On Bernstein type theorems for minimal graphs under Ricci lower bounds

joint works with G. Colombo, M. Magliaro and M. Rigoli

Luciano Mari
Università degli Studi di Torino

Cortona, June 2022

MINIMAL GRAPHS ON MANIFOLDS
(M, σ) complete Riemannian manifold, dimension m

$$
\begin{aligned}
w: M & \rightarrow \mathbb{R} \\
F: M & \rightarrow M \times \mathbb{R} \\
x & \mapsto(n, u(x))
\end{aligned}
$$

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d}^{2}, g$ induced metric on $\Sigma(o n M)$

MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}, g$ induced metric on $\Sigma($ on $M)$
where D, div taken with respect to σ.

MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}, g$ induced metric on $\Sigma($ on $M)$

MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}, g$ induced metric on $\Sigma($ on $M)$

where D, div taken with respect to σ.
(MS) writes as $\triangle_{g} u=0$

MINIMAL GRAPHS ON MANIFOLDS

(M, σ) complete Riemannian manifold, dimension m

$$
\begin{gathered}
\substack{\text { m } \\
F: M \rightarrow \mathbb{R} \\
x \mapsto(x, \mu(x))} \\
(M, \sigma) \\
\hline
\end{gathered}
$$

endow $M \times \mathbb{R}$ with metric $\sigma+\mathrm{d} t^{2}, g$ induced metric on $\Sigma($ on $M)$

where D, div taken with respect to σ.
Notice: (MS) writes as $\Delta_{g} u=0$

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

GENERALIZED BERNSTEIN THEOREM: property

($\mathscr{B} 1$) all solutions to (MS) on \mathbb{R}^{m} are affine
holds if and only if $m \leq 7$.
(Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)

Positive solutions to (MS) on \mathbb{R}^{m} are constant

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

GENERALIZED BERNSTEIN THEOREM: property
$(\mathscr{B} 1)$ all solutions to (MS) on \mathbb{R}^{m} are affine
holds if and only if $m \leq 7$.
(Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)
$(\mathscr{B} 2)$ Positive solutions to (MS) on \mathbb{R}^{m} are constant (Bombieri-De Giorgi-Miranda '69)
\qquad

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

GENERALIZED BERNSTEIN THEOREM: property

$(\mathscr{B} 1)$ all solutions to (MS) on \mathbb{R}^{m} are affine
holds if and only if $m \leq 7$.
(Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)
$(\mathscr{B} 2)$ Positive solutions to (MS) on \mathbb{R}^{m} are constant (Bombieri-De Giorgi-Miranda '69)
$(\mathscr{B} 3)$ Solutions to (MS) on \mathbb{R}^{m} with at most linear growth on one side (that is, $u(x) \leq C(1+|x|)$) are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \tag{MS}
\end{equation*}
$$

GENERALIZED BERNSTEIN THEOREM: property

$(\mathscr{B} 1)$ all solutions to (MS) on \mathbb{R}^{m} are affine
holds if and only if $m \leq 7$.
(Bernstein '15, De Giorgi '65, Almgren '66, Simons '68, Bombieri-De Giorgi-Giusti '69)
$(\mathscr{B} 2)$ Positive solutions to (MS) on \mathbb{R}^{m} are constant (Bombieri-De Giorgi-Miranda '69)
$(\mathscr{B} 3)$ Solutions to (MS) on \mathbb{R}^{m} with at most linear growth on one side (that is, $u(x) \leq C(1+|x|)$) are affine (Bombieri-De Giorgi-Miranda '69, Moser '61).

CONJECTURE (Simon): solutions to (MS) grow polynomially

QUESTION:

for which manifolds M properties $(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ hold?
If $M=\mathbb{H}^{m}$, completely different picture: Plateau's problem at infinity is always solvable!
B

poincaré ball
MODEL OF H^{m}

$\forall \phi \in C\left(\partial_{\infty} \mathbb{H}^{m}\right)$, there exists a solution u to (MS) on \mathbb{H}^{m} such that

(Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

QUESTION:

for which manifolds M properties $(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ hold?
If $M=\mathbb{H}^{m}$, completely different picture: Plateau's problem at infinity is always solvable!
E

 POINCARE BALL
MODEL OF H ${ }^{m}$

$\forall \phi \in C\left(\partial_{\infty} \mathbb{H}^{m}\right)$, there exists a solution u to (MS) on \mathbb{H}^{m} such that

 $u_{1 \rho}{ }_{\pi \%}=\boldsymbol{\sigma}$ continuously(Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

- Generalizations to manifolds with pinched, negative curvature (Ripoll-Telichevesky '15. Casteras-Holopainen-Ripoll-Heinonen

QUESTION:

for which manifolds M properties $(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ hold?
If $M=\mathbb{H}^{m}$, completely different picture: Plateau's problem at infinity is always solvable!

$\forall \phi \in C\left(\partial_{\infty} \mathbb{H}^{m}\right)$, there exists a solution u to (MS) on \mathbb{H}^{m} such that $u_{\mid \partial_{\infty} \mathbb{H}^{m}}=\phi$ continuously
(Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

- Generalizations to manifolds with pinched, negative curvature (Rivoll-Telicheveskv' 15. Casteras-Holonainen-Rinoll-Heinoner

QUESTION:

for which manifolds M properties $(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ hold?

If $M=\mathbb{H}^{m}$, completely different picture: Plateau's problem at infinity is always solvable!

$\forall \phi \in C\left(\partial_{\infty} \mathbb{H}^{m}\right)$, there exists a solution u to (MS) on \mathbb{H}^{m} such that $u_{\mid \partial_{\infty} \mathbb{H}^{m}}=\phi$ continuously
(Nelli-Rosenberg '02, do Espírito Santo-Fornari-Ripoll '10)

- Generalizations to manifolds with pinched, negative curvature (Ripoll-Telichevesky '15, Casteras-Holopainen-Ripoll-Heinonen '17-'19)

CURVATURE CONDITIONS

- Sectional curvature \quad Sec : $\{2$-planes of $M\} \longrightarrow \mathbb{R}$.
- Ricci curvature

CURVATURE CONDITIONS

- Sectional curvature \quad Sec : $\{2$-planes of $M\} \longrightarrow \mathbb{R}$.
- Ricci curvature

$$
\operatorname{Ric}(X)=\sum_{j=1}^{m-1} \operatorname{Sec}\left(X \wedge e_{j}\right), \quad|X|=1,\left\{e_{j}\right\} \text { o.n. basis for } X^{\perp}
$$

CURVATURE CONDITIONS

- Sectional curvature \quad Sec : $\{2$-planes of $M\} \longrightarrow \mathbb{R}$.
- Ricci curvature

$$
\operatorname{Ric}(X)=\sum_{j=1}^{m-1} \operatorname{Sec}\left(X \wedge e_{j}\right), \quad|X|=1,\left\{e_{j}\right\} \text { o.n. basis for } X^{\perp}
$$

$(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ might hold if Ric ≥ 0 :
Examples: $\mathbb{S}^{p} \times \mathbb{R}^{q}$, Menguy's examples, Eguchi-Hanson metric on
$T^{*} \mathbb{S}^{2}$, gravitational instantons,

CURVATURE CONDITIONS

- Sectional curvature \quad Sec : $\{2$-planes of $M\} \longrightarrow \mathbb{R}$.
- Ricci curvature

$$
\operatorname{Ric}(X)=\sum_{j=1}^{m-1} \operatorname{Sec}\left(X \wedge e_{j}\right), \quad|X|=1,\left\{e_{j}\right\} \text { o.n. basis for } X^{\perp}
$$

$(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ might hold if Ric ≥ 0 :
Examples: $\mathbb{S}^{p} \times \mathbb{R}^{q}$, Menguy's examples, Eguchi-Hanson metric on $T^{*} \mathbb{S}^{2}$, gravitational instantons, ...

CURVATURE CONDITIONS

- Sectional curvature \quad Sec : $\{2$-planes of $M\} \longrightarrow \mathbb{R}$.
- Ricci curvature

$$
\operatorname{Ric}(X)=\sum_{j=1}^{m-1} \operatorname{Sec}\left(X \wedge e_{j}\right), \quad|X|=1,\left\{e_{j}\right\} \text { o.n. basis for } X^{\perp}
$$

$(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ might hold if Ric ≥ 0 :
Examples: $\mathbb{S}^{p} \times \mathbb{R}^{q}$, Menguy's examples, Eguchi-Hanson metric on $T^{*} \mathbb{S}^{2}$, gravitational instantons, ...

1) \mathbb{R}^{m} is the largest such manifold $\left(\left|B_{r}\right| \leq C r^{m}\right)$.

CURVATURE CONDITIONS

- Sectional curvature \quad Sec : $\{2$-planes of $M\} \longrightarrow \mathbb{R}$.
- Ricci curvature

$$
\operatorname{Ric}(X)=\sum_{j=1}^{m-1} \operatorname{Sec}\left(X \wedge e_{j}\right), \quad|X|=1,\left\{e_{j}\right\} \text { o.n. basis for } X^{\perp}
$$

$(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ might hold if Ric ≥ 0 :
Examples: $\mathbb{S}^{p} \times \mathbb{R}^{q}$, Menguy's examples, Eguchi-Hanson metric on $T^{*} \mathbb{S}^{2}$, gravitational instantons, ...

1) \mathbb{R}^{m} is the largest such manifold $\left(\left|B_{r}\right| \leq C r^{m}\right)$.
2) Cheeger-Colding's theory is available: if $o \in M, \lambda_{j} \rightarrow+\infty$, then

$$
\left(M, \lambda_{j}^{-2} \sigma, o\right) \leftrightarrow\left(X, \mathrm{~d}, o_{\infty}\right) \quad \text { for some (nonsmooth) } X \text { with Ric } \geq 0 .
$$

(X is a tangent cone at infinity (blowdown))

CURVATURE CONDITIONS

- Sectional curvature \quad Sec : $\{2$-planes of $M\} \longrightarrow \mathbb{R}$.
- Ricci curvature

$$
\operatorname{Ric}(X)=\sum_{j=1}^{m-1} \operatorname{Sec}\left(X \wedge e_{j}\right), \quad|X|=1,\left\{e_{j}\right\} \text { o.n. basis for } X^{\perp}
$$

$(\mathscr{B} 1),(\mathscr{B} 2),(\mathscr{B} 3)$ might hold if Ric ≥ 0 :
Examples: $\mathbb{S}^{p} \times \mathbb{R}^{q}$, Menguy's examples, Eguchi-Hanson metric on $T^{*} \mathbb{S}^{2}$, gravitational instantons, ...

1) \mathbb{R}^{m} is the largest such manifold $\left(\left|B_{r}\right| \leq C r^{m}\right)$.
2) Cheeger-Colding's theory is available: if $o \in M, \lambda_{j} \rightarrow+\infty$, then

$$
\left(M, \lambda_{j}^{-2} \sigma, o\right) \leftrightarrow\left(X, \mathrm{~d}, o_{\infty}\right) \quad \text { for some (nonsmooth) } X \text { with Ric } \geq 0 .
$$

(X is a tangent cone at infinity (blowdown))
2) Analogy with the theory of harmonic functions (recall: $\Delta_{g} u=0$).

THE CASE OF SLOW VOLUME GROWTH

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution of (MS). Then,

THE CASE OF SLOW VOLUME GROWTH

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution of (MS). Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,

THE CASE OF SLOW VOLUME GROWTH

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution of (MS). Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,
- In the variables $(y, s) \in N \times \mathbb{R}$ it holds $u(y, s)=a s+b$ for some $a, b \in \mathbb{R}$.

THE CASE OF SLOW VOLUME GROWTH

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution of (MS). Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,
- In the variables $(y, s) \in N \times \mathbb{R}$ it holds $u(y, s)=a s+b$ for some $a, b \in \mathbb{R}$.

Thus, $(\mathscr{B} 1)$ holds (hence, $(\mathscr{B} 2)$ and $(\mathscr{B} 3)$).
In particular, it applies to surfaces with $\mathrm{Sec} \geq 0$.

THE CASE OF SLOW VOLUME GROWTH

Theorem

Let M^{m} be complete, Ric ≥ 0. Fix $o \in M$ and assume that

$$
\begin{equation*}
\int^{\infty} \frac{r}{\left|B_{r}(o)\right|} \mathrm{d} r=+\infty \tag{1}
\end{equation*}
$$

Let u be a non-constant solution of (MS). Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,
- In the variables $(y, s) \in N \times \mathbb{R}$ it holds $u(y, s)=a s+b$ for some $a, b \in \mathbb{R}$.

Thus, $(\mathscr{B} 1)$ holds (hence, $(\mathscr{B} 2)$ and $(\mathscr{B} 3)$).
In particular, it applies to surfaces with $\operatorname{Sec} \geq 0$.

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M be complete, $\operatorname{Sec} \geq 0$. Let u be a non-constant solution of (MS) and assume that

$$
u(x) \leq C(1+r(x)), \quad r \text { distance from a fixed origin } o .
$$

Then,

In particular, $(\mathscr{B} 2)$ and ($\mathscr{B} 3)$ hold.

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M be complete, $\mathrm{Sec} \geq 0$. Let u be a non-constant solution of (MS) and assume that

$$
u(x) \leq C(1+r(x)), \quad r \text { distance from a fixed origin } o
$$

Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,

In particular, $(\mathscr{B} 2)$ and ($\mathscr{B} 3)$ hold.

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M be complete, $\mathrm{Sec} \geq 0$. Let u be a non-constant solution of (MS) and assume that

$$
u(x) \leq C(1+r(x)), \quad r \text { distance from a fixed origin } o
$$

Then,

- $M=N \times \mathbb{R}$ with the product metric $\sigma_{N}+\mathrm{d} s^{2}$,
- $u(y, s)=a s+b$ for some $a, b \in \mathbb{R}$.

In particular, $(\mathscr{B} 2)$ and $(\mathscr{B} 3)$ hold.

PROPERTY (:g2)

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)
A commloto manifold M with R ic >0 satisfies (\mathscr{B}))
positive minimal graphs over M are constant.

Independently proved by Q . Ding ' 21 , with different techniques.

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)

A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B} 2)$: positive minimal graphs over M are constant.

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)
 A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B} 2)$: positive minimal graphs over M are constant.

Independently proved by Q. Ding '21, with different techniques.
Previously shown by Rosenberg, Schulze, Spruck '13 under the further
condition Sec

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)
 A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B} 2)$: positive minimal graphs over M are constant.

Independently proved by Q. Ding '21, with different techniques.
Previously shown by Rosenberg, Schulze, Spruck ' 13 under the further condition Sec $\geq-\kappa^{2}, \kappa \in \mathbb{R}^{+}$.

Theorem (Colombo, Magliaro, M-, Rigoli, 2021)
 A complete manifold M with Ric ≥ 0 satisfies ($\mathscr{B} 2)$: positive minimal graphs over M are constant.

Independently proved by Q. Ding '21, with different techniques.
Previously shown by Rosenberg, Schulze, Spruck ' 13 under the further condition $\mathrm{Sec} \geq-\kappa^{2}, \kappa \in \mathbb{R}^{+}$.

- Analogous result for harmonic functions is due to Cheng-Yau '75

PROPERTY (:g3)
Theorem Colombo, M-, Rigoli, arXiv '22)
Let M^{m} be complete with $\mathrm{Ric} \geq 0$. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line!

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^{m} be complete with Ric ≥ 0. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^{m} be complete with Ric ≥ 0. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line!
Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95 (different proof. here we use heat equation techniques)

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^{m} be complete with Ric ≥ 0. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line!

- Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95
(different proof: here we use heat equation techniques).
If $|D u| \in L^{\infty}(M)$ is weakened to
then we get same conclusion up to further requiring

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^{m} be complete with $\mathrm{Ric} \geq 0$. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line!

- Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95
(different proof: here we use heat equation techniques).
- If $|D u| \in L^{\infty}(M)$ is weakened to

$$
u(x) \leq C(1+r(x)), \quad r \text { distance from a fixed origin } o
$$

then we get same conclusion up to further requiring

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^{m} be complete with $\mathrm{Ric} \geq 0$. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line!

- Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95
(different proof: here we use heat equation techniques).
- If $|D u| \in L^{\infty}(M)$ is weakened to

$$
u(x) \leq C(1+r(x)), \quad r \text { distance from a fixed origin } o
$$

then we get same conclusion up to further requiring

$$
\begin{equation*}
\operatorname{Ric}^{(m-2)}(\nabla r) \geq-\frac{C}{1+r^{2}} \quad \text { on } M \backslash \operatorname{cut}(o) \tag{2}
\end{equation*}
$$

Theorem (Colombo, M-, Rigoli, arXiv '22)

Let M^{m} be complete with $\mathrm{Ric} \geq 0$. Let u solve (MS) and $|D u| \in L^{\infty}(M)$. Then, every tangent cone at infinity of M splits off a line.

Remark: M may not split off any line!

- Analogous result for harmonic functions is due to Cheeger-Colding-Minicozzi '95
(different proof: here we use heat equation techniques).
- If $|D u| \in L^{\infty}(M)$ is weakened to

$$
u(x) \leq C(1+r(x)), \quad r \text { distance from a fixed origin } o
$$

then we get same conclusion up to further requiring

$$
\begin{equation*}
\operatorname{Ric}^{(m-2)}(\nabla r) \geq-\frac{C}{1+r^{2}} \quad \text { on } M \backslash \operatorname{cut}(o) \tag{2}
\end{equation*}
$$

- Q. Ding (arXiv '22): same conclusion by assuming $\left|B_{r}(o)\right| \geq c r^{m}$ instead of (2).

Theorem (Colombo, Magliaro, M., Rigoli)
If M is complete and $\mathrm{Ric} \geq 0$, then positive minimal graphs are constant.

Theorem (Colombo, Magliaro, M., Rigoli)

If M is complete and $\mathrm{Ric} \geq 0$, then positive minimal graphs are constant.

- Previous strategies: local gradient estimates: if $0<u: B_{R}(x) \rightarrow \mathbb{R}$ solve (MS),

$$
|D u(x)| \leq c_{1} \exp \left\{c_{2} \frac{u(x)}{R}\right\}, \quad c_{j}=c_{j}(m)
$$

Our main gradient estimate

Theorem
Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution of (MS) on an open set $\Omega \subset M$.

Our main gradient estimate

Theorem
Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution of (MS) on an open set $\Omega \subset M$. If either

Our main gradient estimate

Theorem

Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution of (MS) on an open set $\Omega \subset M$. If either
(i) $\partial \Omega$ locally Lipschitz and $\left|\partial \Omega \cap B_{R}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}$, or

Our main gradient estimate

Theorem

Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution of (MS) on an open set $\Omega \subset M$. If either
(i) $\partial \Omega$ locally Lipschitz and $\left|\partial \Omega \cap B_{R}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}$, or
(ii) $u \in C(\bar{\Omega})$ and is constant on $\partial \Omega$.
\qquad

Our main gradient estimate

Theorem

Let M^{m} complete with Ric $\geq-(m-1) \kappa^{2}$, for constant $\kappa \geq 0$.
Let u be a positive solution of (MS) on an open set $\Omega \subset M$.

If either

(i) $\partial \Omega$ locally Lipschitz and $\left|\partial \Omega \cap B_{R}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}$, or
(ii) $u \in C(\bar{\Omega})$ and is constant on $\partial \Omega$.

Then

$$
\begin{equation*}
\frac{\sqrt{1+|D u|^{2}}}{e^{\kappa \sqrt{m-1} u}} \leq \max \left\{1, \limsup _{x \rightarrow \partial \Omega} \frac{\sqrt{1+|D u(x)|^{2}}}{e^{\kappa \sqrt{m-1} u(x)}}\right\} \quad \text { on } \Omega \tag{3}
\end{equation*}
$$

As a consequence, if $\Omega=M$ it holds

$$
\begin{equation*}
\sqrt{1+|D u|^{2}} \leq e^{\kappa \sqrt{m-1} u} \quad \text { on } M \tag{4}
\end{equation*}
$$

Proof based on the Jacobi equation for $W \doteq \sqrt{1+|D u|^{2}}$

$$
\Delta_{g} W^{-1}+\left[\|\mathrm{II}\|^{2}+\operatorname{Ric}\left(\frac{D u}{W}\right)\right] W^{-1}=0 \quad \text { on } \Sigma .
$$

Korevaar's method: compute $\Delta_{g}(W \eta)$, for η a (carefully crafted) cutoff depending on u and r, the distance in (M, σ) from a fixed point.

Proof based on the Jacobi equation for $W \doteq \sqrt{1+|D u|^{2}}$

$$
\Delta_{g} W^{-1}+\left[\|\mathrm{II}\|^{2}+\operatorname{Ric}\left(\frac{D u}{W}\right)\right] W^{-1}=0 \quad \text { on } \Sigma .
$$

Korevaar's method: compute $\Delta_{g}(W \eta)$, for η a (carefully crafted) cutoff depending on u and r, the distance in (M, σ) from a fixed point.

Proof based on the Jacobi equation for $W \doteq \sqrt{1+|D u|^{2}}$

$$
\Delta_{g} W^{-1}+\left[\|\mathrm{II}\|^{2}+\operatorname{Ric}\left(\frac{D u}{W}\right)\right] W^{-1}=0 \quad \text { on } \Sigma .
$$

Korevaar's method: compute $\Delta_{g}(W \eta)$, for η a (carefully crafted) cutoff depending on u and r, the distance in (M, σ) from a fixed point.

Problem: need to evaluate $\Delta_{g} r=g^{i j}\left(D^{2} r\right)_{i j}$, but Ric ≥ 0 only estimates $\sigma^{i j}\left(D^{2} r\right)_{i j}$!

IDEA: in place of r, we use an exhaustion ϱ built via potential theory (stochastic geometry)
(M-, Pessoa, Valtorta '13,'20)

Proof based on the Jacobi equation for $W \doteq \sqrt{1+|D u|^{2}}$

$$
\Delta_{g} W^{-1}+\left[\|I I\|^{2}+\operatorname{Ric}\left(\frac{D u}{W}\right)\right] W^{-1}=0 \quad \text { on } \Sigma .
$$

Korevaar's method: compute $\Delta_{g}(W \eta)$, for η a (carefully crafted) cutoff depending on u and r, the distance in (M, σ) from a fixed point.

Problem: need to evaluate $\Delta_{g} r=g^{i j}\left(D^{2} r\right)_{i j}$, but Ric ≥ 0 only estimates $\sigma^{i j}\left(D^{2} r\right)_{i j}$!

IDEA: in place of r, we use an exhaustion ϱ built via potential theory (stochastic geometry)
(M-, Pessoa, Valtorta ' $13,{ }^{\prime}$ '20)

First goal: "understand Korevaar's method!"

Proof based on the Jacobi equation for $W \doteq \sqrt{1+|D u|^{2}}$

$$
\Delta_{g} W^{-1}+\left[\|I I\|^{2}+\operatorname{Ric}\left(\frac{D u}{W}\right)\right] W^{-1}=0 \quad \text { on } \Sigma .
$$

Korevaar's method: compute $\Delta_{g}(W \eta)$, for η a (carefully crafted) cutoff depending on u and r, the distance in (M, σ) from a fixed point.

Problem: need to evaluate $\Delta_{g} r=g^{i j}\left(D^{2} r\right)_{i j}$, but Ric ≥ 0 only estimates $\sigma^{i j}\left(D^{2} r\right)_{i j}$!

IDEA: in place of r, we use an exhaustion ϱ built via potential theory (stochastic geometry)
(M-, Pessoa, Valtorta ' $13,{ }^{\prime}$ '20)
First goal: "understand Korevaar’s method!"

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

Once the claim is shown, thesis follows by letting $\tau \rightarrow 0$,

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

- CLAIM: the following set is empty for every $\tau>0$:

$$
\Omega^{\prime}:=\left\{x \in \Omega: z(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\}
$$

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

- CLAIM: the following set is empty for every $\tau>0$:

$$
\Omega^{\prime}:=\left\{x \in \Omega: z(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\}
$$

Once the claim is shown, thesis follows by letting $\tau \rightarrow 0$, $C \downarrow \kappa \sqrt{m-1}$.

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

- CLAIM: the following set is empty for every $\tau>0$:

$$
\Omega^{\prime}:=\left\{x \in \Omega: z(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\}
$$

Once the claim is shown, thesis follows by letting $\tau \rightarrow 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega^{\prime} \neq \emptyset$.
Define

Since $\|\nabla u\|^{2}=\frac{W^{2}-1}{W^{2}}$

The proof

Fix $C>\kappa \sqrt{m-1}, \quad z=W e^{-C u}$

- CLAIM: the following set is empty for every $\tau>0$:

$$
\Omega^{\prime}:=\left\{x \in \Omega: z(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\}
$$

Once the claim is shown, thesis follows by letting $\tau \rightarrow 0$, $C \downarrow \kappa \sqrt{m-1}$.

By contradiction: suppose that $\Omega^{\prime} \neq \emptyset$.
Define

$$
\mathscr{L}_{g} \phi=W^{2} \operatorname{div}_{g}\left(W^{-2} \nabla \phi\right) \quad \text { on } \Sigma^{\prime} .
$$

Since $\|\nabla u\|^{2}=\frac{W^{2}-1}{W^{2}}$,

$$
\mathscr{L}_{g} z \geq\left[C^{2}-(m-1) \kappa^{2}\right]\|\nabla u\|^{2} z>C_{\tau} z \quad \text { on } \Sigma^{\prime}
$$

Key information: a graph has area bounds (calibrated):

$$
\begin{aligned}
\left|B_{R}^{S}\right| & \leq\left|\sum \cap C_{R}\right| \\
& \leq 2\left|B_{R}^{\mu}\right|+2 R\left|\partial B_{R}^{\mu}\right| \\
& \leq C_{1} \exp \left\{C_{2} R\right\}
\end{aligned}
$$

LEMMA: in our assumptions, we can include $\overline{\Sigma^{\prime}}$ isometrically a complete manifold $\left(N^{m}, h\right)$ the volume of whose balls satisfies $\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}$.

Key information: a graph has area bounds (calibrated):

LEMMA: in our assumptions, we can include $\overline{\Sigma^{\prime}}$ isometrically a complete manifold (N^{m}, h) the volume of whose balls satisfies

$$
\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}
$$

Key information: a graph has area bounds (calibrated):

LEMMA: in our assumptions, we can include $\overline{\Sigma^{\prime}}$ isometrically a complete manifold (N^{m}, h) the volume of whose balls satisfies

$$
\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\}
$$

THEOREM (Grigoryan '99, Pigola-Rigoli-Setti '03):

If (N, h) is complete and

then

The property characterizes the stochastic completeness of N, that is, the fact that the trajectories of the minimal Brownian motion on N have infinite lifetime almost surely.

THEOREM (Grigoryan '99, Pigola-Rigoli-Setti '03):
If (N, h) is complete and

$$
\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\},
$$

then

$$
\left\{\begin{array}{l}
\Delta_{h} \omega \geq \omega \quad \text { on } \bar{U} \subset N, \\
\sup _{U} \omega<\infty
\end{array} \quad \Longrightarrow \quad \sup _{U} \omega \leq \max \left\{0, \sup _{\partial U} \omega\right\}\right.
$$

The property characterizes the stochastic completeness of N, that is, the fact that the trajectories of the minimal Brownian motion on N have infinite lifetime almost surely.

If (N, h) is stochastically complete, there exists $v \in C^{\infty}(N)$ solving

THEOREM (Grigoryan '99, Pigola-Rigoli-Setti '03):

If (N, h) is complete and

$$
\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\},
$$

then

$$
\left\{\begin{array}{l}
\Delta_{h} \omega \geq \omega \quad \text { on } \bar{U} \subset N, \\
\sup _{U} \omega<\infty
\end{array} \quad \Longrightarrow \quad \sup _{U} \omega \leq \max \left\{0, \sup _{\partial U} \omega\right\}\right.
$$

The property characterizes the stochastic completeness of N, that is, the fact that the trajectories of the minimal Brownian motion on N have infinite lifetime almost surely.

THEOREM (Grigoryan '99, Pigola-Rigoli-Setti '03):

If (N, h) is complete and

$$
\left|B_{R}^{h}\right| \leq C_{1} \exp \left\{C_{2} R^{2}\right\},
$$

then

$$
\left\{\begin{array}{l}
\Delta_{h} \omega \geq \omega \quad \text { on } \bar{U} \subset N, \\
\sup _{U} \omega<\infty
\end{array} \quad \Longrightarrow \quad \sup _{U} \omega \leq \max \left\{0, \sup _{\partial U} \omega\right\}\right.
$$

The property characterizes the stochastic completeness of N, that is, the fact that the trajectories of the minimal Brownian motion on N have infinite lifetime almost surely.

AHLFORS-KHAS'MINSKII DUALITY

(M.-Valtorta '13, M.-Pessoa '20):

If (N, h) is stochastically complete, there exists $v \in C^{\infty}(N)$ solving

$$
\left\{\begin{array}{l}
\Delta_{g} v \leq v \\
v \geq 1, \quad v \text { exhaustion }
\end{array}\right.
$$

setting $\varrho=\log v \in C^{\infty}(N)$,

$$
\left\{\begin{array}{l}
\Delta_{g} \varrho+\|\nabla \varrho\|^{2} \leq 1 \\
\varrho \geq 0, \quad \varrho \text { exhaustion on } N
\end{array}\right.
$$

setting $\varrho=\log v \in C^{\infty}(N)$,

$$
\left\{\begin{array}{l}
\Delta_{g} \varrho+\|\nabla \varrho\|^{2} \leq 1 \\
\varrho \geq 0, \quad \varrho \text { exhaustion on } N
\end{array}\right.
$$

Let $\delta, \varepsilon^{\prime}, \varepsilon$ be positive, small (specified later), and set

$$
z_{0}=W\left(e^{-C u-\varepsilon \varrho}-\delta\right)<z
$$

For ε, δ small enough, the upper level-set
setting $\varrho=\log v \in C^{\infty}(N)$,

$$
\left\{\begin{array}{l}
\Delta_{g} \varrho+\|\nabla \varrho\|^{2} \leq 1 \\
\varrho \geq 0, \quad \varrho \text { exhaustion on } N
\end{array}\right.
$$

Let $\delta, \varepsilon^{\prime}, \varepsilon$ be positive, small (specified later), and set

$$
z_{0}=W\left(e^{-C u-\varepsilon \varrho}-\delta\right)<z
$$

For ε, δ small enough, the upper level-set

$$
\Omega_{0}^{\prime}:=\left\{x \in \Omega: z_{0}(x)>\max \left\{1, \limsup _{y \rightarrow \partial \Omega} \frac{W(y)}{e^{\kappa \sqrt{m-1} u(y)}}\right\}+\tau\right\} \subset \Omega^{\prime}
$$

is non-empty and relatively compact.

We compute on the graph Σ_{0}^{\prime}

$$
\begin{aligned}
\mathscr{L}_{g} z_{0} & \geq\left[\|C \nabla u+\varepsilon \nabla \varrho\|^{2}-(m-1) \kappa^{2}\|\nabla u\|^{2}-\varepsilon \Delta_{g} \varrho\right] z_{0} \\
& \geq\left\{\left[C^{2}\left(1-\varepsilon^{\prime}\right)-(m-1) \kappa^{2}\right]\|\nabla u\|^{2}-\varepsilon\left[\Delta_{g} \varrho+\|\nabla \varrho\|^{2}\right]\right\} z_{0} \\
& >\left\{C_{\tau}-\varepsilon\left[\Delta_{g} \varrho+\|\nabla \varrho\|^{2}\right]\right\} z_{0}
\end{aligned}
$$

if ε^{\prime} small enough and $\varepsilon \ll \varepsilon^{\prime}$.

We compute on the graph Σ_{0}^{\prime}

$$
\begin{aligned}
\mathscr{L}_{g} z_{0} & \geq\left[\|C \nabla u+\varepsilon \nabla \varrho\|^{2}-(m-1) \kappa^{2}\|\nabla u\|^{2}-\varepsilon \Delta_{g} \varrho\right] z_{0} \\
& \geq\left\{\left[C^{2}\left(1-\varepsilon^{\prime}\right)-(m-1) \kappa^{2}\right]\|\nabla u\|^{2}-\varepsilon\left[\Delta_{g} \varrho+\|\nabla \varrho\|^{2}\right]\right\} z_{0} \\
& >\left\{C_{\tau}-\varepsilon\left[\Delta_{g} \varrho+\|\nabla \varrho\|^{2}\right]\right\} z_{0}
\end{aligned}
$$

if ε^{\prime} small enough and $\varepsilon \ll \varepsilon^{\prime}$.
Using $\Delta \varrho+\|\nabla \varrho\|^{2} \leq 1$ and $\varepsilon \ll 1$,

$$
\mathscr{L}_{g} z_{0}>C_{\tau} z_{0}
$$

contradiction at a maximum point of z_{0} on Σ_{0}^{\prime}.

