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MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

endow M × R with metric σ + dt2, g induced metric on Σ (on M)

Σ is minimal
(stationary for area) ⇐⇒ div

(
Du√

1 + |Du|2

)
= 0 on M

where D, div taken with respect to σ.

Notice: (MS) writes as ∆gu = 0
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Minimal graphs over Rm

div

(
Du√

1 + |Du|2

)
= 0 (MS)

GENERALIZED BERNSTEIN THEOREM: property

(B1) all solutions to (MS) on Rm are affine

holds if and only if m ≤ 7.
(Bernstein ’15, De Giorgi ’65, Almgren ’66, Simons ’68, Bombieri-De
Giorgi-Giusti ’69)

(B2) Positive solutions to (MS) on Rm are constant
(Bombieri-De Giorgi-Miranda ’69)

(B3) Solutions to (MS) on Rm with at most linear growth on one side
(that is, u(x) ≤ C(1 + |x|)) are affine
(Bombieri-De Giorgi-Miranda ’69, Moser ’61).

CONJECTURE (Simon): solutions to (MS) grow polynomially
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QUESTION:

for which manifolds M properties (B1), (B2), (B3) hold?

If M = Hm, completely different picture: Plateau’s problem at infinity is
always solvable!

∀φ ∈ C(∂∞Hm), there exists a solution u to (MS) on Hm such that
u|∂∞Hm = φ continuously
(Nelli-Rosenberg ’02, do Espírito Santo-Fornari-Ripoll ’10)

Generalizations to manifolds with pinched, negative curvature
(Ripoll-Telichevesky ’15, Casteras-Holopainen-Ripoll-Heinonen
’17-’19)
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CURVATURE CONDITIONS

Sectional curvature Sec :
{

2-planes of M
}
−→ R.

Ricci curvature

Ric(X) =

m−1∑
j=1

Sec(X ∧ ej), |X| = 1, {ej} o.n. basis for X⊥.

(B1), (B2), (B3) might hold if Ric ≥ 0:

Examples: Sp × Rq, Menguy’s examples, Eguchi-Hanson metric on
T∗S2, gravitational instantons, ...

1) Rm is the largest such manifold (|Br| ≤ Crm).

1) Cheeger-Colding’s theory is available: if o ∈ M, λj → +∞, then

(M, λ−2
j σ, o) # (X, d, o∞) for some (nonsmooth) X with Ric ≥ 0.

(X is a tangent cone at infinity (blowdown))

2) Analogy with the theory of harmonic functions (recall: ∆gu = 0).
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THE CASE OF SLOW VOLUME GROWTH

Theorem
Let Mm be complete, Ric ≥ 0. Fix o ∈ M and assume that∫ ∞ r

|Br(o)|
dr = +∞ (1)

Let u be a non-constant solution of (MS). Then,

- M = N × R with the product metric σN + ds2,

- In the variables (y, s) ∈ N × R it holds u(y, s) = as + b for some a, b ∈ R.

Thus, (B1) holds (hence, (B2) and (B3)).

In particular, it applies to surfaces with Sec ≥ 0.
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PROPERTIES (B2), (B3) IF Sec ≥ 0

Theorem (Colombo, M-, Rigoli, arXiv ’22)

Let M be complete, Sec ≥ 0. Let u be a non-constant solution of (MS) and
assume that

u(x) ≤ C
(
1 + r(x)

)
, r distance from a fixed origin o.

Then,

- M = N × R with the product metric σN + ds2,

- u(y, s) = as + b for some a, b ∈ R.

In particular, (B2) and (B3) hold.
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PROPERTY (B2)

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)

A complete manifold M with Ric ≥ 0 satisfies (B2) :
positive minimal graphs over M are constant.

Independently proved by Q. Ding ’21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck ’13 under the further
condition Sec ≥ −κ2, κ ∈ R+.

Analogous result for harmonic functions is due to Cheng-Yau ’75



PROPERTY (B2)

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)

A complete manifold M with Ric ≥ 0 satisfies (B2) :
positive minimal graphs over M are constant.

Independently proved by Q. Ding ’21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck ’13 under the further
condition Sec ≥ −κ2, κ ∈ R+.

Analogous result for harmonic functions is due to Cheng-Yau ’75



PROPERTY (B2)

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)

A complete manifold M with Ric ≥ 0 satisfies (B2) :
positive minimal graphs over M are constant.

Independently proved by Q. Ding ’21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck ’13 under the further
condition Sec ≥ −κ2, κ ∈ R+.

Analogous result for harmonic functions is due to Cheng-Yau ’75



PROPERTY (B2)

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)

A complete manifold M with Ric ≥ 0 satisfies (B2) :
positive minimal graphs over M are constant.

Independently proved by Q. Ding ’21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck ’13 under the further
condition Sec ≥ −κ2, κ ∈ R+.

Analogous result for harmonic functions is due to Cheng-Yau ’75



PROPERTY (B2)

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)

A complete manifold M with Ric ≥ 0 satisfies (B2) :
positive minimal graphs over M are constant.

Independently proved by Q. Ding ’21, with different techniques.

Previously shown by Rosenberg, Schulze, Spruck ’13 under the further
condition Sec ≥ −κ2, κ ∈ R+.

Analogous result for harmonic functions is due to Cheng-Yau ’75



PROPERTY (B3)

Theorem (Colombo, M-, Rigoli, arXiv ’22)

Let Mm be complete with Ric ≥ 0. Let u solve (MS) and |Du| ∈ L∞(M).
Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line!

Analogous result for harmonic functions is due to
Cheeger-Colding-Minicozzi ’95

(different proof: here we use heat equation techniques).

If |Du| ∈ L∞(M) is weakened to

u(x) ≤ C
(
1 + r(x)

)
, r distance from a fixed origin o,

then we get same conclusion up to further requiring

Ric(m−2)(∇r) ≥ − C
1 + r2 on M\cut(o). (2)

Q. Ding (arXiv ’22): same conclusion by assuming |Br(o)| ≥ crm

instead of (2).
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PROPERTY (B2)

Theorem (Colombo, Magliaro, M., Rigoli)

If M is complete and Ric ≥ 0, then positive minimal graphs are constant.

Previous strategies: local gradient estimates: if 0 < u : BR(x)→ R
solve (MS),

|Du(x)| ≤ c1 exp

{
c2

u(x)

R

}
, cj = cj(m)
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Our main gradient estimate

Theorem

Let Mm complete with Ric ≥ −(m− 1)κ2, for constant κ ≥ 0.

Let u be a positive solution of (MS) on an open set Ω ⊂ M.

If either

(i) ∂Ω locally Lipschitz and |∂Ω ∩ BR| ≤ C1 exp
{

C2R2}, or

(ii) u ∈ C(Ω) and is constant on ∂Ω.

Then√
1 + |Du|2

eκ
√

m−1u
≤ max

{
1, lim sup

x→∂Ω

√
1 + |Du(x)|2

eκ
√

m−1u(x)

}
on Ω. (3)

As a consequence, if Ω = M it holds√
1 + |Du|2 ≤ eκ

√
m−1u on M. (4)
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Proof based on the Jacobi equation for W .
=
√

1 + |Du|2

∆gW−1 +

[
‖ II ‖2 + Ric

(
Du
W

)]
W−1 = 0 on Σ.

Korevaar’s method: compute ∆g(Wη), for η a (carefully crafted) cutoff
depending on u and r, the distance in (M, σ) from a fixed point.

Problem: need to evaluate ∆gr = gij(D2r)ij, but Ric ≥ 0 only estimates
σij(D2r)ij!

IDEA: in place of r, we use an exhaustion % built via potential theory
(stochastic geometry)
(M-, Pessoa, Valtorta ’13,’20)

First goal: “understand Korevaar’s method!"
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The proof

Fix C > κ
√

m− 1, z = We−Cu

CLAIM: the following set is empty for every τ > 0:

Ω′ :=

{
x ∈ Ω : z(x) > max

{
1, lim sup

y→∂Ω

W(y)

eκ
√

m−1u(y)

}
+ τ

}

Once the claim is shown, thesis follows by letting τ → 0,
C ↓ κ

√
m− 1.

By contradiction: suppose that Ω′ 6= ∅.

Define
Lgφ = W2divg

(
W−2∇φ

)
on Σ′.

Since ‖∇u‖2 = W2−1
W2 ,

Lgz ≥
[
C2 − (m− 1)κ2]‖∇u‖2z > Cτ z on Σ′
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Key information: a graph has area bounds (calibrated):

LEMMA: in our assumptions, we can include Σ′ isometrically a
complete manifold (Nm, h) the volume of whose balls satisfies

|Bh
R| ≤ C1 exp

{
C2R2}.
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THEOREM (Grigoryan ’99, Pigola-Rigoli-Setti ’03):
If (N, h) is complete and

|Bh
R| ≤ C1 exp

{
C2R2},

then{
∆hω ≥ ω on U ⊂ N,

supU ω <∞
=⇒ sup

U
ω ≤ max

{
0, sup

∂U
ω
}

The property characterizes the stochastic completeness of N, that is, the
fact that the trajectories of the minimal Brownian motion on N have
infinite lifetime almost surely.

AHLFORS-KHAS’MINSKII DUALITY
(M.-Valtorta ’13, M.-Pessoa ’20):
If (N, h) is stochastically complete, there exists v ∈ C∞(N) solving{

∆gv ≤ v

v ≥ 1, v exhaustion
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setting % = log v ∈ C∞(N),{
∆g%+ ‖∇%‖2 ≤ 1

% ≥ 0, % exhaustion on N

Let δ, ε′, ε be positive, small (specified later), and set

z0 = W
(
e−Cu−ε% − δ

)
< z

For ε, δ small enough, the upper level-set

Ω′0 :=

{
x ∈ Ω : z0(x) > max

{
1, lim sup

y→∂Ω

W(y)

eκ
√

m−1u(y)

}
+ τ

}
⊂ Ω′.

is non-empty and relatively compact.
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We compute on the graph Σ′0

Lgz0 ≥
[
‖C∇u + ε∇%‖2 − (m− 1)κ2‖∇u‖2 − ε∆g%

]
z0

≥
{[

C2(1− ε′)− (m− 1)κ2
]
‖∇u‖2 − ε

[
∆g%+ ‖∇%‖2

]}
z0

>
{

Cτ − ε
[
∆g%+ ‖∇%‖2

]}
z0

if ε′ small enough and ε << ε′.

Using ∆%+ ‖∇%‖2 ≤ 1 and ε << 1,

Lgz0 > Cτ z0,

contradiction at a maximum point of z0 on Σ′0.
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