll-Telichevesky '15, Casteras-Holopainen-Ripoll-Heinonen '17-'19)

• Sectional curvature Sec : $\{2\text{-planes of } M\} \longrightarrow \mathbb{R}.$

• Ricci curvature

$$\operatorname{Ric}(X) = \sum_{j=1}^{m-1} \operatorname{Sec}(X \wedge e_j), \qquad |X| = 1, \{e_j\} \text{ o.n. basis for } X^{\perp}.$$

 $(\mathscr{B}1), (\mathscr{B}2), (\mathscr{B}3)$ might hold if Ric ≥ 0 :

Examples: $\mathbb{S}^{q} \times \mathbb{R}^{q}$, Menguy's examples, Eguchi-Hanson metric on $T^{*}\mathbb{S}^{2}$, gravitational instantons, ...

- \mathbb{R}^{m} is the largest such manifold $(|B_{r}| \leq Cr^{m})$.
- (1) Cheeger-Colding's theory is available; if $a \in M, \lambda_j \rightarrow +\infty$, then
 - $(M, \lambda_i^{-1} \sigma_i \sigma) \cong (X, d, \sigma_{\infty})$ for some (nonsmooth) X with Ric ≥ 0.0

(X is a langent cone at infinity (blowdown))

<ロ>

- Sectional curvature Sec : $\{2\text{-planes of } M\} \longrightarrow \mathbb{R}.$
- Ricci curvature

$$\operatorname{Ric}(X) = \sum_{j=1}^{m-1} \operatorname{Sec}(X \wedge e_j), \qquad |X| = 1, \{e_j\} \text{ o.n. basis for } X^{\perp}.$$

 $(\mathscr{B}1), (\mathscr{B}2), (\mathscr{B}3)$ might hold if Ric ≥ 0 :

Examples: $\mathbb{S}^p \times \mathbb{R}^q$, Menguy's examples, Eguchi-Hanson metric on $T^*\mathbb{S}^2$, gravitational instantons, ...

- \mathbb{R}^{m} is the largest such manifold $(|B_{r}| \leq Cr^{m})$.
- 1) Cheeger-Calding's theory is available: if $a \in M, \lambda_j \rightarrow +\infty$, then
 - $(M, \lambda_i^{-2} \sigma, \sigma) \oplus (X, \mathbf{d}, \sigma_{\infty}) =$ for some (nonsmooth) X with Ric ≥ 0.1

(X is a tangent cone at infinity (blowdown)))

- Sectional curvature Sec : $\{2\text{-planes of } M\} \longrightarrow \mathbb{R}.$
- Ricci curvature

$$\operatorname{Ric}(X) = \sum_{j=1}^{m-1} \operatorname{Sec}(X \wedge e_j), \qquad |X| = 1, \{e_j\} \text{ o.n. basis for } X^{\perp}.$$

$(\mathscr{B}1), (\mathscr{B}2), (\mathscr{B}3)$ might hold if $\operatorname{Ric} \geq 0$:

Examples: $\mathbb{S}^p \times \mathbb{R}^q$, Menguy's examples, Eguchi-Hanson metric on $T^*\mathbb{S}^2$, gravitational instantons, ...

- 1) \mathbb{R}^m is the largest such manifold $(|B_r| \leq Cr^m)$.
- (1) Cheeger-Colding's theory is available; if $a \in M, \lambda_j \rightarrow +\infty$, then
 - $(M, \lambda_i^{-2} \sigma, \sigma) \oplus (X, d, \sigma_{\infty})$ for some (nonsmooth) X with Ric ≥ 0.0

(X is a tangent cone at infinity (blowdown))

- Sectional curvature Sec : $\{2\text{-planes of } M\} \longrightarrow \mathbb{R}.$
- Ricci curvature

$$\operatorname{Ric}(X) = \sum_{j=1}^{m-1} \operatorname{Sec}(X \wedge e_j), \qquad |X| = 1, \{e_j\} \text{ o.n. basis for } X^{\perp}.$$

 $(\mathscr{B}1), (\mathscr{B}2), (\mathscr{B}3)$ might hold if $\operatorname{Ric} \geq 0$:

Examples: $\mathbb{S}^p \times \mathbb{R}^q$, Menguy's examples, Eguchi-Hanson metric on $T^*\mathbb{S}^2$, gravitational instantons, ...

- 1) \mathbb{R}^m is the largest such manifold ($|B_r| \leq Cr^m$).
- 1) Cheeger-Colding's theory is available: if $o \in M$, $\lambda_j \to +\infty$, then

 $(M, \lambda_j^{-2}\sigma, o) \hookrightarrow (X, d, o_\infty)$ for some (nonsmooth) X with Ric ≥ 0 .

(X is a tangent cone at infinity (blowdown))

2) Analogy with the theory of harmonic functions (recall: $\Delta_g u = 0$). $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Xi} \rangle$

- Sectional curvature Sec : $\{2\text{-planes of } M\} \longrightarrow \mathbb{R}.$
- Ricci curvature

$$\operatorname{Ric}(X) = \sum_{j=1}^{m-1} \operatorname{Sec}(X \wedge e_j), \qquad |X| = 1, \{e_j\} \text{ o.n. basis for } X^{\perp}.$$

 $(\mathscr{B}1), (\mathscr{B}2), (\mathscr{B}3)$ might hold if $\operatorname{Ric} \geq 0$:

Examples: $\mathbb{S}^p \times \mathbb{R}^q$, Menguy's examples, Eguchi-Hanson metric on $T^*\mathbb{S}^2$, gravitational instantons, ...

- 1) \mathbb{R}^m is the largest such manifold $(|B_r| \leq Cr^m)$.
- 1) Cheeger-Colding's theory is available: if $o \in M$, $\lambda_j \to +\infty$, then

 $(M, \lambda_j^{-2}\sigma, o) \hookrightarrow (X, d, o_\infty)$ for some (nonsmooth) X with Ric ≥ 0 .

(X is a tangent cone at infinity (blowdown))

2) Analogy with the theory of harmonic functions (recall: $\Delta_g u = 0$). $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

- Sectional curvature Sec : $\{2\text{-planes of } M\} \longrightarrow \mathbb{R}.$
- Ricci curvature

$$\operatorname{Ric}(X) = \sum_{j=1}^{m-1} \operatorname{Sec}(X \wedge e_j), \qquad |X| = 1, \{e_j\} \text{ o.n. basis for } X^{\perp}.$$

 $(\mathscr{B}1), (\mathscr{B}2), (\mathscr{B}3)$ might hold if $\operatorname{Ric} \geq 0$:

Examples: $\mathbb{S}^p \times \mathbb{R}^q$, Menguy's examples, Eguchi-Hanson metric on $T^*\mathbb{S}^2$, gravitational instantons, ...

- 1) \mathbb{R}^m is the largest such manifold $(|B_r| \leq Cr^m)$.
- 1) Cheeger-Colding's theory is available: if $o \in M$, $\lambda_j \to +\infty$, then

 $(M, \lambda_j^{-2}\sigma, o) \hookrightarrow (X, d, o_\infty)$ for some (nonsmooth) X with Ric ≥ 0 .

(X is a tangent cone at infinity (blowdown))

2) Analogy with the theory of harmonic functions (recall: $\Delta_g u = 0$).

- Sectional curvature Sec : $\{2\text{-planes of } M\} \longrightarrow \mathbb{R}.$
- Ricci curvature

$$\operatorname{Ric}(X) = \sum_{j=1}^{m-1} \operatorname{Sec}(X \wedge e_j), \qquad |X| = 1, \{e_j\} \text{ o.n. basis for } X^{\perp}.$$

 $(\mathscr{B}1), (\mathscr{B}2), (\mathscr{B}3)$ might hold if $\operatorname{Ric} \geq 0$:

Examples: $\mathbb{S}^p \times \mathbb{R}^q$, Menguy's examples, Eguchi-Hanson metric on $T^*\mathbb{S}^2$, gravitational instantons, ...

- 1) \mathbb{R}^m is the largest such manifold $(|B_r| \leq Cr^m)$.
- 1) Cheeger-Colding's theory is available: if $o \in M$, $\lambda_j \to +\infty$, then

 $(M, \lambda_j^{-2}\sigma, o) \hookrightarrow (X, d, o_\infty)$ for some (nonsmooth) X with Ric ≥ 0 .

(X is a tangent cone at infinity (blowdown))

2) Analogy with the theory of harmonic functions (recall: $\Delta_g u = 0$).

Theorem

Let M^m be complete, Ric ≥ 0 . Fix $o \in M$ and assume that

$$\int^{\infty} \frac{r}{|B_r(o)|} \mathrm{d}r = +\infty \tag{1}$$

Let u be a non-constant solution of (MS). Then,

 $-M=N imes \mathbb{R}$ with the product metric $\sigma_N+\mathrm{d}s^2$

- In the variables $(y,s) \in \mathbb{N} \times \mathbb{R}$ is holds u(y,s) = as + b for some $a, b \in \mathbb{R}$.

Thus, $(\mathscr{B}1)$ holds (hence, $(\mathscr{B}2)$ and $(\mathscr{B}3)$). In particular, it applies to surfaces with Sec ≥ 0

Theorem

Let M^m be complete, Ric ≥ 0 . Fix $o \in M$ and assume that

$$\int^{\infty} \frac{r}{|B_r(o)|} \mathrm{d}r = +\infty \tag{1}$$

Let u be a non-constant solution of (MS). Then,

- $M = N \times \mathbb{R}$ with the product metric $\sigma_N + ds^2$

- In the variables $(y,s) \in N \times \mathbb{R}$ it holds u(y,s) = as + b for some $a, b \in \mathbb{R}$.

Thus, $(\mathscr{B}1)$ holds (hence, $(\mathscr{B}2)$ and $(\mathscr{B}3)$).

In particular, it applies to surfaces with Sec ≥ 0 .

Theorem

Let M^m be complete, Ric ≥ 0 . Fix $o \in M$ and assume that

$$\int^{\infty} \frac{r}{|B_r(o)|} \mathrm{d}r = +\infty \tag{1}$$

Let u be a non-constant solution of (MS). Then,

- $M = N \times \mathbb{R}$ with the product metric $\sigma_N + ds^2$,

- In the variables $(y,s) \in N \times \mathbb{R}$ it holds u(y,s) = as + b for some $a, b \in \mathbb{R}$.

Thus, $(\mathscr{B}1)$ holds (hence, $(\mathscr{B}2)$ and $(\mathscr{B}3)$).

Theorem

Let M^m be complete, Ric ≥ 0 . Fix $o \in M$ and assume that

$$\int^{\infty} \frac{r}{|B_r(o)|} \mathrm{d}r = +\infty \tag{1}$$

Let u be a non-constant solution of (MS). Then,

- $M = N \times \mathbb{R}$ with the product metric $\sigma_N + ds^2$,
- In the variables $(y, s) \in N \times \mathbb{R}$ it holds u(y, s) = as + b for some $a, b \in \mathbb{R}$.

Thus, $(\mathscr{B}1)$ holds (hence, $(\mathscr{B}2)$ and $(\mathscr{B}3)$). In particular, it applies to surfaces with Sec ≥ 0

Theorem

Let M^m be complete, Ric ≥ 0 . Fix $o \in M$ and assume that

$$\int^{\infty} \frac{r}{|B_r(o)|} \mathrm{d}r = +\infty \tag{1}$$

Let u be a non-constant solution of (MS). Then,

- $M = N \times \mathbb{R}$ with the product metric $\sigma_N + ds^2$,
- In the variables $(y, s) \in N \times \mathbb{R}$ it holds u(y, s) = as + b for some $a, b \in \mathbb{R}$.

Thus, $(\mathscr{B}1)$ holds (hence, $(\mathscr{B}2)$ and $(\mathscr{B}3)$).

In particular, it applies to surfaces with Sec \geq 0.

Theorem

Let M^m be complete, Ric ≥ 0 . Fix $o \in M$ and assume that

$$\int^{\infty} \frac{r}{|B_r(o)|} \mathrm{d}r = +\infty \tag{1}$$

Let u be a non-constant solution of (MS). Then,

- $M = N \times \mathbb{R}$ with the product metric $\sigma_N + ds^2$,
- In the variables $(y, s) \in N \times \mathbb{R}$ it holds u(y, s) = as + b for some $a, b \in \mathbb{R}$.

Thus, $(\mathscr{B}1)$ holds (hence, $(\mathscr{B}2)$ and $(\mathscr{B}3)$). In particular, it applies to surfaces with Sec > 0.

PROPERTIES $(\mathscr{B}2), (\mathscr{B}3)$ IF Sec ≥ 0

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M be complete, Sec ≥ 0 . Let u be a non-constant solution of (MS) and assume that

 $u(x) \le C(1 + r(x)),$ r distance from a fixed origin o.

Then,

- $M = N \times \mathbb{R}$ with the product metric $\sigma_N + ds^2$,

- u(y,s) = as + b for some $a, b \in \mathbb{R}$.

In particular, $(\mathscr{B}2)$ and $(\mathscr{B}3)$ hold.

PROPERTIES $(\mathscr{B}2), (\mathscr{B}3)$ IF Sec ≥ 0

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let *M* be complete, Sec ≥ 0 . Let *u* be a non-constant solution of (MS) and assume that

 $u(x) \le C(1 + r(x)),$ r distance from a fixed origin o.

ヘロト ヘ団 ト ヘヨト ヘヨト

Then,

- $M = N \times \mathbb{R}$ with the product metric $\sigma_N + ds^2$,

- u(y, s) = as + b for some $a, b \in \mathbb{R}$.

In particular, $(\mathscr{B}2)$ and $(\mathscr{B}3)$ hold.

PROPERTIES $(\mathscr{B}2), (\mathscr{B}3)$ IF Sec ≥ 0

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M be complete, Sec ≥ 0 . Let u be a non-constant solution of (MS) and assume that

 $u(x) \le C(1 + r(x)),$ r distance from a fixed origin o.

イロト イ理ト イヨト イヨト

Then,

- $M = N \times \mathbb{R}$ with the product metric $\sigma_N + ds^2$,
- u(y,s) = as + b for some $a, b \in \mathbb{R}$.

In particular, $(\mathscr{B}2)$ and $(\mathscr{B}3)$ hold.

A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B}2$) : positive minimal graphs over M are constant.

Independently proved by Q. Ding '21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck '13 under the further condition Sec $\geq -\kappa^2$, $\kappa \in \mathbb{R}^+$.

★ 글 ▶ ★ 글 ♪

A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B}2$) : positive minimal graphs over M are constant.

Independently proved by Q. Ding '21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck '13 under the further condition Sec $\geq -\kappa^2$, $\kappa \in \mathbb{R}^+$.

A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B}2$) : positive minimal graphs over M are constant.

Independently proved by Q. Ding '21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck '13 under the further condition Sec $\geq -\kappa^2$, $\kappa \in \mathbb{R}^+$.

イロト イポト イヨト イヨト

A complete manifold M with $\text{Ric} \ge 0$ satisfies ($\mathscr{B}2$) : positive minimal graphs over M are constant.

Independently proved by Q. Ding '21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck '13 under the further condition Sec $\geq -\kappa^2$, $\kappa \in \mathbb{R}^+$.

(人間) くほう くほう

A complete manifold M with $\text{Ric} \ge 0$ satisfies ($\mathscr{B}2$) : positive minimal graphs over M are constant.

Independently proved by Q. Ding '21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck '13 under the further condition Sec $\geq -\kappa^2$, $\kappa \in \mathbb{R}^+$.

イロト イポト イヨト イヨト
Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^m be complete with Ric ≥ 0 . Let u solve (MS) and $|Du| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: *M* may not split off any line!

• Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95

(different proof: here we use heat equation techniques).

• If $|Du| \in L^{\infty}(M)$ is weakened to

 $u(x) \le C(1 + r(x)),$ r distance from a fixed origin o,

then we get same conclusion up to further requiring

$$\operatorname{Ric}^{(m-2)}(\nabla r) \ge -\frac{C}{1+r^2}$$
 on $M \setminus \operatorname{cut}(o)$. (2)

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^m be complete with Ric ≥ 0 . Let u solve (MS) and $|Du| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: *M* may not split off any line!

• Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95

(different proof: here we use heat equation techniques).

• If $|Du| \in L^{\infty}(M)$ is weakened to

 $u(x) \le C(1+r(x)),$ r distance from a fixed origin o,

then we get same conclusion up to further requiring

$$\operatorname{Ric}^{(m-2)}(\nabla r) \ge -\frac{C}{1+r^2}$$
 on $M \setminus \operatorname{cut}(o)$. (2)

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^m be complete with Ric ≥ 0 . Let u solve (MS) and $|Du| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: *M* may not split off any line!

• Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95

(different proof: here we use heat equation techniques).

• If $|Du| \in L^{\infty}(M)$ is weakened to

 $u(x) \le C(1+r(x)),$ r distance from a fixed origin o,

then we get same conclusion up to further requiring

$$\operatorname{Ric}^{(m-2)}(\nabla r) \ge -\frac{C}{1+r^2}$$
 on $M \setminus \operatorname{cut}(o)$. (2)

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^m be complete with Ric ≥ 0 . Let u solve (MS) and $|Du| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: *M* may not split off any line!

• Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95

(different proof: here we use heat equation techniques).

• If $|Du| \in L^{\infty}(M)$ is weakened to

 $u(x) \le C(1 + r(x)),$ r distance from a fixed origin o,

then we get same conclusion up to further requiring

$$\operatorname{Ric}^{(m-2)}(\nabla r) \ge -\frac{C}{1+r^2} \quad \text{on } M \backslash \operatorname{cut}(o).$$
(2)

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^m be complete with Ric ≥ 0 . Let u solve (MS) and $|Du| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: *M* may not split off any line!

• Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95

(different proof: here we use heat equation techniques).

• If
$$|Du| \in L^{\infty}(M)$$
 is weakened to

 $u(x) \le C(1 + r(x)),$ r distance from a fixed origin o,

then we get same conclusion up to further requiring

$$\operatorname{Ric}^{(m-2)}(\nabla r) \ge -\frac{C}{1+r^2}$$
 on $M \setminus \operatorname{cut}(o)$. (2)

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^m be complete with Ric ≥ 0 . Let u solve (MS) and $|Du| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: *M* may not split off any line!

• Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95

(different proof: here we use heat equation techniques).

• If
$$|Du| \in L^{\infty}(M)$$
 is weakened to

 $u(x) \le C(1 + r(x)),$ r distance from a fixed origin o,

then we get same conclusion up to further requiring

$$\operatorname{Ric}^{(m-2)}(\nabla r) \ge -\frac{C}{1+r^2}$$
 on $M \setminus \operatorname{cut}(o)$. (2)

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^m be complete with Ric ≥ 0 . Let u solve (MS) and $|Du| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: *M* may not split off any line!

• Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95

(different proof: here we use heat equation techniques).

• If
$$|Du| \in L^{\infty}(M)$$
 is weakened to

 $u(x) \le C(1 + r(x)),$ r distance from a fixed origin o,

then we get same conclusion up to further requiring

$$\operatorname{Ric}^{(m-2)}(\nabla r) \ge -\frac{C}{1+r^2}$$
 on $M \setminus \operatorname{cut}(o)$. (2)

Theorem (Colombo, Magliaro, M., Rigoli)

If M is complete and $\text{Ric} \ge 0$, then positive minimal graphs are constant.

 Previous strategies: *local* gradient estimates: if 0 < u : B_R(x) → ℝ solve (MS),

$$|Du(x)| \le c_1 \exp\left\{c_2 \frac{u(x)}{R}\right\}, \qquad c_j = c_j(m)$$

Theorem (Colombo, Magliaro, M., Rigoli)

If M is complete and $\text{Ric} \geq 0$, then positive minimal graphs are constant.

Previous strategies: *local* gradient estimates: if 0 < u : B_R(x) → ℝ solve (MS),

$$|Du(x)| \le c_1 \exp\left\{c_2 \frac{u(x)}{R}\right\}, \qquad c_j = c_j(m)$$

Theorem

Let M^m complete with $\operatorname{Ric} \geq -(m-1)\kappa^2$, for constant $\kappa \geq 0$.

Let u be a positive solution of (MS) on an open set $\Omega \subset M$.

If either

(i) $\partial \Omega$ locally Lipschitz and $|\partial \Omega \cap B_k| \leq C_1 \exp \{C_2 k^2\}$, (ii) $u \in C(\overline{\Omega})$ and is constant on $\partial \Omega$.

Then

$$\frac{\sqrt{1+|Du|^2}}{e^{\kappa\sqrt{m-1}u}} \le \max\left\{1, \limsup_{x\to\partial\Omega}\frac{\sqrt{1+|Du(x)|^2}}{e^{\kappa\sqrt{m-1}u(x)}}\right\} \quad on \ \Omega.$$
(3)

$$\sqrt{1+|Du|^2} \le e^{\kappa\sqrt{m-1}u} \quad on \ M.$$

Theorem

Let M^m complete with $\operatorname{Ric} \geq -(m-1)\kappa^2$, for constant $\kappa \geq 0$.

Let u be a positive solution of (MS) on an open set $\Omega \subset M$. If either

(i) $\partial\Omega$ locally Lipschitz and $|\partial\Omega \cap B_R| \leq C_1 \exp{\{C_2R^2\}}$, or (ii) $u \in C(\overline{\Omega})$ and is constant on $\partial\Omega$. Then

$$\frac{\sqrt{1+|Du|^2}}{e^{\kappa\sqrt{m-1}u}} \le \max\left\{1, \limsup_{x\to\partial\Omega}\frac{\sqrt{1+|Du(x)|^2}}{e^{\kappa\sqrt{m-1}u(x)}}\right\} \quad on \ \Omega.$$
(3)

$$\sqrt{1+|Du|^2} \le e^{\kappa\sqrt{m-1}u} \quad on \ M.$$

Theorem

Let M^m complete with $\operatorname{Ric} \geq -(m-1)\kappa^2$, for constant $\kappa \geq 0$.

Let u be a positive solution of (MS) on an open set $\Omega \subset M$. If either

(i) $\partial \Omega$ locally Lipschitz and $|\partial \Omega \cap B_R| \leq C_1 \exp \{C_2 R^2\}$, or

(*ii*) $u \in C(\overline{\Omega})$ and is constant on $\partial\Omega$. Then

$$\frac{\sqrt{1+|Du|^2}}{e^{\kappa\sqrt{m-1}u}} \le \max\left\{1, \limsup_{x\to\partial\Omega}\frac{\sqrt{1+|Du(x)|^2}}{e^{\kappa\sqrt{m-1}u(x)}}\right\} \quad on \ \Omega.$$
(3)

$$\sqrt{1+|Du|^2} \le e^{\kappa\sqrt{m-1}u} \quad on \ M.$$

Theorem

Let M^m complete with $\operatorname{Ric} \geq -(m-1)\kappa^2$, for constant $\kappa \geq 0$.

Let u be a positive solution of (MS) on an open set $\Omega \subset M$. If either

(*i*) $\partial\Omega$ locally Lipschitz and $|\partial\Omega \cap B_R| \leq C_1 \exp{\{C_2R^2\}}$, or (*ii*) $u \in C(\overline{\Omega})$ and is constant on $\partial\Omega$. Then

$$\frac{\sqrt{1+|Du|^2}}{e^{\kappa\sqrt{m-1}u}} \le \max\left\{1, \limsup_{x\to\partial\Omega}\frac{\sqrt{1+|Du(x)|^2}}{e^{\kappa\sqrt{m-1}u(x)}}\right\} \quad on \ \Omega.$$
(3)

$$\sqrt{1+|Du|^2} \le e^{\kappa\sqrt{m-1}u} \quad on \ M.$$

Theorem

Let M^m complete with $\operatorname{Ric} \geq -(m-1)\kappa^2$, for constant $\kappa \geq 0$.

Let u be a positive solution of (MS) on an open set $\Omega \subset M$. If either

(*i*) $\partial\Omega$ locally Lipschitz and $|\partial\Omega \cap B_R| \leq C_1 \exp{\{C_2R^2\}}$, or (*ii*) $u \in C(\overline{\Omega})$ and is constant on $\partial\Omega$. Then

$$\frac{\sqrt{1+|Du|^2}}{e^{\kappa\sqrt{m-1}u}} \le \max\left\{1, \limsup_{x\to\partial\Omega}\frac{\sqrt{1+|Du(x)|^2}}{e^{\kappa\sqrt{m-1}u(x)}}\right\} \quad on \ \Omega.$$
(3)

$$\sqrt{1+|Du|^2} \le e^{\kappa\sqrt{m-1}u} \qquad on \ M. \tag{4}$$

$$\Delta_g W^{-1} + \left[\| \operatorname{II} \|^2 + \operatorname{Ric} \left(\frac{Du}{W} \right) \right] W^{-1} = 0 \quad \text{on } \Sigma.$$

Korevaar's method: compute $\Delta_g(W\eta)$, for η a (carefully crafted) cutoff depending on *u* and *r*, the distance in (M, σ) from a fixed point.

Problem: need to evaluate $\Delta_g r = g^{ij}(D^2 r)_{ij}$, but Ric ≥ 0 only estimates $\sigma^{ij}(D^2 r)_{ij}$!

IDEA: in place of r, we use an exhaustion ρ built via potential theory (stochastic geometry) (M-, Pessoa, Valtorta '13,'20)

★ E ► ★ E ►

$$\Delta_g W^{-1} + \left[\| \operatorname{II} \|^2 + \operatorname{Ric} \left(\frac{Du}{W} \right) \right] W^{-1} = 0 \quad \text{on } \Sigma.$$

Korevaar's method: compute $\Delta_g(W\eta)$, for η a (carefully crafted) cutoff depending on *u* and *r*, the distance in (M, σ) from a fixed point.

Problem: need to evaluate $\Delta_g r = g^{ij}(D^2 r)_{ij}$, but Ric ≥ 0 only estimates $\sigma^{ij}(D^2 r)_{ij}$!

IDEA: in place of r, we use an exhaustion ρ built via potential theory (stochastic geometry) (M-, Pessoa, Valtorta '13,'20)

$$\Delta_g W^{-1} + \left[\| \operatorname{II} \|^2 + \operatorname{Ric} \left(\frac{Du}{W} \right) \right] W^{-1} = 0 \quad \text{on } \Sigma.$$

Korevaar's method: compute $\Delta_g(W\eta)$, for η a (carefully crafted) cutoff depending on *u* and *r*, the distance in (M, σ) from a fixed point.

Problem: need to evaluate $\Delta_g r = g^{ij}(D^2 r)_{ij}$, but Ric ≥ 0 only estimates $\sigma^{ij}(D^2 r)_{ij}$!

IDEA: in place of *r*, we use an exhaustion ρ built via potential theory (stochastic geometry) (M-, Pessoa, Valtorta '13,'20)

イロト 不得 トイヨト イヨト 二日

$$\Delta_g W^{-1} + \left[\| \operatorname{II} \|^2 + \operatorname{Ric} \left(\frac{Du}{W} \right) \right] W^{-1} = 0 \quad \text{on } \Sigma.$$

Korevaar's method: compute $\Delta_g(W\eta)$, for η a (carefully crafted) cutoff depending on *u* and *r*, the distance in (M, σ) from a fixed point.

Problem: need to evaluate $\Delta_g r = g^{ij}(D^2 r)_{ij}$, but Ric ≥ 0 only estimates $\sigma^{ij}(D^2 r)_{ij}$!

IDEA: in place of r, we use an exhaustion ρ built via potential theory (stochastic geometry) (M-, Pessoa, Valtorta '13,'20)

★週 ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

$$\Delta_g W^{-1} + \left[\| \operatorname{II} \|^2 + \operatorname{Ric} \left(\frac{Du}{W} \right) \right] W^{-1} = 0 \quad \text{on } \Sigma.$$

Korevaar's method: compute $\Delta_g(W\eta)$, for η a (carefully crafted) cutoff depending on *u* and *r*, the distance in (M, σ) from a fixed point.

Problem: need to evaluate $\Delta_g r = g^{ij}(D^2 r)_{ij}$, but Ric ≥ 0 only estimates $\sigma^{ij}(D^2 r)_{ij}$!

IDEA: in place of r, we use an exhaustion ρ built via potential theory (stochastic geometry) (M-, Pessoa, Valtorta '13,'20)

▲■▶ ▲ 臣▶ ▲ 臣▶ 三臣 - - のへ⊙

Fix
$$C > \kappa \sqrt{m-1}$$
, $z = We^{-Cu}$

• CLAIM: the following set is empty for every $\tau > 0$:

$$\Omega' := \left\{ x \in \Omega \ : \ z(x) > \max\left\{ 1, \limsup_{y \to \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1}u(y)}} \right\} + \tau \right\}$$

Once the claim is shown, thesis follows by letting $\tau \to 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega' \neq \emptyset$.

Define

$$\mathscr{L}_g \phi = W^2 \operatorname{div}_g (W^{-2} \nabla \phi)$$
 on Σ' .

Since $\|\nabla u\|^2 = \frac{W^2 - 1}{W^2}$,

$$\mathscr{L}_g z \ge \left[C^2 - (m-1)\kappa^2\right] \|\nabla u\|^2 z > C_\tau z \qquad \text{on } \Sigma'$$

▲ロト▲聞ト▲目ト▲目ト 目 のへ⊙

Fix
$$C > \kappa \sqrt{m-1}$$
, $z = We^{-Cu}$

• CLAIM: the following set is empty for every $\tau > 0$:

$$\Omega' := \left\{ x \in \Omega \ : \ z(x) > \max\left\{ 1, \limsup_{y \to \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1}u(y)}} \right\} + \tau \right\}$$

Once the claim is shown, thesis follows by letting $\tau \to 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega' \neq \emptyset$.

Define

$$\mathscr{L}_{g}\phi = W^{2}\operatorname{div}_{g}(W^{-2}\nabla\phi)$$
 on Σ' .

Since $\|\nabla u\|^2 = \frac{W^2 - 1}{W^2}$,

$$\mathscr{L}_g z \ge \left[C^2 - (m-1)\kappa^2\right] \|\nabla u\|^2 z > C_\tau z \qquad \text{on } \Sigma'$$

▲ロト▲圖ト▲臣ト▲臣ト 臣 のへ⊙

Fix
$$C > \kappa \sqrt{m-1}$$
, $z = We^{-Cu}$

• CLAIM: the following set is empty for every $\tau > 0$:

$$\Omega' := \left\{ x \in \Omega \ : \ z(x) > \max\left\{ 1, \limsup_{y \to \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1}u(y)}} \right\} + \tau \right\}$$

Once the claim is shown, thesis follows by letting $\tau \to 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega' \neq \emptyset$.

Define

$$\mathscr{L}_g \phi = W^2 \operatorname{div}_g (W^{-2} \nabla \phi)$$
 on Σ' .

Since $\|\nabla u\|^2 = \frac{W^2 - 1}{W^2}$,

$$\mathscr{L}_{g}z \ge \left[C^{2} - (m-1)\kappa^{2}\right] \|\nabla u\|^{2}z > C_{\tau}z \qquad \text{on } \Sigma'$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Fix
$$C > \kappa \sqrt{m-1}$$
, $z = We^{-Cu}$

• CLAIM: the following set is empty for every $\tau > 0$:

$$\Omega' := \left\{ x \in \Omega \ : \ z(x) > \max\left\{ 1, \limsup_{y \to \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1}u(y)}} \right\} + \tau \right\}$$

Once the claim is shown, thesis follows by letting $\tau \to 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega' \neq \emptyset$.

Define

$$\mathscr{L}_{g}\phi = W^{2}\operatorname{div}_{g}(W^{-2}\nabla\phi)$$
 on Σ' .

Since $\|\nabla u\|^2 = \frac{W^2 - 1}{W^2}$,

$$\mathscr{L}_{g}z \ge \left[C^{2} - (m-1)\kappa^{2}\right] \|\nabla u\|^{2}z > C_{\tau}z \qquad \text{on } \Sigma'$$

▲ロト▲聞ト▲目ト▲目ト 目 のへ⊙

Fix
$$C > \kappa \sqrt{m-1}$$
, $z = We^{-Cu}$

• CLAIM: the following set is empty for every $\tau > 0$:

$$\Omega' := \left\{ x \in \Omega \ : \ z(x) > \max\left\{ 1, \limsup_{y \to \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1}u(y)}} \right\} + \tau \right\}$$

Once the claim is shown, thesis follows by letting $\tau \to 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega' \neq \emptyset$.

Define

$$\mathscr{L}_g \phi = W^2 \operatorname{div}_g \left(W^{-2} \nabla \phi \right) \quad \text{on } \Sigma'.$$

Since $\|\nabla u\|^2 = \frac{W^2 - 1}{W^2}$,

$$\mathscr{L}_{g}z \ge \left[C^2 - (m-1)\kappa^2\right] \|\nabla u\|^2 z > C_{\tau}z \qquad \text{on } \Sigma'$$

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のQの

Key information: a graph has area bounds (calibrated):

LEMMA: in our assumptions, we can include $\overline{\Sigma'}$ isometrically a complete manifold (N^m, h) the volume of whose balls satisfies

 $|B_R^h| \le C_1 \exp\left\{C_2 R^2\right\}.$

Key information: a graph has area bounds (calibrated):

LEMMA: in our assumptions, we can include $\overline{\Sigma'}$ isometrically a complete manifold (N^m, h) the volume of whose balls satisfies

 $|B_R^h| \le C_1 \exp\left\{C_2 R^2\right\}.$

Key information: a graph has area bounds (calibrated):

LEMMA: in our assumptions, we can include $\overline{\Sigma'}$ isometrically a complete manifold (N^m, h) the volume of whose balls satisfies

 $|B_R^h| \le C_1 \exp\left\{C_2 R^2\right\}.$

If (N, h) is complete and

 $|B_R^h| \le C_1 \exp\left\{C_2 R^2\right\},\,$

then

$$\left\{egin{array}{ll} \Delta_h\omega\geq\omega & ext{on }\overline{U}\subset N, \ \sup_U\omega<\infty & \Longrightarrow & \sup_U\omega\leq\max\left\{0,\sup_{\partial U}\omega
ight\} \end{array}
ight.$$

The property characterizes the *stochastic completeness of* N, that is, the fact that the trajectories of the minimal Brownian motion on N have infinite lifetime almost surely.

AHLFORS-KHAS'MINSKII DUALITY (M.-Valtorta '13, M.-Pessoa '20): If (N, h) is stochastically complete, there exists $v \in C^{\infty}(N)$ solving

 $\left\{ \begin{array}{l} \Delta_g v \leq v \\ v \geq 1, \quad v \text{ exhaustion} \end{array} \right.$

伺き くほき くほう

If (N, h) is complete and

$$|B_R^h| \le C_1 \exp\left\{C_2 R^2\right\},\,$$

then

$$\left\{ \begin{array}{ll} \Delta_h \omega \ge \omega & \text{ on } \overline{U} \subset N, \\ \sup_U \omega < \infty & \Longrightarrow & \sup_U \omega \le \max \left\{ 0, \sup_{\partial U} \omega \right\} \end{array} \right.$$

The property characterizes the *stochastic completeness of* N, that is, the fact that the trajectories of the minimal Brownian motion on N have infinite lifetime almost surely.

AHLFORS-KHAS'MINSKII DUALITY (M.-Valtorta '13, M.-Pessoa '20): If (N, h) is stochastically complete, there exists $v \in C^{\infty}(N)$ solving

 $\begin{cases} \Delta_g v \le v \\ v \ge 1, \quad v \text{ exhaustion} \end{cases}$

御下 木油下 木油下 二油

If (N, h) is complete and

$$|B_R^h| \le C_1 \exp\left\{C_2 R^2\right\},\,$$

then

$$\left\{ \begin{array}{ll} \Delta_h \omega \ge \omega & \text{ on } \overline{U} \subset N, \\ \sup_U \omega < \infty & \Longrightarrow & \sup_U \omega \le \max \left\{ 0, \sup_{\partial U} \omega \right\} \end{array} \right.$$

The property characterizes the *stochastic completeness of* N, that is, the fact that the trajectories of the minimal Brownian motion on N have infinite lifetime almost surely.

AHLFORS-KHAS'MINSKII DUALITY

(M.-Valtorta '13, M.-Pessoa '20): If (N,h) is stochastically complete, there exists $v \in C^{\infty}(N)$ solving

$$\begin{cases}
\Delta_g v \leq v \\
v \geq 1, v \text{ exhaustion}
\end{cases}$$

★ Ξ → ★ Ξ →

If (N, h) is complete and

$$|B_R^h| \le C_1 \exp\left\{C_2 R^2\right\},\,$$

then

$$\left\{ \begin{array}{ll} \Delta_h \omega \ge \omega & \text{ on } \overline{U} \subset N, \\ \sup_U \omega < \infty & \Longrightarrow & \sup_U \omega \le \max \left\{ 0, \sup_{\partial U} \omega \right\} \end{array} \right.$$

The property characterizes the *stochastic completeness of* N, that is, the fact that the trajectories of the minimal Brownian motion on N have infinite lifetime almost surely.

AHLFORS-KHAS'MINSKII DUALITY

(M.-Valtorta '13, M.-Pessoa '20): If (N, h) is stochastically complete, there exists $v \in C^{\infty}(N)$ solving

$$\begin{cases} \Delta_g v \le v \\ v \ge 1, \quad v \text{ exhaustion} \end{cases}$$

★ Ξ → ★ Ξ →

setting
$$\varrho = \log v \in C^{\infty}(N)$$
,

$$\begin{cases} \Delta_{g}\varrho + \|\nabla \varrho\|^{2} \leq 1 \\ \varrho \geq 0, \qquad \varrho \text{ exhaustion on } N \end{cases}$$

Let $\delta, \varepsilon', \varepsilon$ be positive, small (specified later), and set

$$z_0 = W\left(e^{-Cu-\varepsilon\varrho} - \delta\right) < z$$

For ε, δ small enough, the upper level-set

$$\Omega'_{0} := \left\{ x \in \Omega : z_{0}(x) > \max\left\{ 1, \limsup_{y \to \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1}u(y)}} \right\} + \tau \right\} \subset \Omega'.$$

is non-empty and relatively compact.

setting
$$\varrho = \log v \in C^{\infty}(N)$$
,

$$\begin{cases} \Delta_{g} \varrho + \|\nabla \varrho\|^{2} \leq 1 \\ \varrho \geq 0, \qquad \varrho \text{ exhaustion on } N \end{cases}$$

Let $\delta, \varepsilon', \varepsilon$ be positive, small (specified later), and set

$$z_0 = W\left(e^{-Cu-\varepsilon\varrho} - \delta\right) < z$$

For ε , δ small enough, the upper level-set

$$\Omega'_{0} := \left\{ x \in \Omega \ : \ z_{0}(x) > \max\left\{ 1, \limsup_{y \to \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1}u(y)}} \right\} + \tau \right\} \subset \Omega'.$$

is non-empty and relatively compact.

setting
$$\varrho = \log v \in C^{\infty}(N)$$
,

$$\begin{cases} \Delta_{g} \varrho + \|\nabla \varrho\|^{2} \leq 1 \\ \varrho \geq 0, \qquad \varrho \text{ exhaustion on } N \end{cases}$$

Let $\delta, \varepsilon', \varepsilon$ be positive, small (specified later), and set

$$z_0 = W\left(e^{-Cu-\varepsilon\varrho} - \delta\right) < z$$

For ε, δ small enough, the upper level-set

$$\Omega'_{0} := \left\{ x \in \Omega \ : \ z_{0}(x) > \max\left\{ 1, \limsup_{y \to \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1}u(y)}} \right\} + \tau \right\} \subset \Omega'.$$

is non-empty and relatively compact.

We compute on the graph Σ'_0

$$\begin{aligned} \mathscr{L}_{g} z_{0} &\geq \left[\| C \nabla u + \varepsilon \nabla \varrho \|^{2} - (m-1) \kappa^{2} \| \nabla u \|^{2} - \varepsilon \Delta_{g} \varrho \right] z_{0} \\ &\geq \left\{ \left[C^{2} (1 - \varepsilon') - (m-1) \kappa^{2} \right] \| \nabla u \|^{2} - \varepsilon \left[\Delta_{g} \varrho + \| \nabla \varrho \|^{2} \right] \right\} z_{0} \\ &> \left\{ C_{\tau} - \varepsilon \left[\Delta_{g} \varrho + \| \nabla \varrho \|^{2} \right] \right\} z_{0} \end{aligned}$$

if ε' small enough and $\varepsilon << \varepsilon'$.

Using $\Delta \varrho + \|\nabla \varrho\|^2 \leq 1$ and $\varepsilon \ll 1$,

 $\mathscr{L}_g z_0 > C_\tau z_0,$

.⊒...>

contradiction at a maximum point of z_0 on Σ_0' .

We compute on the graph Σ'_0

$$\begin{aligned} \mathscr{L}_{g} z_{0} &\geq \left[\| C \nabla u + \varepsilon \nabla \varrho \|^{2} - (m-1) \kappa^{2} \| \nabla u \|^{2} - \varepsilon \Delta_{g} \varrho \right] z_{0} \\ &\geq \left\{ \left[C^{2} (1 - \varepsilon') - (m-1) \kappa^{2} \right] \| \nabla u \|^{2} - \varepsilon \left[\Delta_{g} \varrho + \| \nabla \varrho \|^{2} \right] \right\} z_{0} \\ &> \left\{ C_{\tau} - \varepsilon \left[\Delta_{g} \varrho + \| \nabla \varrho \|^{2} \right] \right\} z_{0} \end{aligned}$$

 $\text{ if } \varepsilon' \text{ small enough and } \varepsilon << \varepsilon'.$

Using $\Delta \varrho + \|\nabla \varrho\|^2 \leq 1$ and $\varepsilon << 1$,

$$\mathscr{L}_g z_0 > C_\tau z_0,$$

イロト イポト イヨト イヨト

3

contradiction at a maximum point of z_0 on Σ'_0 .