Regularity for Supersolutions to Fully Nonlinear PDEs Under Convexity Assumptions

Diego Moreira

dmoreira@mat.ufc.br

Department of Mathematics Universidade Federal do Ceará (UFC) Brazil

May 2022

Mostly Maximum Principle - (Cortona)

Joint work with Alessio Figalli (ETH) and J. Ederson M. Braga (UFC), Edgard Pimentel (University of Coimbra)

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 1/57

A D N A B N A B N A B

Outline

- Analytic (above) + Geometric (below) control
- 2 Classical Solutions & Apriori Estimates
- Caffarelli-Kohn-Nirenberg-Spruck Theorem
- 4 BFM Result
- Ideas of the Proof
- 6 New Developments

References

- Braga, J. Ederson M.; Moreira, Diego Inhomogeneous Hopf-Oleinik lemma and regularity of semiconvex supersolutions via new barriers for the Pucci extremal operators. Adv. Math. 334 (2018), 184-242.
- Braga, J. Ederson M.; Figalli, Alessio; Moreira, Diego Optimal regularity for the convex envelope and semiconvex functions related to supersolutions of fully nonlinear elliptic equations. Comm. Math. Phys. 367 (2019), no. 1, 1-32.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analytic control above and below

$$u \in C^0(B_1), \quad -C \le \Delta u \le C \ \left(|\Delta u| \le C \right)$$

Then,

 $u \in C^{1,\alpha}(B_1) \cap W^{2,p}_{loc}(B_1) \quad \forall \alpha \in (0,1), \ \forall p \in (1,\infty)$

with

$$||u||_{C^{1,\alpha}(B_{\frac{1}{2}})} \le C(n) \left(||u||_{L^{\infty}(B_{1})} + C \right)$$
$$||u||_{W^{2,p}(B_{\frac{1}{2}})} \le C(n) \left(||u||_{L^{\infty}(B_{1})} + C \right)$$

Diego Moreira (UFC)

Supersolutions & Convexity.

▶ ▲ ■ ▶ ■ つへの May 30, 2022 4/57

イロト 不得 トイヨト イヨト

Analytic control above and below

$$u \in C^0(B_1), \quad -C \le \Delta u \le C \ \left(|\Delta u| \le C \right)$$

Then,

 $u \in C^{1,\alpha}(B_1) \cap W^{2,p}_{loc}(B_1) \quad \forall \alpha \in (0,1), \ \forall p \in (1,\infty)$

with

$$||u||_{C^{1,\alpha}(B_{\frac{1}{2}})} \le C(n) \left(||u||_{L^{\infty}(B_{1})} + C \right)$$
$$||u||_{W^{2,p}(B_{\frac{1}{2}})} \le C(n) \left(||u||_{L^{\infty}(B_{1})} + C \right)$$

Diego Moreira (UFC)

Supersolutions & Convexity.

▶ ▲ ■ ▶ ■ ∽ ۹ (C May 30, 2022 4/57

イロト イヨト イヨト イヨト

Analytic control above and below

$$u \in C^0(B_1), \quad -C \le \Delta u \le C \ \left(|\Delta u| \le C \right)$$

Then,

$$u \in C^{1,\alpha}(B_1) \cap W^{2,p}_{loc}(B_1) \quad \forall \alpha \in (0,1), \ \forall p \in (1,\infty)$$

with

$$||u||_{C^{1,\alpha}(B_{\frac{1}{2}})} \le C(n) \left(||u||_{L^{\infty}(B_{1})} + C \right)$$
$$||u||_{W^{2,p}(B_{\frac{1}{2}})} \le C(n) \left(||u||_{L^{\infty}(B_{1})} + C \right)$$

Diego Moreira (UFC)

イロト イヨト イヨト イヨト

Analytic control from above

supersolution $(\Delta u \leq f \text{ in } B_1 \text{ with } f \in L^q(B_1))$

Geometric control from below

Some kind of convexity of u

Questions:

a) Can we prove regularity for u (weak aolution) ?

b) Can we obtain optimal regularity of *u* based onregularity of RHS and (modulus) of convexity from below

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 5/57

Analytic control from above

supersolution $(\Delta u \leq f \text{ in } B_1 \text{ with } f \in L^q(B_1))$

Geometric control from below

Some kind of convexity of u

Questions:

a) Can we prove regularity for u (weak aolution) ?

b) Can we obtain optimal regularity of *u* based on
 regularity of RHS and (modulus) of convexity from below 3

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 5/57

Analytic control from above

supersolution $(\Delta u \leq f \text{ in } B_1 \text{ with } f \in L^q(B_1))$

Geometric control from below

Some kind of convexity of u

Questions:

a) Can we prove regularity for u (weak aolution) ?

b) Can we obtain optimal regularity of *u* based onregularity of RHS and (modulus) of convexity from below ?

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 5/57

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analytic control from above

supersolution $(\Delta u \leq f \text{ in } B_1 \text{ with } f \in L^q(B_1))$

Geometric control from below

Some kind of convexity of u

Questions:

- a) Can we prove regularity for u (weak adution) ?
- b) Can we obtain optimal regularity of *u* based onregularity of RHS and (modulus) of convexity from below ?

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 5/57

Classical Solutions: Example I

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 6/57

Coming back to the question

Supersolutions (analytic control from above)

 $u \in C^2(B_1)$ $\Delta u \le 0 \quad \text{in} \quad B_1$

Convexity (Geometric control from below) $D^2 u \ge 0$ in B_1 (Supporting plane from below everywhere) $0 \le ||D^2 u(x)|| \le \Delta u \le 0$ in $B_1 \Longrightarrow D^2 u \equiv 0$ in B_1 Then, u is affine

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 7/57

Coming back to the question

Supersolutions (analytic control from above)

 $u \in C^2(B_1)$ $\Delta u \le 0 \quad \text{in} \quad B_1$

Convexity (Geometric control from below) $D^2 u \ge 0$ in B_1 (Supporting plane from below everywhere) $0 \le ||D^2 u(x)|| \le \Delta u \le 0$ in $B_1 \Longrightarrow D^2 u \equiv 0$ in B_1 Then, u is affine

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 7/57

Different Perspective: Maximum Principle Argument

u is affine by a Maximum Principle Argument

Supersolutions & Convexity.

3 > < 3 >

Classical Solutions: Example II

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 9/57

Supersolutions (analytic control from above) $u \in C^2(B_1), \quad \Delta u \leq C$

イロト 不得 トイヨト イヨト

Supersolutions (analytic control from above) $u \in C^2(B_1), \quad \Delta u \leq C$

Convexity (geometric control from below) $D^2 u > 0$ in B_1 (Supporting Plane from below everywhere)

Supersolutions (analytic control from above) $u \in C^2(B_1), \quad \Delta u \leq C$

Convexity (geometric control from below) $D^2 u > 0$ in B_1 (Supporting Plane from below everywhere) Question: Are there apriori estimates for u?

Supersolutions (analytic control from above) $u \in C^2(B_1), \quad \Delta u \leq C$

Convexity (geometric control from below) $D^2 u > 0$ in B_1 (Supporting Plane from below everywhere) Question: Are there apriori estimates for u? $\left(0 \le \Delta u \le C \Longrightarrow C^{1,\alpha}(B_1) \ \forall \alpha \in (0,1)\right)$

Supersolutions (analytic control from above) $u \in C^2(B_1), \quad \Delta u \leq C$

Convexity (geometric control from below) $D^2 u > 0$ in B_1 (Supporting Plane from below everywhere) Question: Are there apriori estimates for u? $\left(0 \le \Delta u \le C \Longrightarrow C^{1,\alpha}(B_1) \ \forall \alpha \in (0,1)\right)$ $0 < ||D^2u(x)|| < Trace(D^2u) = \Delta u < C$ $||D^2u(x)|| < C \quad \forall x \in B_1 \quad (u \in C^{1,1} \text{ with estimates})$

Classical Solutions: Example III

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 11/57

Control Above & Below: Case III

Supersolutions (analytic control from above)

 $u \in C^2(B_1)$

 $Lu(x) := tr(A(x)D^2u(x)), \quad \lambda \cdot Id \le A(x) \le \Lambda \cdot Id, \ \forall x \in B_1$

 $Lu \leq C$ in B_1

Convexity (geometric control from below) $D^2 u \ge 0$ in B_1 (tangent plane from below everywhere) Duestion: Are there apriori estimates for u?

How does the info from equation play out ?

Diego Moreira (UFC)

Supersolutions & Convexity.

Control Above & Below: Case III

Supersolutions (analytic control from above)

 $u \in C^2(B_1)$

 $Lu(x) := tr(A(x)D^2u(x)), \quad \lambda \cdot Id \le A(x) \le \Lambda \cdot Id, \ \forall x \in B_1$

 $Lu \leq C$ in B_1

Convexity (geometric control from below) $D^2 u \ge 0$ in B_1 (tangent plane from below everywhere) Question: Are there apriori estimates for u ? How does the info from equation play out ?

Diego Moreira (UFC)

Supersolutions & Convexity.

Control Above & Below: Case III

Supersolutions (analytic control from above)

 $u \in C^2(B_1)$

 $Lu(x) := tr(A(x)D^2u(x)), \quad \lambda \cdot Id \le A(x) \le \Lambda \cdot Id, \ \forall x \in B_1$

 $Lu \leq C$ in B_1

Convexity (geometric control from below)

 $D^2 u \ge 0$ in B_1

(tangent plane from below everywhere)

Question: Are there apriori estimates for u ? How does the info from equation play out ?

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 12/57

Extremal Pucci Operators

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 13/57

< ロ > < 同 > < 回 > < 回 >

Pucci Operators - Fully Nonlinear Operators - I

$$0 < \lambda < \Lambda, \quad M \in \mathcal{S}^{n \times n}$$

$$\mathcal{M}^{-}_{\lambda,\Lambda}(M) := \lambda \cdot Tr(M^{+}) - \Lambda \cdot Tr(M^{-})$$
$$\mathcal{M}^{+}_{\lambda,\Lambda}(M) := \Lambda \cdot Tr(M^{+}) - \lambda \cdot Tr(M^{-})$$

Multiples of Trace Operator for Nonnegative Matrices

$$M \ge 0 \Longrightarrow \mathcal{M}^{-}_{\lambda,\Lambda}(M) = \lambda \cdot Tr(M) \& \mathcal{M}^{+}_{\lambda,\Lambda}(M) = \Lambda \cdot Tr(M)$$
(Super-additivity of $\mathcal{M}^{-}_{\lambda,\Lambda}$) $\mathcal{M}^{-}_{\lambda,\Lambda}(M+N) \ge \mathcal{M}^{-}_{\lambda,\Lambda}(M) + \mathcal{M}^{-}_{\lambda,\Lambda}(N)$
(Sub-additivity of $\mathcal{M}^{+}_{\lambda,\Lambda}$) $\mathcal{M}^{+}_{\lambda,\Lambda}(M+N) \le \mathcal{M}^{+}_{\lambda,\Lambda}(M) + \mathcal{M}^{+}_{\lambda,\Lambda}(N)$

Diego Moreira (UFC)

Pucci Operators - Fully Nonlinear Operators - II

Homogeneity

$$\lambda > 0 \Longrightarrow \mathcal{M}^{\pm}(\lambda \cdot M) = \lambda \cdot \mathcal{M}^{\pm}(M)$$
$$\lambda < 0 \Longrightarrow \mathcal{M}^{\pm}(\lambda \cdot M) = \lambda \cdot \mathcal{M}^{\mp}(M)$$

Envelope of Linear Operators

$$A \in \mathcal{S}^{n \times n}, \ spec(A) = \sigma(A) = \left\{ \mu; \ \mu \text{ is an eigenvalue of } A \right\}$$
$$\mathcal{A}_{\lambda,\Lambda} := \left\{ A \in \mathcal{S}^{n \times n}; \ \mu \in \sigma(A) \Rightarrow \mu \in [\lambda, \Lambda] \right\}$$

 $\mathcal{M}^{-}_{\lambda,\Lambda}(M) = \inf_{A \in \mathcal{A}_{\lambda,\Lambda}} Trace(AM), \quad \mathcal{M}^{+}_{\lambda,\Lambda}(M) = \sup_{A \in \mathcal{A}_{\lambda,\Lambda}} Trace(AM)$

Diego Moreira (UFC)

Envelope for Linear Equations

$$u \in C^{2}(B_{1}), \quad (UE) \quad A(x) \in \mathcal{A}_{\lambda,\Lambda}, \ \forall x \in B_{1}.$$
$$Lu(x) := Tr(A(x)D^{2}u) = \sum_{i,j=1}^{n} a_{ij}(x)u_{x_{i}x_{j}}(x)$$

 $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2u(x)) \leq Lu(x) \leq \mathcal{M}^{+}_{\lambda,\Lambda}(D^2u(x))$

 $\begin{array}{ll} \forall L \ (UE) & \text{operator as in } (\star) \\ Lu \leq f \ \text{in } B_1 \Longrightarrow \mathcal{M}^-_{\lambda,\Lambda}(D^2u) \leq f \ \text{in } B_1 \\ Lu \geq f \ \text{in } B_1 \Longrightarrow \mathcal{M}^+_{\lambda,\Lambda}(D^2u) \geq f \ \text{in } B_1 \end{array}$ (Equations in blue are Fully Nonlinear Elliptic PDEs)

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 16/57

(*)

Coming Back Again (Case III)

Supersolutions (analytic control from above) $u \in C^2(B_1)$ $Lu(x) := tr(A(x)D^2u(x)), \quad \lambda \cdot Id \leq A(x) \leq \Lambda \cdot Id, \ \forall x \in B_1$

 $Lu \leq C$ in B_1

Convexity (geometric control from below) $D^2 u \ge 0$ in B_1 (tangent plane from below everywhere) Question: Are there apriori estimates for u? $0 \le \lambda \cdot ||D^2 u(x)|| \le \lambda \cdot Trace(D^2 u) \le \mathcal{M}^-_{\lambda,\Lambda}(D^2 u) \le Lu \le C$ $||D^2 u(x)|| \le \lambda^{-1} \cdot C \quad \forall x \in B_1 \quad (u \in C^{1,1}_{\lambda,\Lambda} \text{ with estimates})$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 17/57

Coming Back Again (Case III)

Supersolutions (analytic control from above) $u \in C^2(B_1)$ $Lu(x) := tr(A(x)D^2u(x)), \quad \lambda \cdot Id \leq A(x) \leq \Lambda \cdot Id, \ \forall x \in B_1$

 $Lu \leq C$ in B_1

Convexity (geometric control from below) $D^2 u \ge 0$ in B_1 (tangent plane from below everywhere) Question: Are there apriori estimates for u ? $0 \le \lambda \cdot ||D^2 u(x)|| \le \lambda \cdot Trace(D^2 u) \le \mathcal{M}^-_{\lambda,\Lambda}(D^2 u) \le Lu \le C$ $||D^2 u(x)|| \le \lambda^{-1} \cdot C \quad \forall x \in B_1 \quad (u \in C^{1,1} \text{ with estimates})$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 17/57

Coming Back Again (Case III)

Supersolutions (analytic control from above) $u \in C^2(B_1)$ $Lu(x) := tr(A(x)D^2u(x)), \quad \lambda \cdot Id \leq A(x) \leq \Lambda \cdot Id, \ \forall x \in B_1$

 $Lu \leq C$ in B_1

 $\begin{array}{l} Convexity (geometric control from below)\\ D^2 u \geq 0 \quad \text{in} \quad B_1\\ (\text{tangent plane from below everywhere})\\ \textbf{Question: Are there apriori estimates for } u \ \textbf{?}\\ 0 \leq \lambda \cdot ||D^2 u(x)|| \leq \lambda \cdot Trace(D^2 u) \leq \mathcal{M}^-_{\lambda,\Lambda}(D^2 u) \leq L u \leq C\\ ||D^2 u(x)|| \leq \lambda^{-1} \cdot C \quad \forall x \in B_1 \quad (u \in C^{1,1}_{\lambda,\Lambda} \text{ with estimates})\\ \quad \exists x \in \mathcal{P} \in \mathbb{R} \text{ for } u \in \mathbb{R} \text{ for }$

Diego Moreira (UFC)

Supersolutions & Convexity.

Replacing Convexity by (Classical) Semi-Convexity

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 18/57

4 D K 4 B K 4 B K 4 B K

Geometric Meaning of (Classical) Semi-Convexity u (classically) semi-convex

$P(x) = -C|x-x_0|^2$ with C>0 (Supporting Parabola From Below)

 $L(x)=A(x-x_0)+B$

(Supporting Plane From Below)

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 19/57

Linear Modulus of Semiconvexity

$$\Delta_h^2 u(x) := \frac{u(x+h) + u(x-h) - 2u(x)}{|h|^2}$$

(Second Order Differential Quotient)

u is semiconvex with constant $C > 0 \iff \Delta_h^2 u(x) \ge -C$

Equivalences $(u \in C^0)$

i)
$$u(\lambda x + (1-\lambda)y) \le \lambda u(x) + (1-\lambda)u(y) + \frac{C}{2}|x-y|^2$$

ii)
$$u + \frac{C}{2}|x - x_0|^2$$
 is convex $(\forall x_0)$;

- *iii*) $D^2 u > -C \cdot I_n$ in the sense of distributions;
- iv) $D^2 u \geq -C \cdot I_n$ in the viscosity sense;
- v) u has a concave paraboloid of "opening C" touching from below

iii) & *iv*) are PDE characterization of semi-convexity A B > A B >

4 A N

Classical Solutions: Example IV

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 21/57

< ロ > < 同 > < 回 > < 回 >

Control Above & Below: Case IV

$$u \in C^2(B_1), \quad C > 0, \quad f \in L^q(B_1)$$

(analytic control) $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2u) \leq f$ in B_1 ,

(geometric control) $D^2 u \ge -4C \cdot Id$ in B_1 (Parabola from below everywhere)

Question: Are there apriori estimates for u?

Answer: W^{2,q} Apriori Estimates

<u>Even more</u>: $C^{1,1-\frac{n}{q}}$ Apriori Estimates for q > n

(By Morrey-Sobolev Embedding Thm)

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 22/57
$$u \in C^2(B_1), \quad C > 0, \quad f \in L^q(B_1)$$

(analytic control) $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2u) \leq f$ in B_1 ,

(geometric control) $D^2 u \ge -4C \cdot Id$ in B_1 (Parabola from below everywhere)

Question: Are there apriori estimates for u?

Answer: W^{2,q} Apriori Estimates

<u>Even more</u>: $C^{1,1-\frac{n}{q}}$ Apriori Estimates for q > n

(By Morrey-Sobolev Embedding Thm)

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 22/57

$$u \in C^2(B_1), \quad C > 0, \quad f \in L^q(B_1)$$

(analytic control) $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2u) \leq f$ in B_1 ,

(geometric control) $D^2 u \ge -4C \cdot Id$ in B_1 (Parabola from below everywhere)

Question: Are there apriori estimates for u?

<u>Answer:</u> $W^{2,q}$ Apriori Estimates

Even more: $C^{1,1-rac{n}{q}}$ Apriori Estimates for q>n

(By Morrey-Sobolev Embedding Thm)

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 22/57

$$u \in C^2(B_1), \quad C > 0, \quad f \in L^q(B_1)$$

(analytic control) $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2u) \leq f$ in B_1 ,

(geometric control) $D^2 u \ge -4C \cdot Id$ in B_1

(Parabola from below everywhere)

Question: Are there apriori estimates for u?

<u>Answer:</u> $W^{2,q}$ Apriori Estimates

Even more: $C^{1,1-rac{n}{q}}$ Apriori Estimates for q>n

(By Morrey-Sobolev Embedding Thm)

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 22/57

$$u \in C^2(B_1), \quad C > 0, \quad f \in L^q(B_1)$$

(analytic control) $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2u) \leq f$ in B_1 ,

(geometric control) $D^2 u \ge -4C \cdot Id$ in B_1

(Parabola from below everywhere)

Question: Are there apriori estimates for u?

<u>Answer:</u> $W^{2,q}$ Apriori Estimates

<u>Even more</u>: $C^{1,1-\frac{n}{q}}$ Apriori Estimates for q > n

(By Morrey-Sobolev Embedding Thm)

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 22/57

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}u(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x) - D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) + \mathcal{M}_{\lambda,\Lambda}^{-}(-D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) - \mathcal{M}_{\lambda,\Lambda}^{+}(D^{2}P(x)) \\ &\geq \lambda \cdot Tr(D^{2}v(x)) - 4nC\Lambda \quad (\text{since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}u(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x) - D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) + \mathcal{M}_{\lambda,\Lambda}^{-}(-D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) - \mathcal{M}_{\lambda,\Lambda}^{+}(D^{2}P(x)) \\ &\geq \lambda \cdot Tr(D^{2}v(x)) - 4nC\Lambda \quad (\text{since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^{2}u(x)) \\ &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^{2}v(x) - D^{2}P(x)) \\ &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^{2}v(x)) + \mathcal{M}^{-}_{\lambda,\Lambda}(-D^{2}P(x)) \\ &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^{2}v(x)) - \mathcal{M}^{+}_{\lambda,\Lambda}(D^{2}P(x)) \\ &\geq \lambda \cdot Tr(D^{2}v(x)) - 4nC\Lambda \quad (\text{since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

<ロ> <四> <四> <四> <四> <四</p>

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}u(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x) - D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) + \mathcal{M}_{\lambda,\Lambda}^{-}(-D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) - \mathcal{M}_{\lambda,\Lambda}^{+}(D^{2}P(x)) \\ &\geq \lambda \cdot Tr(D^{2}v(x)) - 4nC\Lambda \quad (\text{since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

▲ ▲ ■ ▶ ■ のへの May 30, 2022 23/57

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}u(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x) - D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) + \mathcal{M}_{\lambda,\Lambda}^{-}(-D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) - \mathcal{M}_{\lambda,\Lambda}^{+}(D^{2}P(x)) \\ &\geq \lambda \cdot Tr(D^{2}v(x)) - 4nC\Lambda \quad (\text{since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^2u(x)) \\ &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^2v(x) - D^2P(x)) \\ &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^2v(x)) + \mathcal{M}^{-}_{\lambda,\Lambda}(-D^2P(x)) \\ &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^2v(x)) - \mathcal{M}^{+}_{\lambda,\Lambda}(D^2P(x)) \\ &\geq \lambda \cdot Tr(D^2v(x)) - 4nC\Lambda \quad (\text{since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^2u(x)) \\ &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^2v(x) - D^2P(x)) \\ &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^2v(x)) + \mathcal{M}^{-}_{\lambda,\Lambda}(-D^2P(x)) \\ &\geq \mathcal{M}^{-}_{\lambda,\Lambda}(D^2v(x)) - \mathcal{M}^{+}_{\lambda,\Lambda}(D^2P(x)) \\ &\geq \lambda \cdot Tr(D^2v(x)) - 4nC\Lambda \quad (\text{since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}u(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x) - D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) + \mathcal{M}_{\lambda,\Lambda}^{-}(-D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) - \mathcal{M}_{\lambda,\Lambda}^{+}(D^{2}P(x)) \\ &\geq \lambda \cdot Tr(D^{2}v(x)) - 4nC\Lambda \quad \text{(since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}u(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x) - D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) + \mathcal{M}_{\lambda,\Lambda}^{-}(-D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) - \mathcal{M}_{\lambda,\Lambda}^{+}(D^{2}P(x)) \\ &\geq \lambda \cdot Tr(D^{2}v(x)) - 4nC\Lambda \quad \text{(since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

$$\begin{split} D^2 u &\geq -4C \cdot Id, \quad P(x) := 2C|x|^2, \\ v(x) &:= u(x) + P(x), \quad v \text{ is convex} \end{split}$$

$$\begin{split} f(x) &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}u(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x) - D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) + \mathcal{M}_{\lambda,\Lambda}^{-}(-D^{2}P(x)) \\ &\geq \mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}v(x)) - \mathcal{M}_{\lambda,\Lambda}^{+}(D^{2}P(x)) \\ &\geq \lambda \cdot Tr(D^{2}v(x)) - 4nC\Lambda \quad \text{(since } v \text{ is convex}) \\ &\geq \lambda \cdot v_{ee}(x) - 4nC\Lambda \\ &= \lambda \cdot (u_{ee}(x) + 4C) - 4nC\Lambda \\ &\geq \lambda u_{ee}(x) - 4nC\Lambda, \end{split}$$

2

$$-4C \le u_{ee}(x) \le \lambda^{-1}(f(x) + 4nC\Lambda) \quad \forall x \in B_1.$$

This implies

$$||u||_{W^{2,q}(B_{1/2})} \le D \cdot \Big(C + ||u||_{L^q(B_1)} + ||f||_{L^q(B_1)}\Big).$$

Moreover, if q > n by Sobolev-Morrey Embedding Theorem

$$||u||_{C^{1,1-n/q}(B_{1/2})} \le \overline{D} \Big(C + ||u||_{L^{\infty}(B_1)} + ||f||_{L^q(B_1)} \Big)$$

What happens with more complicated notions of convexity ?

$$-4C \le u_{ee}(x) \le \lambda^{-1}(f(x) + 4nC\Lambda) \quad \forall x \in B_1.$$

This implies

$$||u||_{W^{2,q}(B_{1/2})} \le D \cdot \Big(C + ||u||_{L^q(B_1)} + ||f||_{L^q(B_1)}\Big).$$

Moreover, if q > n by Sobolev-Morrey Embedding Theorem

$$||u||_{C^{1,1-n/q}(B_{1/2})} \le \overline{D} \Big(C + ||u||_{L^{\infty}(B_1)} + ||f||_{L^q(B_1)} \Big)$$

What happens with more complicated notions of convexity ?

< ロ > < 同 > < 回 > < 回 >

What If a More Complicated Geometry from below?

Questions

- What happens under more complex notion of convexity ?
- Is it possible to prove regularity for weak solutions ?
- Regularity + Apriori Estimates ?

Relevant Point: Regular semi-convexity has PDE type description

What If a More Complicated Geometry from below?

Questions

- What happens under more complex notion of convexity ?
- Is it possible to prove regularity for weak solutions ?
- Regularity + Apriori Estimates ?

Relevant Point: Regular semi-convexity has PDE type description

What If a More Complicated Geometry from below?

Questions

- What happens under more complex notion of convexity ?
- Is it possible to prove regularity for weak solutions ?
- Regularity + Apriori Estimates ?

Relevant Point: Regular semi-convexity has PDE type descrtiption

< ロ > < 同 > < 回 > < 回 >

General Concept of Semi-Convexity

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 26/57

General Concept of Semi-Convexity

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 27/57

Elements of Convex Analysis I: Semi-Convexity

 $u:\Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}^n$ bounded and convex

$$\begin{split} \omega: \overline{\mathbb{R}}_+ \to \overline{\mathbb{R}}_+, & \text{nondecreasing, upper-semicontinuous, } \omega(0) = 0 \\ & \text{u is } \omega - \text{semiconvex iff } \forall x, y \in \Omega \\ u(\lambda x + (1-\lambda)y) &\leq \lambda u(x) + (1-\lambda)u(y) + \underbrace{\lambda(1-\lambda)|x-y|\omega(|x-y|)}_{C^{1,\omega}(\text{correction})} \end{split}$$

$$\omega(t) = rac{Ct}{2}$$
 we say that u is C – semiconvex

u is C - semiconvex $\iff D^2 u \ge -C \cdot I_n$ (PDE characterization)

Elements of Convex Analysis II: Semi-Convexity

 $\omega-Normal Mapping$

$$\begin{split} \partial_w u(x) &:= \Big\{ \xi \in \mathbb{R}^n; u(y) \geq u(x) + \xi \cdot (y - x) - |y - x| \omega(|y - x|) \quad \forall y \in \Omega \Big\}.\\ \partial_\omega u : \Omega \to \mathcal{P}(\mathbb{R}^n), \quad x \mapsto \partial_\omega u(x)\\ \partial_w u(x) \neq \varnothing \iff \mathsf{u} \text{ is } \omega - \mathsf{semiconvex} \end{split}$$

Proposition 2.1.2 Let $u \in C^1(A)$, with A open. Then both u and -u are locally semiconcave in A with modulus equal to the modulus of continuity of Du.

(P. Cannarsa & C. Sinestrari Book)

CKNS Theorem

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 30/57

• • • • • • • • • • • • •

CKNS apriori estimate

Theorem (Caffarelli, Kohn, Nirenberg, Spruck, CPAM, 1985) Let $u \in C^2(B_r)$ be such that i) $Lu = Tr(A(x)D^2u) \leq C$ in B_r with $\lambda Id \leq A(x) \leq \Lambda Id$ ii) $||u||_{C^1(B_r)} \leq C$; iii) u is ω -semiconvex in B_r where $\omega(t) = Ct^{\alpha}$ for some $\alpha \in (0, 1]$. Then, there exists $\overline{C} = \overline{C}(n, \lambda, \Lambda, C, \alpha) > 0$ so that

$$|\nabla u(x) - \nabla u(y)| \le \frac{\overline{C}}{1 + |\log|x - y||} \quad \forall x, y \in B_{r/2}.$$
 (1)

Analytic (above) + Geometric (below) controls render an estimate on the MC of the Gradient

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 31/57

CKNS apriori estimate

Theorem (Caffarelli, Kohn, Nirenberg, Spruck, CPAM, 1985) Let $u \in C^2(B_r)$ be such that i) $Lu = Tr(A(x)D^2u) \leq C$ in B_r with $\lambda Id \leq A(x) \leq \Lambda Id$ ii) $||u||_{C^1(B_r)} \leq C$; iii) u is ω -semiconvex in B_r where $\omega(t) = Ct^{\alpha}$ for some $\alpha \in (0, 1]$. Then, there exists $\overline{C} = \overline{C}(n, \lambda, \Lambda, C, \alpha) > 0$ so that

$$|\nabla u(x) - \nabla u(y)| \le \frac{\overline{C}}{1 + |\log|x - y||} \quad \forall x, y \in B_{r/2}.$$
 (1)

Analytic (above) + Geometric (below) controls render an estimate on the MC of the Gradient

Diego Moreira (UFC)

May 30, 2022 31/57

CKNS apriori estimate

Theorem (Caffarelli, Kohn, Nirenberg, Spruck, CPAM, 1985) Let $u \in C^2(B_r)$ be such that i) $Lu = Tr(A(x)D^2u) \leq C$ in B_r with $\lambda Id \leq A(x) \leq \Lambda Id$ ii) $||u||_{C^1(B_r)} \leq C$; iii) u is ω -semiconvex in B_r where $\omega(t) = Ct^{\alpha}$ for some $\alpha \in (0, 1]$. Then, there exists $\overline{C} = \overline{C}(n, \lambda, \Lambda, C, \alpha) > 0$ so that

$$|\nabla u(x) - \nabla u(y)| \le \frac{\overline{C}}{1 + |\log|x - y||} \quad \forall x, y \in B_{r/2}.$$
 (1)

Analytic (above) + Geometric (below) controls render an estimate on the MC of the Gradient

Diego Moreira (UFC)

May 30, 2022 31/57

BMF Result

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 32/57

2

Theorem (BFM, 2019, CMP)

Let φ be a bounded and ω -semiconvex viscosity solution to

 $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2u) \leq f \text{ in } B_1$

Assume that $f \in L^q(B_r)$ with $q \ge n$ and thus $\tau := 1 - n/q \ge 0$. Set

$$\begin{split} \|f\|_{L^{n}(B_{\rho}(x_{0}))} &\leq \vartheta(\rho) \\ \forall x_{0} \in \overline{B}_{1}, \quad 0 < \rho < 1 - |x_{0}|. \\ \Upsilon(s) &:= \begin{cases} \omega(4s) + s^{\tau} & \text{if } q > n, \\ \omega(4s) + \vartheta(4s) & \text{if } n = q, \text{ with } \vartheta \text{ as in } (2) \text{ above.} \end{cases} \end{split}$$

Then, $\varphi \in C^{1,\Upsilon}(B_{1/64})$ with precise estimates in $[\nabla \varphi]_{C^{0,\Upsilon}(B_{r/64})}$

Diego Moreira (UFC)

Estimates on $[\nabla \varphi]_{C^{0,\Upsilon}(B_{r/64})}$

$$\begin{split} q > n, \\ [\nabla \varphi]_{C^{0,\Upsilon}(B_{r/64})} &\leq C \left(1 + \|f\|_{L^q(B_r)} \right) \\ q = n, \\ [\nabla \varphi]_{C^{0,\Upsilon}(B_{r/64})} &\leq C \left(1 + \frac{\|\varphi\|_{L^{\infty}(B_r)}}{r} + \omega(r) \right). \\ \text{Comparing with CKNS result} \\ (\text{RHS Bdd} \Longrightarrow q = \infty \Longrightarrow \tau = 1) \\ \nabla \varphi(x) - \nabla \varphi(y)| &\leq C \left(|x - y|^{\alpha} + |x - y| \right) \leq C |x - y|^{\alpha} \\ (\text{CKNS}) \quad |\nabla \varphi(x) - \nabla \varphi(y)| \leq \frac{\overline{C}}{1 + |\log |x - y||} \\ C |x - y|^{\alpha} &\leq \frac{\overline{C}}{1 + |\log |x - y||} \quad \text{for } |x - y| << 1 \end{split}$$

Application of Regularity Theorem for Supersolutions

$$u \in W^{2,n}_{loc}(B_1) \Longrightarrow u \in C^{\alpha}_{loc}(B_1) \quad \forall \alpha \in (0,1)$$

$$u$$
 is ω – semiconvex $\Longrightarrow u \in C^{0,1}_{loc}(B_1)$

 $u \in W^{2,n}_{loc}(B_1)$ and ω – semiconvex $\Longrightarrow u \in C^1(B_1)$

Proof: Set $f := \Delta u \in L^n(B_1)$. Then, u is a L^n -strong solution to

 $\Delta u \leq f$ in B_1 .

In particular, u is a L^n -viscosity solution to $\Delta u \leq f$ in B_1 .

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 35/57

Application of Regularity Theorem for Supersolutions

$$u \in W^{2,n}_{loc}(B_1) \Longrightarrow u \in C^{\alpha}_{loc}(B_1) \quad \forall \alpha \in (0,1)$$

$$u$$
 is ω – semiconvex $\Longrightarrow u \in C^{0,1}_{loc}(B_1)$

 $u \in W^{2,n}_{loc}(B_1)$ and ω – semiconvex $\Longrightarrow u \in C^1(B_1)$

Proof: Set $f := \Delta u \in L^n(B_1)$. Then, u is a L^n -strong solution to

 $\Delta u \leq f$ in B_1 .

In particular, u is a L^n -viscosity solution to $\Delta u \leq f$ in B_1 .

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 35/57

Application of Regularity Theorem for Supersolutions

$$u \in W^{2,n}_{loc}(B_1) \Longrightarrow u \in C^{\alpha}_{loc}(B_1) \quad \forall \alpha \in (0,1)$$

$$u$$
 is ω – semiconvex $\Longrightarrow u \in C^{0,1}_{loc}(B_1)$

$$u \in W^{2,n}_{loc}(B_1)$$
 and ω – semiconvex $\Longrightarrow u \in C^1(B_1)$

Proof: Set $f := \Delta u \in L^n(B_1)$. Then, u is a L^n -strong solution to

 $\Delta u \leq f$ in B_1 .

In particular, u is a L^n -viscosity solution to $\Delta u \leq f$ in B_1 .

Estimates Semiconvex Functions

Theorem ((BMF) - Estimates for ω -semiconvex functions) Let $u \in L^1(B_r)$ be a ω -semiconvex function and $p \in (0, \infty)$. (a) $u \in C^{0,1}_{loc}(B_r)$;

(b) There exists $C_1 = C_1(n, p) > 0$ such that

$$\sup_{B_{r/2}} |u| \le C_1 \bigg[\left(\oint_{B_r} |u|^p dx \right)^{1/p} + r\omega(r) \bigg].$$

(c) For some $C_3 = C_3(n,p) > 0$ we have

$$ess \sup_{B_{r/2}} |\nabla u| \le \frac{C_3}{r} \left[\left(\oint_{B_r} |u|^p dx \right)^{1/p} + r\omega(r) \right].$$
(3)

Diego Moreira (UFC)

Supersolutions & Convexity.

Ideas of the Proof

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 37/57

э

Harnack Approach Flipping the MC Above & Below

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 38/57
$u \in C^0(B_1), \ \mathcal{M}^-_{\lambda,\Lambda}(D^2 u) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2 u) \quad \text{ in } B_1$

u - l satisfies Harnack inequality whenever $u - l \ge 0$ in B_1 $\forall l$ affine function (Converse is also true (Caffarelli (1999))

Let *l* affine function so that u(0) = l(0)

Assume that u separates from l by below by (rate) $\omega(r) \ge 0$.

$$\inf_{B_r} (u-l) \ge -\omega(r) \quad \forall r \in (0,1).$$

Setting $v_r(x) := u(x) - l(x) + \omega(r)$ for $x \in B_1$. Then,

 $0 \le v_r \in C^0(B_r), \quad \mathcal{M}^-_{\lambda,\Lambda}(D^2v_r) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2v_r) \text{ in } B_r$

Harnack inequality implies

 $\sup_{B_{r/2}} (u-l) \le \sup_{B_{r/2}} (u-l+\omega(r)) = \sup_{B_{r/2}} v_r \le Cv_r(0) = C\omega(r) \quad \forall r \in (0,1).$

Diego Moreira (UFC)

$$u \in C^0(B_1), \ \mathcal{M}^-_{\lambda,\Lambda}(D^2u) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2u) \quad \text{ in } B_1$$

u - l satisfies Harnack inequality whenever $u - l \ge 0$ in B_1 $\forall l$ affine function (Converse is also true (Caffarelli (1999))

Let *l* affine function so that u(0) = l(0)

Assume that u separates from l by below by (rate) $\omega(r) \ge 0$.

$$\inf_{B_r} (u-l) \ge -\omega(r) \quad \forall r \in (0,1).$$

Setting $v_r(x) := u(x) - l(x) + \omega(r)$ for $x \in B_1$. Then,

 $0 \le v_r \in C^0(B_r), \quad \mathcal{M}^-_{\lambda,\Lambda}(D^2v_r) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2v_r) \text{ in } B_r$

Harnack inequality implies

 $\sup_{B_{r/2}} (u-l) \le \sup_{B_{r/2}} (u-l+\omega(r)) = \sup_{B_{r/2}} v_r \le C v_r(0) = C \omega(r) \quad \forall r \in (0,1).$

$$u \in C^0(B_1), \ \mathcal{M}^-_{\lambda,\Lambda}(D^2 u) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2 u) \quad \text{ in } B_1$$

u - l satisfies Harnack inequality whenever $u - l \ge 0$ in B_1 $\forall l$ affine function (Converse is also true (Caffarelli (1999))

Let *l* affine function so that u(0) = l(0)

Assume that u separates from l by below by (rate) $\omega(r) \ge 0$.

$$\inf_{B_r} (u-l) \ge -\omega(r) \quad \forall r \in (0,1).$$

Setting $v_r(x) := u(x) - l(x) + \omega(r)$ for $x \in B_1$. Then,

 $0 \le v_r \in C^0(B_r), \quad \mathcal{M}^-_{\lambda,\Lambda}(D^2v_r) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2v_r) \text{ in } B_r$

Harnack inequality implies

 $\sup_{B_{r/2}} (u-l) \le \sup_{B_{r/2}} (u-l+\omega(r)) = \sup_{B_{r/2}} v_r \le C v_r(0) = C \omega(r) \quad \forall r \in (0,1).$

$$u \in C^0(B_1), \ \mathcal{M}^-_{\lambda,\Lambda}(D^2 u) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2 u) \quad \text{ in } B_1$$

u - l satisfies Harnack inequality whenever $u - l \ge 0$ in B_1 $\forall l$ affine function (Converse is also true (Caffarelli (1999))

Let *l* affine function so that u(0) = l(0)

Assume that u separates from l by below by (rate) $\omega(r) \ge 0$.

$$\inf_{B_r} (u-l) \ge -\omega(r) \quad \forall r \in (0,1).$$

Setting $v_r(x) := u(x) - l(x) + \omega(r)$ for $x \in B_1$. Then,

 $0 \le v_r \in C^0(B_r), \quad \mathcal{M}^-_{\lambda,\Lambda}(D^2v_r) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2v_r) \text{ in } B_r$

Harnack inequality implies

 $\sup_{B_{r/2}} (u-l) \leq \sup_{B_{r/2}} (u-l+\omega(r)) = \sup_{B_{r/2}} v_r \leq Cv_r(0) = C\omega(r) \quad \forall r \in (0,1).$

$$u \in C^0(B_1), \ \mathcal{M}^-_{\lambda,\Lambda}(D^2 u) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2 u) \quad \text{ in } B_1$$

u - l satisfies Harnack inequality whenever $u - l \ge 0$ in B_1 $\forall l$ affine function (Converse is also true (Caffarelli (1999))

Let *l* affine function so that u(0) = l(0)

Assume that u separates from l by below by (rate) $\omega(r) \ge 0$.

$$\inf_{B_r} (u-l) \ge -\omega(r) \quad \forall r \in (0,1).$$

Setting $v_r(x) := u(x) - l(x) + \omega(r)$ for $x \in B_1$. Then,

$$0 \le v_r \in C^0(B_r), \quad \mathcal{M}^-_{\lambda,\Lambda}(D^2v_r) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2v_r) \text{ in } B_r$$

Harnack inequality implies

 $\sup_{B_{r/2}} (u-l) \le \sup_{B_{r/2}} (u-l+\omega(r)) = \sup_{B_{r/2}} v_r \le C v_r(0) = C \omega(r) \quad \forall r \in (0,1).$

$$u \in C^0(B_1), \ \mathcal{M}^-_{\lambda,\Lambda}(D^2 u) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2 u) \quad \text{ in } B_1$$

u - l satisfies Harnack inequality whenever $u - l \ge 0$ in B_1 $\forall l$ affine function (Converse is also true (Caffarelli (1999))

Let *l* affine function so that u(0) = l(0)

Assume that u separates from l by below by (rate) $\omega(r) \ge 0$.

$$\inf_{B_r} (u-l) \ge -\omega(r) \quad \forall r \in (0,1).$$

Setting $v_r(x) := u(x) - l(x) + \omega(r)$ for $x \in B_1$. Then,

$$0 \le v_r \in C^0(B_r), \quad \mathcal{M}^-_{\lambda,\Lambda}(D^2v_r) \le 0 \le \mathcal{M}^+_{\lambda,\Lambda}(D^2v_r) \text{ in } B_r$$

Harnack inequality implies

 $\sup_{B_{r/2}} (u-l) \le \sup_{B_{r/2}} (u-l+\omega(r)) = \sup_{B_{r/2}} v_r \le Cv_r(0) = C\omega(r) \quad \forall r \in (0,1).$

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1,\omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

Only Half Harnack is available (Weak Harnack Inequality);

• For class $\overline{S}(\gamma; f)$ equations perceive linear functions;

< ロ > < 同 > < 回 > < 回 >

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1,\omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

Only Half Harnack is available (Weak Harnack Inequality);

• For class $\overline{S}(\gamma; f)$ equations perceive linear functions;

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1,\omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

Only Half Harnack is available (Weak Harnack Inequality);

• For class $\overline{S}(\gamma; f)$ equations perceive linear functions;

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1,\omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

- Only Half Harnack is available (Weak Harnack Inequality);
- For class $\overline{S}(\gamma; f)$ equations perceive linear functions;

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1,\omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

- Only Half Harnack is available (Weak Harnack Inequality);
- For class $\overline{S}(\gamma; f)$ equations perceive linear functions;

< ロ > < 同 > < 回 > < 回 >

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1,\omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

- Only Half Harnack is available (Weak Harnack Inequality);
- For class $\overline{S}(\gamma; f)$ equations perceive linear functions;

< ロ > < 同 > < 回 > < 回 >

Key Idea To The Proof of Theorems

Assume that

- φ is ω -semiconvex
- $0 \in \partial_{\omega} \varphi(0)$
- $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2\bar{\varphi}) \leq f$ in B_r .

Then,

$$\varphi(x) \ge \varphi(0) - |x|\omega(|x|) \quad \forall x \in B_r$$

This implies,

- $\bar{\varphi} := \varphi \varphi(0) + r\omega(r) \ge 0$ in B_r
- $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2\varphi) \leq f$ in B_r
- $\bar{\varphi}$ is ω semi-convex

Key Idea To The Proof of Theorems

This implies,

$$\begin{split} \left(\oint_{B_{r/2}} \bar{\varphi}^{\varepsilon_0} dx \right)^{\frac{1}{\varepsilon_0}} &\leq \quad C \bigg(\inf_{B_r} \bar{\varphi} + r^{1+\alpha} ||f||_{L^q(B_r)} \bigg) \\ &\leq \quad C \Big(r \omega(r) + r^{1+\alpha} ||f||_{L^q(B_r)} \Big), \quad \alpha := 1 - n/q \end{split}$$

$$||\bar{\varphi}||_{L^{\infty}(B_{r/4})} \leq D \cdot \left(\int_{B_{r/2}} \varphi^{\varepsilon_0} dx \right)^{\frac{1}{\varepsilon_0}} + D \cdot r \omega(r) = C \vartheta(r)$$

Diego Moreira (UFC)

2

イロン イ理 とく ヨン イヨン

New Developments (Work with E. Pimentel)

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 43/57

< 6 b

$$(WH) \left(\oint_{B_{\rho/2}(x_0)} u^{\varepsilon} \mathrm{d}x \right)^{\frac{1}{\varepsilon}} \le C_{\mathrm{WH}} \left(\inf_{B_{\rho/2}(x_0)} u + \rho^R \|f\|_{L^q(B_{\rho}(x_0))} \right)$$

for every $\rho > 0$ and $x_0 \in B_1$ such that $B_{\rho}(x_0) \subset B_1$

$$(L^{\infty} - L^{\varepsilon}) \|u\|_{L^{\infty}(B_{\rho/2}(x_0))} \le C_{\varepsilon,\infty} \left[\left(\oint_{B_{\rho}(x_0)} u^{\varepsilon} \mathrm{d}x \right)^{\frac{1}{\varepsilon}} + \sigma(\rho) \right]$$

for some $\varepsilon > 0$, and every $\rho > 0$ and $x_0 \in B_1$ such that $B_{\rho}(x_0) \subset B_1$.

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 44/57

3

イロト イヨト イヨト イヨト

New developments & Results (with E. Pimentel)

• (C1) u + c (c - u) satisfies (WH) and $(L^{\infty} - L^{\varepsilon})$, $\forall c$ constant

• (C2) u + l (l - u) satisfies (WH) and $(L^{\infty} - L^{\varepsilon})$, $\forall l$ affine

Weak Harnack Inequality

Nonnegative Supersolutions to Linear + Nonlinear PDEs, Super Q-minimizers, De Giorgi Class DG_p^-

• $L^{\infty} - L^{\varepsilon}$ type estimates

Subsolutions to Linear + Nonlinear PDEs, Sub Q-minimizers, De Giorgi Class DG_p^+ , ω -semiconvexity, C^{α} , $C^{1,\alpha}$ from below

• <u>Results:</u> Flipping $C^{\alpha}, C^{1,\alpha}$ regularities from below + Sobolev Regularity (Besov Spaces) of Supersolutions and Convex Envelope (of supersolutions) (Like L. Caffarelli's Result)

New developments & Results (with E. Pimentel)

• (C1) u + c (c - u) satisfies (WH) and $(L^{\infty} - L^{\varepsilon})$, $\forall c$ constant

• (C2) u + l (l - u) satisfies (WH) and $(L^{\infty} - L^{\varepsilon})$, $\forall l$ affine

Weak Harnack Inequality

Nonnegative Supersolutions to Linear + Nonlinear PDEs, Super Q-minimizers, De Giorgi Class DG_p^-

• $L^{\infty} - L^{\varepsilon}$ type estimates

Subsolutions to Linear + Nonlinear PDEs, Sub Q-minimizers, De Giorgi Class DG_p^+ , ω -semiconvexity, C^{α} , $C^{1,\alpha}$ from below

• <u>Results:</u> Flipping $C^{\alpha}, C^{1,\alpha}$ regularities from below + Sobolev Regularity (Besov Spaces) of Supersolutions and Convex Envelope (of supersolutions) (Like L. Caffarelli's Result)

New developments & Results (with E. Pimentel)

• (C1) u + c (c - u) satisfies (WH) and $(L^{\infty} - L^{\varepsilon})$, $\forall c$ constant

• (C2) u + l (l - u) satisfies (WH) and $(L^{\infty} - L^{\varepsilon})$, $\forall l$ affine

Weak Harnack Inequality

Nonnegative Supersolutions to Linear + Nonlinear PDEs, Super Q-minimizers, De Giorgi Class DG_p^-

• $L^{\infty} - L^{\varepsilon}$ type estimates

Subsolutions to Linear + Nonlinear PDEs, Sub Q-minimizers, De Giorgi Class DG_p^+ , ω -semiconvexity, C^{α} , $C^{1,\alpha}$ from below

• <u>Results:</u> Flipping $C^{\alpha}, C^{1,\alpha}$ regularities from below + Sobolev Regularity (Besov Spaces) of Supersolutions and Convex Envelope (of supersolutions) (Like L. Caffarelli's Result)

Thank You Very Much !

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 46/57

э

LINEAR ALGEBRA REMARKS

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 47/57

$$M = (m_{ij})_{i,j \in \{1,\cdots,n\}} \in \mathcal{S}^{n \times n}$$

$$||M||_1 = \sum_{i,j=1}^n |m_{ij}|, \quad ||M||_{spec} = max\{|\lambda|, \ \lambda \in \sigma(M)\}$$

Spectral Theorem

 \downarrow

 $\exists \mathcal{B} = \{e_i\}_{i=1}^n$ orthonormal basis in \mathbb{R}^n with $Me_i = \lambda_i \cdot e_i$

 $\langle Mv, v \rangle = \sum_{i,j=1}^{n} v_i v_j \langle Me_i, e_j \rangle = \sum_{i,j=1}^{n} \lambda_i v_i v_j \delta_{ij} = \sum_{i=1}^{n} \lambda_i v_i^2$ $\max_{v \in \mathbb{S}^{n-1}} |\langle Mv, v \rangle| = ||M||_{spec}$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 48/57

$$M = (m_{ij})_{i,j \in \{1,\cdots,n\}} \in \mathcal{S}^{n \times n}$$

$$||M||_1 = \sum_{i,j=1}^n |m_{ij}|, \quad ||M||_{spec} = max\{|\lambda|, \ \lambda \in \sigma(M)\}$$

Spectral Theorem

 $\exists \mathcal{B} = \{e_i\}_{i=1}^n$ orthonormal basis in \mathbb{R}^n with $Me_i = \lambda_i \cdot e_i$

$$\begin{split} \langle Mv, v \rangle &= \sum_{i,j=1}^{n} v_i v_j \langle Me_i, e_j \rangle = \sum_{i,j=1}^{n} \lambda_i v_i v_j \delta_{ij} = \sum_{i=1}^{n} \lambda_i v_i^2 \\ & \max_{v \in \mathbb{S}^{n-1}} |\langle Mv, v \rangle| = ||M||_{spec} \end{split}$$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 48/57

2

・ロト ・ 四ト ・ ヨト ・ ヨト

$$M = (m_{ij})_{i,j \in \{1,\cdots,n\}} \in \mathcal{S}^{n \times n}$$

$$||M||_1 = \sum_{i,j=1}^n |m_{ij}|, \quad ||M||_{spec} = max\{|\lambda|, \ \lambda \in \sigma(M)\}$$

Spectral Theorem

∜

 $\exists \mathcal{B} = \{e_i\}_{i=1}^n \text{ orthonormal basis in } \mathbb{R}^n \text{ with } Me_i = \lambda_i \cdot e_i$

$$\langle Mv, v \rangle = \sum_{i,j=1}^{n} v_i v_j \langle Me_i, e_j \rangle = \sum_{i,j=1}^{n} \lambda_i v_i v_j \delta_{ij} = \sum_{i=1}^{n} \lambda_i v_i^2$$
$$\max_{v \in \mathbb{S}^{n-1}} |\langle Mv, v \rangle| = ||M||_{spec}$$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 48/57

$$M = (m_{ij})_{i,j \in \{1,\cdots,n\}} \in \mathcal{S}^{n \times n}$$

$$||M||_1 = \sum_{i,j=1}^n |m_{ij}|, \quad ||M||_{spec} = max\{|\lambda|, \ \lambda \in \sigma(M)\}$$

 $||M||_1 \le C(n) \cdot ||M||_{spec}$ (Finite Dimensional VS)

 $M \ge 0 \Longrightarrow |m_{ij}| \le ||M||_1 \le C(n)||M||_{spec} \le C||M||_{spec} \le C \cdot Tr(M)$

u is convex $\Leftrightarrow D^2 u(x) \ge 0 \Longrightarrow |u_{x_i x_j}| \le C ||D^2 u(x)|| \le C \cdot \Delta u(x)$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 49/57

3

イロト 不得 トイヨト イヨト

$$M = (m_{ij})_{i,j \in \{1,\cdots,n\}} \in \mathcal{S}^{n \times n}$$

$$||M||_1 = \sum_{i,j=1}^n |m_{ij}|, \quad ||M||_{spec} = max\{|\lambda|, \ \lambda \in \sigma(M)\}$$

 $||M||_1 \le C(n) \cdot ||M||_{spec}$ (Finite Dimensional VS)

 $M \ge 0 \Longrightarrow |m_{ij}| \le ||M||_1 \le C(n)||M||_{spec} \le C||M||_{spec} \le C \cdot Tr(M)$

u is convex $\Leftrightarrow D^2 u(x) \ge 0 \Longrightarrow |u_{x_i x_j}| \le C ||D^2 u(x)|| \le C \cdot \Delta u(x)$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 49/57

3

イロト 不得 トイヨト イヨト

$$M = (m_{ij})_{i,j \in \{1,\cdots,n\}} \in \mathcal{S}^{n \times n}$$

$$||M||_1 = \sum_{i,j=1}^n |m_{ij}|, \quad ||M||_{spec} = max\{|\lambda|, \ \lambda \in \sigma(M)\}$$

$||M||_1 \le C(n) \cdot ||M||_{spec}$ (Finite Dimensional VS)

 $M \ge 0 \Longrightarrow |m_{ij}| \le ||M||_1 \le C(n)||M||_{spec} \le C||M||_{spec} \le C \cdot Tr(M)$

u is convex $\Leftrightarrow D^2 u(x) \ge 0 \Longrightarrow |u_{x_i x_j}| \le C ||D^2 u(x)|| \le C \cdot \Delta u(x)$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 49/57

$$M = (m_{ij})_{i,j \in \{1,\cdots,n\}} \in \mathcal{S}^{n \times n}$$

$$||M||_1 = \sum_{i,j=1}^n |m_{ij}|, \quad ||M||_{spec} = max\{|\lambda|, \ \lambda \in \sigma(M)\}$$

 $||M||_1 \le C(n) \cdot ||M||_{spec}$ (Finite Dimensional VS)

 $M \ge 0 \Longrightarrow |m_{ij}| \le ||M||_1 \le C(n)||M||_{spec} \le C||M||_{spec} \le C \cdot Tr(M)$

u is convex $\Leftrightarrow D^2 u(x) \ge 0 \Longrightarrow |u_{x_i x_j}| \le C ||D^2 u(x)|| \le C \cdot \Delta u(x)$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 49/57

イロト 不得 トイヨト イヨト 二日

$$M = (m_{ij})_{i,j \in \{1,\cdots,n\}} \in \mathcal{S}^{n \times n}$$

$$||M||_1 = \sum_{i,j=1}^n |m_{ij}|, \quad ||M||_{spec} = max\{|\lambda|, \ \lambda \in \sigma(M)\}$$

 $||M||_1 \le C(n) \cdot ||M||_{spec}$ (Finite Dimensional VS)

 $M \ge 0 \Longrightarrow |m_{ij}| \le ||M||_1 \le C(n)||M||_{spec} \le C||M||_{spec} \le C \cdot Tr(M)$

u is convex $\Leftrightarrow D^2 u(x) \ge 0 \Longrightarrow |u_{x_i x_j}| \le C ||D^2 u(x)|| \le C \cdot \Delta u(x)$

Diego Moreira (UFC)

Extremal Pucci Operators

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 50/57

< ロ > < 同 > < 回 > < 回 >

Pucci Operators - Fully Nonlinear Equations - I

$$0 < \lambda < \Lambda, \quad M \in \mathcal{S}^{n \times n}$$

$$\mathcal{M}_{\lambda,\Lambda}^{-}(M) := \lambda \cdot Tr(M^{+}) - \Lambda \cdot Tr(M^{-})$$
$$\mathcal{M}_{\lambda,\Lambda}^{+}(M) := \Lambda \cdot Tr(M^{+}) - \lambda \cdot Tr(M^{-})$$
$$M \ge 0 \Longrightarrow \mathcal{M}_{\lambda,\Lambda}^{-}(M) = \lambda \cdot Tr(M) \& \mathcal{M}_{\lambda,\Lambda}^{+}(M) = \Lambda \cdot Tr(M)$$
$$A \in \mathcal{S}^{n \times n}, \ spec(A) = \sigma(A) = \Big\{ \mu; \ \mu \text{ is an eigenvalue of } A \Big\}$$
$$\mathcal{A}_{\lambda,\Lambda} := \Big\{ A \in \mathcal{S}^{n \times n}; \ \mu \in \sigma(A) \Rightarrow \mu \in [\lambda, \Lambda] \Big\}$$

 $\mathcal{M}^{-}_{\lambda,\Lambda}(M) = \inf_{A \in \mathcal{A}_{\lambda,\Lambda}} Trace(AM), \quad \mathcal{M}^{+}_{\lambda,\Lambda}(M) = \sup_{A \in \mathcal{A}_{\lambda,\Lambda}} Trace(AM)$

Envelope for Linear Equations

$$u \in C^{2}(B_{1}), \quad (UE) \quad A(x) \in \mathcal{A}_{\lambda,\Lambda}, \ \forall x \in B_{1}.$$
$$Lu(x) := Tr(A(x)D^{2}u) = \sum_{i,j=1}^{n} a_{ij}(x)u_{x_{i}x_{j}}(x)$$

 $\mathcal{M}^{-}_{\lambda,\Lambda}(D^2u(x)) \leq Lu(x) \leq \mathcal{M}^{+}_{\lambda,\Lambda}(D^2u(x))$

orall L (UE) operator as in (\star) $Lu \leq f$ in $B_1 \Longrightarrow \mathcal{M}^-_{\lambda,\Lambda}(D^2u) \leq f$ in B_1 $Lu \geq f$ in $B_1 \Longrightarrow \mathcal{M}^+_{\lambda,\Lambda}(D^2u) \geq f$ in B_1 Equations in blue are Fully Nonlinear Elliptic PDEs

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 52/57

(*)

Pucci Operators for Nonnegative Matrices

$$0 < \lambda < \Lambda, \quad M \in \mathcal{S}^{n \times n}$$

$$\mathcal{M}^{-}_{\lambda,\Lambda}(M) := \lambda \cdot Tr(M^{+}) - \Lambda \cdot Tr(M^{-})$$
$$\mathcal{M}^{+}_{\lambda,\Lambda}(M) := \Lambda \cdot Tr(M^{+}) - \lambda \cdot Tr(M^{-})$$
$$M \ge 0 \Longrightarrow \mathcal{M}^{-}_{\lambda,\Lambda}(M) = \lambda \cdot Tr(M) \& \mathcal{M}^{+}_{\lambda,\Lambda}(M) = \Lambda \cdot Tr(M)$$

$$\begin{split} \mathcal{M}^{-}_{\lambda,\Lambda}(M) + \mathcal{M}^{-}_{\lambda,\Lambda}(N) &\leq \mathcal{M}^{-}_{\lambda,\Lambda}(M+N) \ \text{(superadditive)} \\ \mathcal{M}^{-}_{\lambda,\Lambda}(-M) &= -\mathcal{M}^{+}_{\lambda,\Lambda}(M) \end{split}$$

Diego Moreira (UFC)

▲ ▲ ■ ▶ ■ つへの May 30, 2022 53/57

・ロト ・ 四ト ・ ヨト ・ ヨト

Viscosity Solution

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 54/57

э

Viscosity Solution (Motivation-I)

 $u \in C^2(B_1)$ with $\Delta u \ge 0$ in B_1 .

Assume that $\varphi \in C^2(B_{\delta}(x_0))$ touches u by above at x_0

Then, since $(u - \varphi)$ has a local maximum at x_0 then

 $D^2\varphi(x_0) \ge D^2u(x_0) \Longrightarrow \Delta\varphi(x_0) \ge \Delta u(x_0) \ge 0$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 55/57

Viscosity Solution (Motivation-I)

 $u \in C^2(B_1)$ with $\Delta u \ge 0$ in B_1 .

Assume that $\varphi \in C^2(B_{\delta}(x_0))$ touches u by above at x_0

Then, since $(u - \varphi)$ has a local maximum at x_0 then

 $D^2\varphi(x_0) \ge D^2u(x_0) \Longrightarrow \Delta\varphi(x_0) \ge \Delta u(x_0) \ge 0$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 55/57
Viscosity Solution (Motivation-I)

 $u \in C^2(B_1)$ with $\Delta u \ge 0$ in B_1 .

Assume that $\varphi \in C^2(B_{\delta}(x_0))$ touches u by above at x_0

Then, since $(u - \varphi)$ has a local maximum at x_0 then

$$D^2\varphi(x_0) \ge D^2u(x_0) \Longrightarrow \Delta\varphi(x_0) \ge \Delta u(x_0) \ge 0$$

• • • • • • • • • • • • •

Viscosity Solution (Motivation-II)

Suppose now $F: \mathcal{S}^{n \times n} \times B_1 \to \mathbb{R}$ so that

(Monotonicity) $\forall x \in B_1, M \ge N \text{ in } S^{n \times n} \Longrightarrow F(M, x) \ge F(N, x)$ $u \in C^2(B_1) \text{ with } F(D^2u, x) \ge 0 \text{ in } B_1.$

Assume that $\varphi \in C^2(B_{\delta}(x_0))$ touches u by above at x_0

Then, since $(u - \varphi)$ has a local maximum at x_0 then

 $D^2\varphi(x_0) \ge D^2u(x_0) \Longrightarrow F(D^2\varphi(x_0), x_0) \ge F(D^2u(x_0), x_0) \ge 0$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 56/57

Viscosity Solution (Motivation-II)

Suppose now $F: \mathcal{S}^{n \times n} \times B_1 \to \mathbb{R}$ so that

(Monotonicity) $\forall x \in B_1, M \ge N \text{ in } S^{n \times n} \Longrightarrow F(M, x) \ge F(N, x)$ $u \in C^2(B_1) \text{ with } F(D^2u, x) \ge 0 \text{ in } B_1.$

Assume that $\varphi \in C^2(B_{\delta}(x_0))$ touches u by above at x_0

Then, since $(u - \varphi)$ has a local maximum at x_0 then

 $D^2\varphi(x_0) \ge D^2u(x_0) \Longrightarrow F(D^2\varphi(x_0), x_0) \ge F(D^2u(x_0), x_0) \ge 0$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 56/57

Viscosity Solution (Motivation-II)

Suppose now $F: \mathcal{S}^{n \times n} \times B_1 \to \mathbb{R}$ so that

(Monotonicity) $\forall x \in B_1, M \ge N \text{ in } S^{n \times n} \Longrightarrow F(M, x) \ge F(N, x)$ $u \in C^2(B_1) \text{ with } F(D^2u, x) > 0 \text{ in } B_1.$

Assume that $\varphi \in C^2(B_{\delta}(x_0))$ touches u by above at x_0

Then, since $(u - \varphi)$ has a local maximum at x_0 then

 $D^2\varphi(x_0) \ge D^2u(x_0) \Longrightarrow F(D^2\varphi(x_0), x_0) \ge F(D^2u(x_0), x_0) \ge 0$

Definition Viscosity Solution

Suppose now $F: \mathcal{S}^{n \times n} \times B_1 \to \mathbb{R}$ so that

(Monotonicity) $\forall x \in B_1, M \ge N$ in $S^{n \times n} \Longrightarrow F(M, x) \ge F(N, x)$

 $u \in C^0(B_1)$ satisfies $F(D^2u, x) \ge f(x)$ in the viscosity sense if whenever $\varphi \in C^2(B_{\delta}(x_0))$ touches u by above at x_0

$F(D^2\varphi(x_0),x_0) \ge F(D^2u(x_0),x_0) \ge 0$

Diego Moreira (UFC)

Supersolutions & Convexity.

May 30, 2022 57/57

Definition Viscosity Solution

Suppose now $F: \mathcal{S}^{n \times n} \times B_1 \to \mathbb{R}$ so that

(Monotonicity) $\forall x \in B_1, M \ge N$ in $S^{n \times n} \Longrightarrow F(M, x) \ge F(N, x)$

 $u \in C^0(B_1)$ satisfies $F(D^2u, x) \ge f(x)$ in the viscosity sense if

whenever $\varphi \in C^2(B_{\delta}(x_0))$ touches u by above at x_0

 $F(D^2\varphi(x_0), x_0) \ge F(D^2u(x_0), x_0) \ge 0$