Regularity for Supersolutions to Fully Nonlinear PDEs Under Convexity Assumptions

Diego Moreira dmoreira@mat.ufc.br
Department of Mathematics Universidade Federal do Ceará (UFC) Brazil

May 2022
Mostly Maximum Principle - (Cortona)
Joint work with Alessio Figalli (ETH) and J. Ederson M. Braga (UFC), Edgard Pimentel (University of Coimbra)

Outline

(9) Analytic (above) + Geometric (below) control
(2) Classical Solutions \& Apriori Estimates
(3) Caffarelli-Kohn-Nirenberg-Spruck Theorem
(4) BFM Result
(5) Ideas of the Proof

6 New Developments

References

- Braga, J. Ederson M.; Moreira, Diego Inhomogeneous Hopf-Oleinik lemma and regularity of semiconvex supersolutions via new barriers for the Pucci extremal operators. Adv. Math. 334 (2018), 184-242.
- Braga, J. Ederson M.; Figalli, Alessio; Moreira, Diego Optimal regularity for the convex envelope and semiconvex functions related to supersolutions of fully nonlinear elliptic equations. Comm. Math. Phys. 367 (2019), no. 1, 1-32.

Analytic control above and below

$$
u \in C^{0}\left(B_{1}\right), \quad-C \leq \Delta u \leq C \quad(|\Delta u| \leq C)
$$

Then,

Analytic control above and below

$$
u \in C^{0}\left(B_{1}\right), \quad-C \leq \Delta u \leq C \quad(|\Delta u| \leq C)
$$

Then,

$$
u \in C^{1, \alpha}\left(B_{1}\right) \cap W_{l o c}^{2, p}\left(B_{1}\right) \quad \forall \alpha \in(0,1), \quad \forall p \in(1, \infty)
$$

Analytic control above and below

$$
u \in C^{0}\left(B_{1}\right), \quad-C \leq \Delta u \leq C \quad(|\Delta u| \leq C)
$$

Then,

$$
u \in C^{1, \alpha}\left(B_{1}\right) \cap W_{l o c}^{2, p}\left(B_{1}\right) \quad \forall \alpha \in(0,1), \quad \forall p \in(1, \infty)
$$

with

$$
\begin{aligned}
& \|u\|_{C^{1, \alpha}\left(B_{\frac{1}{2}}\right)} \leq C(n)\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+C\right) \\
& \|u\|_{W^{2, p\left(B_{2}\right)}} \leq C(n)\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+C\right)
\end{aligned}
$$

Analytic from above and geometric from below?

Analytic control from above
supersolution $\left(\Delta u \leq f\right.$ in B_{1} with $\left.f \in L^{q}\left(B_{1}\right)\right)$

Geometric control from below
Some kind of convexity of u
\square
Questions:
Can we prove regularity for u (weak aolution)?
Can we obtain optimal regularity of u based on
regularity of RHS and (modulus) of convexity from below?

Analytic from above and geometric from below?

Analytic control from above
supersolution $\left(\Delta u \leq f\right.$ in B_{1} with $\left.f \in L^{q}\left(B_{1}\right)\right)$

Geometric control from below
Some kind of convexity of u

Questions:

Can we prove regularity for u (weak aolution)?
Can we obtain optimal regularity of u based on
regularity of DUS and (modulus) of convexity from below?

Analytic from above and geometric from below?

Analytic control from above
supersolution $\left(\Delta u \leq f\right.$ in B_{1} with $\left.f \in L^{q}\left(B_{1}\right)\right)$

Geometric control from below
Some kind of convexity of u

Questions:

a) Can we prove regularity for u (weak aolution)?
b) Can we obtain optimal regularity of u based on regularity of RHS and (modulus) of convexity from below ?

Analytic from above and geometric from below ?

Analytic control from above

 supersolution $\left(\Delta u \leq f\right.$ in B_{1} with $\left.f \in L^{q}\left(B_{1}\right)\right)$Geometric control from below
Some kind of convexity of u

Questions:

a) Can we prove regularity for u (weak aolution)?
b) Can we obtain optimal regularity of u based on regularity of RHS and (modulus) of convexity from below ?

Classical Solutions: Example I

Coming back to the question

Supersolutions (analytic control from above)

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right) \\
\Delta u \leq 0 \quad \text { in } \quad B_{1}
\end{gathered}
$$

Convexity (Geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(Supporting plane from below everywhere)

Then, u is affine

Coming back to the question

Supersolutions (analytic control from above)

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right) \\
\Delta u \leq 0 \quad \text { in } \quad B_{1}
\end{gathered}
$$

Convexity (Geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(Supporting plane from below everywhere)

$$
0 \leq\left\|D^{2} u(x)\right\| \leq \Delta u \leq 0 \text { in } B_{1} \Longrightarrow D^{2} u \equiv 0 \text { in } B_{1}
$$

Then, u is affine

Different Perspective: Maximum Principle Argument

u is affine by a Maximum Principle Argument

Maximum Principle $\Longrightarrow \mathrm{U}=\mathrm{L}$

Classical Solutions: Example II

Control (Ana) Above \& (Geo) Below: Example II

Supersolutions (analytic control from above)

Convexity (geometric control from below)
(Supporting Plane from below everywhere)
Question: Are there apriori estimates for u ?

Control (Ana) Above \& (Geo) Below: Example II

Supersolutions (analytic control from above)

$$
u \in C^{2}\left(B_{1}\right), \quad \Delta u \leq C
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(Supporting Plane from below everywhere)

Control (Ana) Above \& (Geo) Below: Example II

Supersolutions (analytic control from above)

$$
u \in C^{2}\left(B_{1}\right), \quad \Delta u \leq C
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(Supporting Plane from below everywhere)
Question: Are there apriori estimates for u ?

Control (Ana) Above \& (Geo) Below: Example II

Supersolutions (analytic control from above)

$$
u \in C^{2}\left(B_{1}\right), \quad \Delta u \leq C
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(Supporting Plane from below everywhere)
Question: Are there apriori estimates for u ?

$$
\left(0 \leq \Delta u \leq C \Longrightarrow C^{1, \alpha}\left(B_{1}\right) \forall \alpha \in(0,1)\right)
$$

Control (Ana) Above \& (Geo) Below: Example II

Supersolutions (analytic control from above)

$$
u \in C^{2}\left(B_{1}\right), \quad \Delta u \leq C
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(Supporting Plane from below everywhere)
Question: Are there apriori estimates for u ?

$$
\begin{gathered}
\left(0 \leq \Delta u \leq C \Longrightarrow C^{1, \alpha}\left(B_{1}\right) \forall \alpha \in(0,1)\right) \\
0 \leq\left\|D^{2} u(x)\right\| \leq \operatorname{Trace}\left(D^{2} u\right)=\Delta u \leq C \\
\left\|D^{2} u(x)\right\| \leq C \quad \forall x \in B_{1} \quad\left(u \in C^{1,1} \quad \text { with estimates }\right)
\end{gathered}
$$

Classical Solutions: Example III

Control Above \& Below: Case III

Supersolutions (analytic control from above)

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right) \\
L u(x):=\operatorname{tr}\left(A(x) D^{2} u(x)\right), \quad \lambda \cdot I d \leq A(x) \leq \Lambda \cdot I d, \forall x \in B_{1} \\
L u \leq C \quad \text { in } \quad B_{1}
\end{gathered}
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(tangent plane from below everywhere)

Control Above \& Below: Case III

Supersolutions (analytic control from above)

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right) \\
L u(x):=\operatorname{tr}\left(A(x) D^{2} u(x)\right), \quad \lambda \cdot I d \leq A(x) \leq \Lambda \cdot I d, \forall x \in B_{1} \\
L u \leq C \quad \text { in } \quad B_{1}
\end{gathered}
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(tangent plane from below everywhere)
Question: Are there apriori estimates for u ?
How does the info from equation play out ?

Control Above \& Below: Case III

Supersolutions (analytic control from above)

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right) \\
L u(x):=\operatorname{tr}\left(A(x) D^{2} u(x)\right), \quad \lambda \cdot I d \leq A(x) \leq \Lambda \cdot I d, \forall x \in B_{1} \\
L u \leq C \quad \text { in } \quad B_{1}
\end{gathered}
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(tangent plane from below everywhere)
Question: Are there apriori estimates for u ?
How does the info from equation play out?

Extremal Pucci Operators

Pucci Operators - Fully Nonlinear Operators - I

$$
0<\lambda<\Lambda, \quad M \in \mathcal{S}^{n \times n}
$$

$$
\begin{aligned}
& \mathcal{M}_{\lambda, \Lambda}^{-}(M):=\lambda \cdot \operatorname{Tr}\left(M^{+}\right)-\Lambda \cdot \operatorname{Tr}\left(M^{-}\right) \\
& \mathcal{M}_{\lambda, \Lambda}^{+}(M):=\Lambda \cdot \operatorname{Tr}\left(M^{+}\right)-\lambda \cdot \operatorname{Tr}\left(M^{-}\right)
\end{aligned}
$$

Multiples of Trace Operator for Nonnegative Matrices

$$
M \geq 0 \Longrightarrow \mathcal{M}_{\lambda, \Lambda}^{-}(M)=\lambda \cdot \operatorname{Tr}(M) \& \mathcal{M}_{\lambda, \Lambda}^{+}(M)=\Lambda \cdot \operatorname{Tr}(M)
$$

(Super-additivity of $\left.\mathcal{M}_{\lambda, \Lambda}^{-}\right) \quad \mathcal{M}_{\lambda, \Lambda}^{-}(M+N) \geq \mathcal{M}_{\lambda, \Lambda}^{-}(M)+\mathcal{M}_{\lambda, \Lambda}^{-}(N)$
(Sub-additivity of $\left.\mathcal{M}_{\lambda, \Lambda}^{+}\right) \quad \mathcal{M}_{\lambda, \Lambda}^{+}(M+N) \leq \mathcal{M}_{\lambda, \Lambda}^{+}(M)+\mathcal{M}_{\lambda, \Lambda}^{+}(N)$

Pucci Operators - Fully Nonlinear Operators - II

Homogeneity

$$
\begin{aligned}
& \lambda>0 \Longrightarrow \mathcal{M}^{ \pm}(\lambda \cdot M)=\lambda \cdot \mathcal{M}^{ \pm}(M) \\
& \lambda<0 \Longrightarrow \mathcal{M}^{ \pm}(\lambda \cdot M)=\lambda \cdot \mathcal{M}^{\mp}(M)
\end{aligned}
$$

Envelope of Linear Operators

$$
\begin{gathered}
A \in \mathcal{S}^{n \times n}, \operatorname{spec}(A)=\sigma(A)=\{\mu ; \mu \text { is an eigenvalue of } A\} \\
\mathcal{A}_{\lambda, \Lambda}:=\left\{A \in \mathcal{S}^{n \times n} ; \mu \in \sigma(A) \Rightarrow \mu \in[\lambda, \Lambda]\right\} \\
\mathcal{M}_{\lambda, \Lambda}^{-}(M)=\inf _{A \in \mathcal{A}_{\lambda, \Lambda}} \operatorname{Trace}(A M), \quad \mathcal{M}_{\lambda, \Lambda}^{+}(M)=\sup _{A \in \mathcal{A}_{\lambda, \Lambda}} \operatorname{Trace}(A M)
\end{gathered}
$$

Envelope for Linear Equations

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right), \quad(U E) \quad A(x) \in \mathcal{A}_{\lambda, \Lambda}, \forall x \in B_{1} \\
L u(x):=\operatorname{Tr}\left(A(x) D^{2} u\right)=\sum_{i, j=1}^{n} a_{i j}(x) u_{x_{i} x_{j}}(x) \\
\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \leq L u(x) \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u(x)\right)
\end{gathered}
$$

$\forall L(U E)$ operator as in ((\star)

$$
L u \leq f \text { in } B_{1} \Longrightarrow \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq f \text { in } B_{1}
$$

$$
L u \geq f \text { in } B_{1} \Longrightarrow \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \geq f \text { in } B_{1}
$$

(Equations in blue are Fully Nonlinear Elliptic PDEs)

Coming Back Again (Case III)

Supersolutions (analytic control from above)

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right) \\
L u(x):=\operatorname{tr}\left(A(x) D^{2} u(x)\right), \quad \lambda \cdot I d \leq A(x) \leq \Lambda \cdot I d, \forall x \in B_{1}
\end{gathered}
$$

$$
L u \leq C \quad \text { in } \quad B_{1}
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(tangent plane from below everywhere)

Coming Back Again (Case III)

Supersolutions (analytic control from above)

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right) \\
L u(x):=\operatorname{tr}\left(A(x) D^{2} u(x)\right), \quad \lambda \cdot I d \leq A(x) \leq \Lambda \cdot I d, \forall x \in B_{1}
\end{gathered}
$$

$$
L u \leq C \quad \text { in } \quad B_{1}
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(tangent plane from below everywhere)
Question: Are there apriori estimates for u ?

Coming Back Again (Case III)

Supersolutions (analytic control from above)

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right) \\
L u(x):=\operatorname{tr}\left(A(x) D^{2} u(x)\right), \quad \lambda \cdot I d \leq A(x) \leq \Lambda \cdot I d, \forall x \in B_{1} \\
L u \leq C \quad \text { in } \quad B_{1}
\end{gathered}
$$

Convexity (geometric control from below)

$$
D^{2} u \geq 0 \quad \text { in } \quad B_{1}
$$

(tangent plane from below everywhere)
Question: Are there apriori estimates for u ?

$$
\begin{aligned}
& 0 \leq \lambda \cdot\left\|D^{2} u(x)\right\| \leq \lambda \cdot \operatorname{Trace}\left(D^{2} u\right) \leq \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq L u \leq C \\
& \left\|D^{2} u(x)\right\| \leq \lambda^{-1} \cdot C \quad \forall x \in B_{1} \quad\left(u \in C^{1,1} \quad \text { with estimates }\right)
\end{aligned}
$$

Replacing Convexity by (Classical) Semi-Convexity

Geometric Meaning of (Classical) Semi-Convexity

u (classically) semi-convex

Linear Modulus of Semiconvexity

$$
\Delta_{h}^{2} u(x):=\frac{u(x+h)+u(x-h)-2 u(x)}{|h|^{2}}
$$

(Second Order Differential Quotient)
u is semiconvex with constant $C>0 \Longleftrightarrow \Delta_{h}^{2} u(x) \geq-C$
Equivalences $\left(u \in C^{0}\right)$
i) $u(\lambda x+(1-\lambda) y) \leq \lambda u(x)+(1-\lambda) u(y)+\frac{C}{2}|x-y|^{2}$
ii) $u+\frac{C}{2}\left|x-x_{0}\right|^{2}$ is convex $\left(\forall x_{0}\right)$;
iii) $D^{2} u \geq-C \cdot I_{n}$ in the sense of distributions;
iv) $D^{2} u \geq-C \cdot I_{n}$ in the viscosity sense;
$v) u$ has a concave paraboloid of "opening C " touching from below
iii) \& iv) are PDE characterization of semi-convexity

Classical Solutions: Example IV

Control Above \& Below: Case IV

$$
u \in C^{2}\left(B_{1}\right), \quad C>0, \quad f \in L^{q}\left(B_{1}\right)
$$

(analytic control) $\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq f \quad$ in $\quad B_{1}$,
(geometric control) $\quad D^{2} u \geq-4 C \cdot I d$ in B_{1}
(Parabola from below everywhere)
Question: Are there apriori estimates for u ?
Answer: $W^{2, q}$ Apriori Estimates
Even more: $C^{1,1-\frac{n}{q}}$ Apriori Estimates for $q>n$
(By Morrey-Sobolev Embedding Thm)

Control Above \& Below: Case IV

$$
u \in C^{2}\left(B_{1}\right), \quad C>0, \quad f \in L^{q}\left(B_{1}\right)
$$

(analytic control) $\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq f \quad$ in $\quad B_{1}$,
(geometric control) $\quad D^{2} u \geq-4 C \cdot I d \quad$ in B_{1}
(Parabola from below everywhere)
Question: Are there apriori estimates for u ?
Answer: $W^{2, q}$ Apriori Estimates
Even more: $C^{1,1-\frac{n}{q}}$ Apriori Estimates for $q>n$
(By Morrey-Sobolev Embedding Thm)

Control Above \& Below: Case IV

$$
u \in C^{2}\left(B_{1}\right), \quad C>0, \quad f \in L^{q}\left(B_{1}\right)
$$

(analytic control) $\quad \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq f \quad$ in $\quad B_{1}$,
(geometric control) $\quad D^{2} u \geq-4 C \cdot I d \quad$ in B_{1}
(Parabola from below everywhere)
Question: Are there apriori estimates for u ?
Answer: $W^{2, q}$ Apriori Estimates
Even more: $C^{1,1-\frac{n}{q}}$ Apriori Estimates for $q>n$
(By Morrey Sobolov Embedding Thm)

Control Above \& Below: Case IV

$$
u \in C^{2}\left(B_{1}\right), \quad C>0, \quad f \in L^{q}\left(B_{1}\right)
$$

(analytic control) $\quad \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq f \quad$ in $\quad B_{1}$,
(geometric control) $\quad D^{2} u \geq-4 C \cdot I d \quad$ in B_{1}
(Parabola from below everywhere)
Question: Are there apriori estimates for u ?
Answer: $W^{2, q}$ Apriori Estimates
Even more: $C^{1,1-\frac{n}{q}}$ Apriori Estimates for $q>n$
(By Morrey-Sobolev Embedding Thm)

Control Above \& Below: Case IV

$$
u \in C^{2}\left(B_{1}\right), \quad C>0, \quad f \in L^{q}\left(B_{1}\right)
$$

(analytic control) $\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq f \quad$ in $\quad B_{1}$,
(geometric control) $\quad D^{2} u \geq-4 C \cdot I d$ in B_{1}
(Parabola from below everywhere)
Question: Are there apriori estimates for u ?
Answer: $W^{2, q}$ Apriori Estimates
Even more: $C^{1,1-\frac{n}{q}}$ Apriori Estimates for $q>n$
(By Morrey-Sobolev Embedding Thm)

Control Above \& Below: Case IV

$$
D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2}
$$

$$
v(x):=u(x)+P(x), \quad v \text { is convex }
$$

Control Above \& Below: Case IV

$$
\begin{aligned}
& D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2} \\
& v(x):=u(x)+P(x), \quad v \text { is convex }
\end{aligned}
$$

Control Above \& Below: Case IV

$$
\begin{aligned}
& D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2} \\
& v(x):=u(x)+P(x), \quad v \text { is convex } \\
f(x) \geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \\
\geq & M_{\lambda, \Lambda}^{-}\left(D^{2} v(x)-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)+\mathcal{M}_{\lambda, \Lambda}^{-}\left(-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)-\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} P(x)\right) \\
\geq & \lambda \cdot \operatorname{Tr}_{r}\left(D^{2} v(x)\right)-4 n C \Lambda \quad \text { (since } v \text { is convex) } \\
\geq & \lambda \cdot v_{e e}(x)-4 n C \Lambda \\
= & \lambda \cdot\left(u_{e e}(x)+4 C\right)-4 n C \Lambda \\
\geq & \lambda u_{e e}(x)-4 n C \Lambda,
\end{aligned}
$$

Control Above \& Below: Case IV

$$
\begin{aligned}
& D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2} \\
& v(x):=u(x)+P(x), \quad v \text { is convex } \\
f(x) \geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)+\mathcal{M}_{\lambda, \Lambda}^{-}\left(-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)-\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} P(x)\right) \\
\geq & \lambda \cdot \operatorname{Tr}_{r}\left(D^{2} v(x)\right)-4 n C \Lambda \quad \text { (since } v \text { is convex) } \\
\geq & \lambda \cdot v_{e e}(x)-4 n C \Lambda \\
= & \lambda \cdot\left(u_{e e}(x)+4 C\right)-4 n C \Lambda \\
\geq & \lambda u_{e e}(x)-4 n C \Lambda,
\end{aligned}
$$

Control Above \& Below: Case IV

$$
\begin{aligned}
& D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2} \\
& v(x):=u(x)+P(x), \quad v \text { is convex } \\
f(x) \geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)+\mathcal{M}_{\lambda, \Lambda}^{-}\left(-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)-\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} P(x)\right) \\
\geq & \lambda \cdot \operatorname{Tr}_{r}\left(D^{2} v(x)\right)-4 n C \Lambda \quad \text { (since } v \text { is convex) } \\
\geq & \lambda \cdot v_{e e}(x)-4 n C \Lambda \\
= & \lambda \cdot\left(u_{e e}(x)+4 C\right)-4 n C \Lambda \\
\geq & \lambda u_{e e}(x)-4 n C \Lambda .
\end{aligned}
$$

Control Above \& Below: Case IV

$$
\begin{aligned}
& D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2} \\
& v(x):=u(x)+P(x), \quad v \text { is convex } \\
f(x) \geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)+\mathcal{M}_{\lambda, \Lambda}^{-}\left(-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)-\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} P(x)\right) \\
\geq & \lambda \cdot \operatorname{Tr}_{r}\left(D^{2} v(x)\right)-4 n C \Lambda \quad \text { (since } v \text { is convex) } \\
\geq & \lambda \cdot v_{e e}(x)-4 n C \Lambda \\
= & \lambda \cdot\left(u_{e e}(x)+4 C\right)-4 n C \Lambda
\end{aligned}
$$

Control Above \& Below: Case IV

$$
\begin{aligned}
& D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2} \\
& v(x):=u(x)+P(x), \quad v \text { is convex } \\
f(x) \geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)+\mathcal{M}_{\lambda, \Lambda}^{-}\left(-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)-\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} P(x)\right) \\
\geq & \lambda \cdot \operatorname{Tr}\left(D^{2} v(x)\right)-4 n C \Lambda \quad(\text { since } v \text { is convex })
\end{aligned}
$$

Control Above \& Below: Case IV

$$
\begin{aligned}
& D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2}, \\
& v(x):=u(x)+P(x), \quad v \text { is convex } \\
f(x) \geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}\left(D^{2} v(x)-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)+\mathcal{M}_{\lambda, \Lambda}^{-}\left(-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)-\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} P(x)\right) \\
\geq & \lambda \cdot \operatorname{Tr}\left(D^{2} v(x)\right)-4 n C \Lambda \quad \text { (since } v \text { is convex) } \\
\geq & \lambda \cdot v_{e e}(x)-4 n C \Lambda
\end{aligned}
$$

Control Above \& Below: Case IV

$$
\begin{aligned}
& D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2} \\
& v(x):=u(x)+P(x), \quad v \text { is convex } \\
f(x) \geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)+\mathcal{M}_{\lambda, \Lambda}^{-}\left(-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)-\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} P(x)\right) \\
\geq & \lambda \cdot \operatorname{Tr}\left(D^{2} v(x)\right)-4 n C \Lambda \quad(\text { since } v \text { is convex }) \\
\geq & \lambda \cdot v_{e e}(x)-4 n C \Lambda \\
= & \lambda \cdot\left(u_{e e}(x)+4 C\right)-4 n C \Lambda
\end{aligned}
$$

Control Above \& Below: Case IV

$$
\begin{aligned}
& D^{2} u \geq-4 C \cdot I d, \quad P(x):=2 C|x|^{2}, \\
& v(x):=u(x)+P(x), \quad v \text { is convex } \\
f(x) \geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)+\mathcal{M}_{\lambda, \Lambda}^{-}\left(-D^{2} P(x)\right) \\
\geq & \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v(x)\right)-\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} P(x)\right) \\
\geq & \lambda \cdot \operatorname{Tr}\left(D^{2} v(x)\right)-4 n C \Lambda \quad(\text { since } v \text { is convex }) \\
\geq & \lambda \cdot v_{e e}(x)-4 n C \Lambda \\
= & \lambda \cdot\left(u_{e e}(x)+4 C\right)-4 n C \Lambda \\
\geq & \lambda u_{e e}(x)-4 n C \Lambda,
\end{aligned}
$$

Control Above \& Below: Case IV

$$
-4 C \leq u_{e e}(x) \leq \lambda^{-1}(f(x)+4 n C \Lambda) \quad \forall x \in B_{1}
$$

This implies

$$
\|u\|_{W^{2, q}\left(B_{1 / 2}\right)} \leq D \cdot\left(C+\|u\|_{L^{q}\left(B_{1}\right)}+\|f\|_{L^{q}\left(B_{1}\right)}\right) .
$$

Moreover, if $q>n$ by Sobolev-Morrey Embedding Theorem

$$
\|u\|_{C^{1,1-n / q}\left(B_{1 / 2}\right)} \leq \bar{D}\left(C+\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{L^{q}\left(B_{1}\right)}\right)
$$

Control Above \& Below: Case IV

$$
-4 C \leq u_{e e}(x) \leq \lambda^{-1}(f(x)+4 n C \Lambda) \quad \forall x \in B_{1}
$$

This implies

$$
\|u\|_{W^{2, q}\left(B_{1 / 2}\right)} \leq D \cdot\left(C+\|u\|_{L^{q}\left(B_{1}\right)}+\|f\|_{L^{q}\left(B_{1}\right)}\right)
$$

Moreover, if $q>n$ by Sobolev-Morrey Embedding Theorem

$$
\|u\|_{C^{1,1-n / q}\left(B_{1 / 2}\right)} \leq \bar{D}\left(C+\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{L^{q}\left(B_{1}\right)}\right)
$$

What happens with more complicated notions of convexity?

What If a More Complicated Geometry from below?

Questions

- What happens under more complex notion of convexity ?
- Is it possible to prove regularity for weak solutions ?
- Regularity + Apriori Estimates ?

Relevant Point: Regular semi-convexity has PDE type descrtiption

What If a More Complicated Geometry from below?

Questions

- What happens under more complex notion of convexity ?
- Is it possible to prove regularity for weak solutions ?
- Regularity + Apriori Estimates ?

Relevant Point: Regular semi-convexity has PDE type descrtiption

What If a More Complicated Geometry from below?

Questions

- What happens under more complex notion of convexity ?
- Is it possible to prove regularity for weak solutions ?
- Regularity + Apriori Estimates ?

Relevant Point: Regular semi-convexity has PDE type descrtiption

General Concept of Semi-Convexity

General Concept of Semi-Convexity

General Concept of Semi-Convexity

$\mathrm{C}^{1, \alpha}$ supporting surface from below

$$
P(x)=-\left|x-x_{0}\right| \omega\left(\left|x-x_{0}\right|\right)
$$

$\mathrm{C}^{1, \omega}$ supporting surface from below

$$
0 \leqq \omega(t) \rightarrow 0 \text { as } t \rightarrow 0^{+}
$$

Elements of Convex Analysis I: Semi-Convexity

$u: \Omega \rightarrow \mathbb{R}, \Omega \subset \mathbb{R}^{n}$ bounded and convex
$\omega: \overline{\mathbb{R}}_{+} \rightarrow \overline{\mathbb{R}}_{+}$, nondecreasing, upper-semicontinuous, $\omega(0)=0$
u is ω - semiconvex iff $\forall x, y \in \Omega$
$u(\lambda x+(1-\lambda) y) \leq \lambda u(x)+(1-\lambda) u(y)+\underbrace{\lambda(1-\lambda)|x-y| \omega(|x-y|)}_{C^{1, \omega} \text { (correction) }}$

$$
\omega(t)=\frac{C t}{2} \text { we say that } u \text { is } C-\text { semiconvex }
$$

u is $C-$ semiconvex $\Longleftrightarrow D^{2} u \geq-C \cdot I_{n}$ (PDE characterization)

Elements of Convex Analysis II: Semi-Convexity

ω-Normal Mapping

$$
\begin{gathered}
\partial_{w} u(x):=\left\{\xi \in \mathbb{R}^{n} ; u(y) \geq u(x)+\xi \cdot(y-x)-|y-x| \omega(|y-x|) \quad \forall y \in \Omega\right\} . \\
\partial_{\omega} u: \Omega \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right), \quad x \mapsto \partial_{\omega} u(x) \\
\partial_{w} u(x) \neq \varnothing \Longleftrightarrow \mathrm{u} \text { is } \omega-\text { semiconvex }
\end{gathered}
$$

Proposition 2.1.2 Let $u \in C^{1}(A)$, with A open. Then both u and $-u$ are locally semiconcave in A with modulus equal to the modulus of continuity of Du.

(P. Cannarsa \& C. Sinestrari Book)

CKNS Theorem

CKNS apriori estimate

Theorem (Caffarelli, Kohn, Nirenberg, Spruck, CPAM, 1985)

Let $u \in C^{2}\left(B_{r}\right)$ be such that
i) $L u=\operatorname{Tr}\left(A(x) D^{2} u\right) \leq C$ in B_{r} with $\lambda I d \leq A(x) \leq \Lambda I d$
ii) $\|u\|_{C^{1}\left(B_{r}\right)} \leq C$;
iii) u is ω-semiconvex in B_{r} where $\omega(t)=C t^{\alpha}$ for some $\alpha \in(0,1]$. Then, there exists $\bar{C}=\bar{C}(n, \lambda, \Lambda, C, \alpha)>0$ so that

$$
\begin{equation*}
|\nabla u(x)-\nabla u(y)| \leq \frac{\bar{C}}{1+|\log | x-y| |} \quad \forall x, y \in B_{r / 2} \tag{1}
\end{equation*}
$$

Analytic (above) + Geometric (below) controls
render an estimate on the MC of the Gradient

CKNS apriori estimate

Theorem (Caffarelli, Kohn, Nirenberg, Spruck, CPAM, 1985)

Let $u \in C^{2}\left(B_{r}\right)$ be such that
i) $L u=\operatorname{Tr}\left(A(x) D^{2} u\right) \leq C$ in B_{r} with $\lambda I d \leq A(x) \leq \Lambda I d$
ii) $\|u\|_{C^{1}\left(B_{r}\right)} \leq C$;
iii) u is ω-semiconvex in B_{r} where $\omega(t)=C t^{\alpha}$ for some $\alpha \in(0,1]$. Then, there exists $\bar{C}=\bar{C}(n, \lambda, \Lambda, C, \alpha)>0$ so that

$$
\begin{equation*}
|\nabla u(x)-\nabla u(y)| \leq \frac{\bar{C}}{1+|\log | x-y| |} \quad \forall x, y \in B_{r / 2} \tag{1}
\end{equation*}
$$

Analytic (above) + Geometric (below) controls render an estimate on the MC of the Gradient

CKNS apriori estimate

Theorem (Caffarelli, Kohn, Nirenberg, Spruck, CPAM, 1985)

Let $u \in C^{2}\left(B_{r}\right)$ be such that
i) $L u=\operatorname{Tr}\left(A(x) D^{2} u\right) \leq C$ in B_{r} with $\lambda I d \leq A(x) \leq \Lambda I d$
ii) $\|u\|_{C^{1}\left(B_{r}\right)} \leq C$;
iii) u is ω-semiconvex in B_{r} where $\omega(t)=C t^{\alpha}$ for some $\alpha \in(0,1]$. Then, there exists $\bar{C}=\bar{C}(n, \lambda, \Lambda, C, \alpha)>0$ so that

$$
\begin{equation*}
|\nabla u(x)-\nabla u(y)| \leq \frac{\bar{C}}{1+|\log | x-y| |} \quad \forall x, y \in B_{r / 2} \tag{1}
\end{equation*}
$$

Analytic (above) + Geometric (below) controls render an estimate on the MC of the Gradient

BMF Result

Theorem (BFM, 2019, CMP)
Let φ be a bounded and ω-semiconvex viscosity solution to

$$
\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq f \text { in } B_{1}
$$

Assume that $f \in L^{q}\left(B_{r}\right)$ with $q \geq n$ and thus $\tau:=1-n / q \geq 0$. Set

$$
\begin{gathered}
\|f\|_{L^{n}\left(B_{\rho}\left(x_{0}\right)\right)} \leq \vartheta(\rho) \\
\forall x_{0} \in \bar{B}_{1}, \quad 0<\rho<1-\left|x_{0}\right| . \\
\Upsilon(s):= \begin{cases}\omega(4 s)+s^{\tau} & \text { if } q>n, \\
\omega(4 s)+\vartheta(4 s) & \text { if } n=q, \text { with } \vartheta \text { as in }(2) \text { above. }\end{cases}
\end{gathered}
$$

Then, $\varphi \in C^{1, \Upsilon}\left(B_{1 / 64}\right)$ with precise estimates in $[\nabla \varphi]_{C^{0, \Upsilon}\left(B_{r / 64}\right)}$

Estimates on $[\nabla \varphi]_{C^{0, \Upsilon}\left(B_{r / 64}\right)}$

$$
\begin{gathered}
q>n, \\
{[\nabla \varphi]_{C^{0, \Upsilon}\left(B_{r / 64}\right)} \leq C\left(1+\|f\|_{L^{q}\left(B_{r}\right)}\right)} \\
q=n, \\
{[\nabla \varphi]_{C^{0, \Upsilon}\left(B_{r / 64}\right)} \leq C\left(1+\frac{\|\varphi\|_{L^{\infty}\left(B_{r}\right)}}{r}+\omega(r)\right) .}
\end{gathered}
$$

Comparing with CKNS result
(RHS Bdd $\Longrightarrow q=\infty \Longrightarrow \tau=1$)

$$
|\nabla \varphi(x)-\nabla \varphi(y)| \leq C\left(|x-y|^{\alpha}+|x-y|\right) \leq C|x-y|^{\alpha}
$$

$$
\text { (CKNS) } \quad|\nabla \varphi(x)-\nabla \varphi(y)| \leq \frac{\bar{C}}{1+|\log | x-y| |}
$$

$$
C|x-y|^{\alpha} \leq \frac{\bar{C}}{1+|\log | x-y| |} \text { for }|x-y| \ll 1
$$

Application of Regularity Theorem for Supersolutions

$$
u \in W_{l o c}^{2, n}\left(B_{1}\right) \Longrightarrow u \in C_{l o c}^{\alpha}\left(B_{1}\right) \quad \forall \alpha \in(0,1)
$$

Proof: Set $f:=\Delta u \in L^{n}\left(B_{1}\right)$. Then, u is a L^{n}-strong solution to

In particular, u is a L^{n}-viscosity solution to $\Delta u \leq f$ in B_{1}.

Application of Regularity Theorem for Supersolutions

$$
u \in W_{l o c}^{2, n}\left(B_{1}\right) \Longrightarrow u \in C_{l o c}^{\alpha}\left(B_{1}\right) \quad \forall \alpha \in(0,1)
$$

$$
u \text { is } \omega \text {-semiconvex } \Longrightarrow u \in C_{l o c}^{0,1}\left(B_{1}\right)
$$

Proof: Set $f:=\Delta u \in L^{n}\left(B_{1}\right)$. Then, u is a L^{n}-strong solution to

In particular, u is a $L^{n}-$ viscosity solution to $\Delta u \leq f$ in B_{1}.

Application of Regularity Theorem for Supersolutions

$$
\begin{gathered}
u \in W_{l o c}^{2, n}\left(B_{1}\right) \Longrightarrow u \in C_{l o c}^{\alpha}\left(B_{1}\right) \quad \forall \alpha \in(0,1) \\
u \text { is } \omega \text { - semiconvex } \Longrightarrow u \in C_{l o c}^{0,1}\left(B_{1}\right) \\
u \in W_{l o c}^{2, n}\left(B_{1}\right) \text { and } \omega \text { - semiconvex } \Longrightarrow u \in C^{1}\left(B_{1}\right)
\end{gathered}
$$

Proof: Set $f:=\Delta u \in L^{n}\left(B_{1}\right)$. Then, u is a L^{n}-strong solution to

$$
\Delta u \leq f \text { in } B_{1} .
$$

In particular, u is a L^{n}-viscosity solution to $\Delta u \leq f$ in B_{1}.

Estimates Semiconvex Functions

Theorem ((BMF) - Estimates for ω-semiconvex functions)
Let $u \in L^{1}\left(B_{r}\right)$ be a ω-semiconvex function and $p \in(0, \infty)$.
(a) $u \in C_{l o c}^{0,1}\left(B_{r}\right)$;
(b) There exists $C_{1}=C_{1}(n, p)>0$ such that

$$
\sup _{B_{r / 2}}|u| \leq C_{1}\left[\left(f_{B_{r}}|u|^{p} d x\right)^{1 / p}+r \omega(r)\right] .
$$

(c) For some $C_{3}=C_{3}(n, p)>0$ we have

$$
\begin{equation*}
\text { ess } \sup _{B_{r / 2}}|\nabla u| \leq \frac{C_{3}}{r}\left[\left(f_{B_{r}}|u|^{p} d x\right)^{1 / p}+r \omega(r)\right] . \tag{3}
\end{equation*}
$$

Ideas of the Proof

Harnack Approach Flipping the MC Above \& Below

Harnack: control by below implies by above

$$
u \in C^{0}\left(B_{1}\right), \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq 0 \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \quad \text { in } B_{1}
$$

$\forall l$ affine function (Converse is also true (Caffarelli (1999))

Let l affine function so that $u(0)=l(0)$

Assume that u separates from l by below by (rate) $\omega(r) \geq 0$.

Setting $v_{r}(x):=u(x)-l(x)+\omega(r)$ for $x \in B_{1}$. Then,

Harnack inequality implies

Harnack: control by below implies by above

$$
u \in C^{0}\left(B_{1}\right), \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq 0 \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \quad \text { in } B_{1}
$$

$u-l$ satisfies Harnack inequality whenever $u-l \geq 0$ in B_{1} $\forall l$ affine function (Converse is also true (Caffarelli (1999))

$$
\text { Let } l \text { affine function so that } u(0)=l(0)
$$

Assume that u separates from l by below by (rate) $\omega(r) \geq 0$.

Setting $v_{r}(x):=u(x)-l(x)+\omega(r)$ for $x \in B_{1}$. Then,

Harnack inequality implies

Harnack: control by below implies by above

$$
u \in C^{0}\left(B_{1}\right), \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq 0 \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \quad \text { in } B_{1}
$$

$u-l$ satisfies Harnack inequality whenever $u-l \geq 0$ in B_{1}
$\forall l$ affine function (Converse is also true (Caffarelli (1999))
Let l affine function so that $u(0)=l(0)$
Assume that u separates from l by below by (rate) $\omega(r) \geq 0$.

$$
\inf _{B_{r}}(u-l) \geq-\omega(r) \quad \forall r \in(0,1)
$$

Setting $v_{r}(x):=u(x)-l(x)+\omega(r)$ for $x \in B_{1}$. Then,

Harnack inequality implies

Harnack: control by below implies by above

$$
u \in C^{0}\left(B_{1}\right), \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq 0 \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \quad \text { in } B_{1}
$$

$u-l$ satisfies Harnack inequality whenever $u-l \geq 0$ in B_{1}
$\forall l$ affine function (Converse is also true (Caffarelli (1999))
Let l affine function so that $u(0)=l(0)$
Assume that u separates from l by below by (rate) $\omega(r) \geq 0$.

$$
\inf _{B_{r}}(u-l) \geq-\omega(r) \quad \forall r \in(0,1)
$$

Setting $v_{r}(x):=u(x)-l(x)+\omega(r)$ for $x \in B_{1}$. Then,

Harnack: control by below implies by above

$$
u \in C^{0}\left(B_{1}\right), \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq 0 \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \quad \text { in } B_{1}
$$

$u-l$ satisfies Harnack inequality whenever $u-l \geq 0$ in B_{1}
$\forall l$ affine function (Converse is also true (Caffarelli (1999))
Let l affine function so that $u(0)=l(0)$
Assume that u separates from l by below by (rate) $\omega(r) \geq 0$.

$$
\inf _{B_{r}}(u-l) \geq-\omega(r) \quad \forall r \in(0,1)
$$

Setting $v_{r}(x):=u(x)-l(x)+\omega(r)$ for $x \in B_{1}$. Then,

$$
0 \leq v_{r} \in C^{0}\left(B_{r}\right), \quad \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v_{r}\right) \leq 0 \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} v_{r}\right) \text { in } B_{r}
$$

Harnack inequality implies

Harnack: control by below implies by above

$$
u \in C^{0}\left(B_{1}\right), \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq 0 \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \quad \text { in } B_{1}
$$

$u-l$ satisfies Harnack inequality whenever $u-l \geq 0$ in B_{1}
$\forall l$ affine function (Converse is also true (Caffarelli (1999))
Let l affine function so that $u(0)=l(0)$
Assume that u separates from l by below by (rate) $\omega(r) \geq 0$.

$$
\inf _{B_{r}}(u-l) \geq-\omega(r) \quad \forall r \in(0,1)
$$

Setting $v_{r}(x):=u(x)-l(x)+\omega(r)$ for $x \in B_{1}$. Then,

$$
0 \leq v_{r} \in C^{0}\left(B_{r}\right), \quad \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} v_{r}\right) \leq 0 \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} v_{r}\right) \text { in } B_{r}
$$

Harnack inequality implies

$$
\sup _{B_{r / 2}}(u-l) \leq \sup _{B_{r / 2}}(u-l+\omega(r))=\sup _{B_{r / 2}} v_{r} \leq C v_{r}(0)=C \omega(r) \quad \forall r \in(0,1)
$$

Philosophical Idea for Regularity of Supersolutions

Idea:
"Harnack type argument" reproduces above (with some correction) the $C^{1, \omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

- Only Half Harnack is available (Weak Harnack Inequality);
- For class $\bar{S}(\gamma ; f)$ equations perceive linear functions;

Philosophical Idea for Regularity of Supersolutions

Idea:
"Harnack type argument" reproduces above (with some correction) the $C^{1, \omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

- Only Half Harnack is available (Weak Harnack Inequality);
- For class $\bar{S}(\gamma ; f)$ equations perceive linear functions;

Philosophical Idea for Regularity of Supersolutions

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1, \omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

- Only Half Harnack is available (Weak Harnack Inequality);
- For class $\bar{S}(\gamma ; f)$ equations perceive linear functions;

Philosophical Idea for Regularity of Supersolutions

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1, \omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

- Only Half Harnack is available (Weak Harnack Inequality);
- For class $\bar{S}(\gamma ; f)$ equations perceive linear functions;

Philosophical Idea for Regularity of Supersolutions

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1, \omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

- Only Half Harnack is available (Weak Harnack Inequality);
- For class $\bar{S}(\gamma ; f)$ equations perceive linear functions;

Philosophical Idea for Regularity of Supersolutions

Idea:

"Harnack type argument" reproduces above (with some correction) the $C^{1, \omega}$ regularity existing below (that comes from the semi-convexity) to above

Difficulties to implement in our scenario

- Only Half Harnack is available (Weak Harnack Inequality);
- For class $\bar{S}(\gamma ; f)$ equations perceive linear functions;

Key Idea To The Proof of Theorems

Assume that

- φ is ω-semiconvex
- $0 \in \partial_{\omega} \varphi(0)$
- $\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} \bar{\varphi}\right) \leq f$ in B_{r}.

Then,

$$
\varphi(x) \geq \varphi(0)-|x| \omega(|x|) \quad \forall x \in B_{r}
$$

This implies,

- $\bar{\varphi}:=\varphi-\varphi(0)+r \omega(r) \geq 0 \quad$ in B_{r}
- $\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} \varphi\right) \leq f$ in B_{r}
- $\bar{\varphi}$ is ω-semi-convex

Key Idea To The Proof of Theorems

This implies,

$$
\begin{aligned}
\left(f_{B_{r / 2}} \bar{\varphi}^{\varepsilon_{0}} d x\right)^{\frac{1}{\varepsilon_{0}}} \leq C\left(\inf _{B_{r}} \bar{\varphi}+r^{1+\alpha}\|f\|_{L^{q}\left(B_{r}\right)}\right) \\
\left.\leq C\left(r \omega(r)+r^{1+\alpha}\|f\|_{L^{q}\left(B_{r}\right.}\right)\right), \quad \alpha:=1-n / q \\
\|\bar{\varphi}\|_{L^{\infty}\left(B_{r / 4}\right)} \leq D \cdot\left(f_{B_{r / 2}} \varphi^{\varepsilon_{0}} d x\right)^{\frac{1}{\varepsilon_{0}}}+D \cdot r \omega(r)=C \vartheta(r) \\
\|\bar{\varphi}\|_{L^{\infty}\left(B_{r / 4}\right)} \leq \bar{D}\left(r \cdot \omega(r)+r^{1+\alpha}\|f\|_{L^{q}\left(B_{r}\right.}\right)=: \bar{D} r \cdot \vartheta(r) \\
\|\varphi\|_{L^{\infty}\left(B_{r / 4}\right)} \leq \bar{D}\left(r \cdot \omega(r)+r^{1+\alpha}\|f\|_{L^{q}\left(B_{r}\right.}\right)=(\bar{D}+1) \cdot r \cdot \vartheta(r) \\
\vartheta(r):=\omega(r)+r^{\alpha}\|f\|_{L^{q}\left(B_{r}\right)}
\end{aligned}
$$

New Developments (Work with E. Pimentel)

$$
(W H)\left(f_{B_{\rho / 2}\left(x_{0}\right)} u^{\varepsilon} \mathrm{d} x\right)^{\frac{1}{\varepsilon}} \leq C_{\mathrm{WH}}\left(\inf _{B_{\rho / 2}\left(x_{0}\right)} u+\rho^{R}\|f\|_{L^{q}\left(B_{\rho}\left(x_{0}\right)\right)}\right)
$$

for every $\rho>0$ and $x_{0} \in B_{1}$ such that $B_{\rho}\left(x_{0}\right) \subset B_{1}$

$$
\left(L^{\infty}-L^{\varepsilon}\right)\|u\|_{L^{\infty}\left(B_{\rho / 2}\left(x_{0}\right)\right)} \leq C_{\varepsilon, \infty}\left[\left(f_{B_{\rho}\left(x_{0}\right)} u^{\varepsilon} \mathrm{d} x\right)^{\frac{1}{\varepsilon}}+\sigma(\rho)\right]
$$

for some $\varepsilon>0$, and every $\rho>0$ and $x_{0} \in B_{1}$ such that $B_{\rho}\left(x_{0}\right) \subset B_{1}$.

New developments \& Results (with E. Pimentel)

- (C1) $u+c(c-u)$ satisfies $(W H)$ and $\left(L^{\infty}-L^{\varepsilon}\right), \forall c$ constant
- (C2) $u+l(l-u)$ satisfies $(W H)$ and $\left(L^{\infty}-L^{\varepsilon}\right), \quad \forall l$ affine
- Weak Harnack Inequality

Nonnegative Supersolutions to Linear + Nonlinear PDEs, Super Q-minimizers, De Giorgi Class $D G_{p}^{-}$

New developments \& Results (with E. Pimentel)

- (C1) $u+c(c-u)$ satisfies $(W H)$ and $\left(L^{\infty}-L^{\varepsilon}\right), \forall c$ constant
- (C2) $u+l(l-u)$ satisfies $(W H)$ and $\left(L^{\infty}-L^{\varepsilon}\right), \quad \forall l$ affine
- Weak Harnack Inequality

Nonnegative Supersolutions to Linear + Nonlinear PDEs, Super Q-minimizers, De Giorgi Class $D G_{p}^{-}$

- $L^{\infty}-L^{\varepsilon}$ type estimates

Subsolutions to Linear + Nonlinear PDEs, Sub Q-minimizers, De Giorgi Class $D G_{p}^{+}$, ω-semiconvexity, $C^{\alpha}, C^{1, \alpha}$ from below

New developments \& Results (with E. Pimentel)

- (C1) $u+c(c-u)$ satisfies $(W H)$ and $\left(L^{\infty}-L^{\varepsilon}\right), \forall c$ constant
- (C2) $u+l(l-u)$ satisfies $(W H)$ and $\left(L^{\infty}-L^{\varepsilon}\right), \quad \forall l$ affine
- Weak Harnack Inequality

Nonnegative Supersolutions to Linear + Nonlinear PDEs, Super Q-minimizers, De Giorgi Class $D G_{p}^{-}$

- $L^{\infty}-L^{\varepsilon}$ type estimates

Subsolutions to Linear + Nonlinear PDEs, Sub Q-minimizers, De
Giorgi Class $D G_{p}^{+}, \omega$-semiconvexity, $C^{\alpha}, C^{1, \alpha}$ from below

- Results: Flipping $C^{\alpha}, C^{1, \alpha}$ regularities from below + Sobolev Regularity (Besov Spaces) of Supersolutions and Convex Envelope (of supersolutions) (Like L. Caffarelli's Result)

Thank You Very Much!

LINEAR ALGEBRA REMARKS

Linear Algebra Remarks (I)

$$
M=\left(m_{i j}\right)_{i, j \in\{1, \cdots, n\}} \in \mathcal{S}^{n \times n}
$$

Spectral Theorem

$\max _{v \in \mathbb{S}^{n-1}}|\langle M v, v\rangle|=\|M\|_{\text {spec }}$

Linear Algebra Remarks (I)

$$
\begin{gathered}
M=\left(m_{i j}\right)_{i, j \in\{1, \cdots, n\}} \in \mathcal{S}^{n \times n} \\
\|M\|_{1}=\sum_{i, j=1}^{n}\left|m_{i j}\right|, \quad\|M\|_{\text {spec }}=\max \{|\lambda|, \lambda \in \sigma(M)\}
\end{gathered}
$$

Spectral Theorem

Linear Algebra Remarks (I)

$$
\begin{gathered}
M=\left(m_{i j}\right)_{i, j \in\{1, \cdots, n\}} \in \mathcal{S}^{n \times n} \\
\|M\|_{1}=\sum_{i, j=1}^{n}\left|m_{i j}\right|, \quad\|M\|_{\text {spec }}=\max \{|\lambda|, \lambda \in \sigma(M)\}
\end{gathered}
$$

Spectral Theorem

\Downarrow
$\exists \mathcal{B}=\left\{e_{i}\right\}_{i=1}^{n}$ orthonormal basis in \mathbb{R}^{n} with $M e_{i}=\lambda_{i} \cdot e_{i}$

$$
\begin{gathered}
\langle M v, v\rangle=\sum_{i, j=1}^{n} v_{i} v_{j}\left\langle M e_{i}, e_{j}\right\rangle=\sum_{i, j=1}^{n} \lambda_{i} v_{i} v_{j} \delta_{i j}=\sum_{i=1}^{n} \lambda_{i} v_{i}^{2} \\
\max _{v \in \mathbb{S}^{n-1}}|\langle M v, v\rangle|=\|M\|_{\text {spec }}
\end{gathered}
$$

Linear Algebra Remarks (II)

$$
M=\left(m_{i j}\right)_{i, j \in\{1, \cdots, n\}} \in \mathcal{S}^{n \times n}
$$

$$
\|M\|_{1} \leq C(n) \cdot\|M\|_{\text {spec }} \text { (Finite Dimensional VS) }
$$

$M \geq 0 \Longrightarrow\left|m_{i j}\right| \leq\|M\|_{1} \leq C(n)\|M\|_{\text {spec }} \leq C\|M\|_{\text {spec }} \leq C \cdot \operatorname{Tr}(M)$

Linear Algebra Remarks (II)

$$
\begin{gathered}
M=\left(m_{i j}\right)_{i, j \in\{1, \cdots, n\}} \in \mathcal{S}^{n \times n} \\
\|M\|_{1}=\sum_{i, j=1}^{n}\left|m_{i j}\right|, \quad\|M\|_{\text {spec }}=\max \{|\lambda|, \lambda \in \sigma(M)\}
\end{gathered}
$$

$$
\|M\|_{1} \leq C(n) \cdot\|M\|_{\text {spec }} \text { (Finite Dimensional VS) }
$$

Linear Algebra Remarks (II)

$$
\begin{gathered}
M=\left(m_{i j}\right)_{i, j \in\{1, \cdots, n\}} \in \mathcal{S}^{n \times n} \\
\|M\|_{1}=\sum_{i, j=1}^{n}\left|m_{i j}\right|, \quad\|M\|_{\text {spec }}=\max \{|\lambda|, \lambda \in \sigma(M)\}
\end{gathered}
$$

$$
\|M\|_{1} \leq C(n) \cdot\|M\|_{\text {spec }} \text { (Finite Dimensional VS) }
$$

Linear Algebra Remarks (II)

$$
\begin{gathered}
M=\left(m_{i j}\right)_{i, j \in\{1, \cdots, n\}} \in \mathcal{S}^{n \times n} \\
\|M\|_{1}=\sum_{i, j=1}^{n}\left|m_{i j}\right|, \quad\|M\|_{\text {spec }}=\max \{|\lambda|, \lambda \in \sigma(M)\}
\end{gathered}
$$

$$
\|M\|_{1} \leq C(n) \cdot\|M\|_{\text {spec }} \text { (Finite Dimensional VS) }
$$

$$
M \geq 0 \Longrightarrow\left|m_{i j}\right| \leq\|M\|_{1} \leq C(n)\|M\|_{\text {spec }} \leq C\|M\|_{\text {spec }} \leq C \cdot \operatorname{Tr}(M)
$$

Linear Algebra Remarks (II)

$$
\begin{gathered}
M=\left(m_{i j}\right)_{i, j \in\{1, \cdots, n\}} \in \mathcal{S}^{n \times n} \\
\|M\|_{1}=\sum_{i, j=1}^{n}\left|m_{i j}\right|, \quad\|M\|_{\text {spec }}=\max \{|\lambda|, \lambda \in \sigma(M)\} \\
\|M\|_{1} \leq C(n) \cdot\|M\|_{\text {spec }} \text { (Finite Dimensional VS) } \\
M \geq 0 \Longrightarrow\left|m_{i j}\right| \leq\|M\|_{1} \leq C(n)\|M\|_{\text {spec }} \leq C\|M\|_{\text {spec }} \leq C \cdot \operatorname{Tr}(M) \\
u \text { is convex } \Leftrightarrow D^{2} u(x) \geq 0 \Longrightarrow\left|u_{x_{i} x_{j}}\right| \leq C\left\|D^{2} u(x)\right\| \leq C \cdot \Delta u(x)
\end{gathered}
$$

Extremal Pucci Operators

Pucci Operators - Fully Nonlinear Equations - I

$$
\begin{gathered}
0<\lambda<\Lambda, \quad M \in \mathcal{S}^{n \times n} \\
\mathcal{M}_{\lambda, \Lambda}^{-}(M):=\lambda \cdot \operatorname{Tr}\left(M^{+}\right)-\Lambda \cdot \operatorname{Tr}\left(M^{-}\right) \\
\mathcal{M}_{\lambda, \Lambda}^{+}(M):=\Lambda \cdot \operatorname{Tr}\left(M^{+}\right)-\lambda \cdot \operatorname{Tr}\left(M^{-}\right) \\
M \geq 0 \Longrightarrow \mathcal{M}_{\lambda, \Lambda}^{-}(M)=\lambda \cdot \operatorname{Tr}(M) \& \mathcal{M}_{\lambda, \Lambda}^{+}(M)=\Lambda \cdot \operatorname{Tr}(M) \\
A \in \mathcal{S}^{n \times n}, \operatorname{spec}(A)=\sigma(A)=\{\mu ; \mu \text { is an eigenvalue of } A\} \\
\mathcal{A}_{\lambda, \Lambda}:=\left\{A \in \mathcal{S}^{n \times n} ; \mu \in \sigma(A) \Rightarrow \mu \in[\lambda, \Lambda]\right\}
\end{gathered}
$$

$$
\mathcal{M}_{\lambda, \Lambda}^{-}(M)=\inf _{A \in \mathcal{A}_{\lambda, \Lambda}} \operatorname{Trace}(A M), \quad \mathcal{M}_{\lambda, \Lambda}^{+}(M)=\sup _{A \in \mathcal{A}_{\lambda, \Lambda}} \operatorname{Trace}(A M)
$$

Envelope for Linear Equations

$$
\begin{gathered}
u \in C^{2}\left(B_{1}\right), \quad(U E) \quad A(x) \in \mathcal{A}_{\lambda, \Lambda}, \forall x \in B_{1} \\
L u(x):=\operatorname{Tr}\left(A(x) D^{2} u\right)=\sum_{i, j=1}^{n} a_{i j}(x) u_{x_{i} x_{j}}(x) \\
\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u(x)\right) \leq L u(x) \leq \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u(x)\right)
\end{gathered}
$$

$\forall L(U E)$ operator as in (\star)

$$
L u \leq f \text { in } B_{1} \Longrightarrow \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq f \text { in } B_{1}
$$

$$
L u \geq f \text { in } B_{1} \Longrightarrow \mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \geq f \text { in } B_{1}
$$

Equations in blue are Fully Nonlinear Elliptic PDEs

Pucci Operators for Nonnegative Matrices

$$
\begin{gathered}
0<\lambda<\Lambda, \quad M \in \mathcal{S}^{n \times n} \\
\mathcal{M}_{\lambda, \Lambda}^{-}(M):=\lambda \cdot \operatorname{Tr}\left(M^{+}\right)-\Lambda \cdot \operatorname{Tr}\left(M^{-}\right) \\
\mathcal{M}_{\lambda, \Lambda}^{+}(M):=\Lambda \cdot \operatorname{Tr}\left(M^{+}\right)-\lambda \cdot \operatorname{Tr}\left(M^{-}\right) \\
M \geq 0 \Longrightarrow \mathcal{M}_{\lambda, \Lambda}^{-}(M)=\lambda \cdot \operatorname{Tr}(M) \& \mathcal{M}_{\lambda, \Lambda}^{+}(M)=\Lambda \cdot \operatorname{Tr}(M) \\
\mathcal{M}_{\lambda, \Lambda}^{-}(M)+\mathcal{M}_{\lambda, \Lambda}^{-}(N) \leq \mathcal{M}_{\lambda, \Lambda}^{-}(M+N) \text { (superadditive) } \\
\mathcal{M}_{\lambda, \Lambda}^{-}(-M)=-\mathcal{M}_{\lambda, \Lambda}^{+}(M)
\end{gathered}
$$

Viscosity Solution

Viscosity Solution (Motivation-I)

$$
u \in C^{2}\left(B_{1}\right) \text { with } \Delta u \geq 0 \text { in } B_{1} \text {. }
$$

Assume that $\varphi \in C^{2}\left(B_{\delta}\left(x_{0}\right)\right)$ touches u by above at x_{0}

Then, since $(u-\varphi)$ has a local maximum at x_{0} then $D^{2} \varphi\left(x_{0}\right) \geq D^{2} u\left(x_{0}\right) \Longrightarrow \Delta \varphi\left(x_{0}\right) \geq \Delta u\left(x_{0}\right) \geq 0$

Viscosity Solution (Motivation-I)

$$
u \in C^{2}\left(B_{1}\right) \text { with } \Delta u \geq 0 \text { in } B_{1} .
$$

Assume that $\varphi \in C^{2}\left(B_{\delta}\left(x_{0}\right)\right)$ touches u by above at x_{0}

Then, since $(u-\varphi)$ has a local maximum at x_{0} then

Viscosity Solution (Motivation-I)

$$
u \in C^{2}\left(B_{1}\right) \text { with } \Delta u \geq 0 \text { in } B_{1} .
$$

Assume that $\varphi \in C^{2}\left(B_{\delta}\left(x_{0}\right)\right)$ touches u by above at x_{0}

Then, since $(u-\varphi)$ has a local maximum at x_{0} then

$$
D^{2} \varphi\left(x_{0}\right) \geq D^{2} u\left(x_{0}\right) \Longrightarrow \Delta \varphi\left(x_{0}\right) \geq \Delta u\left(x_{0}\right) \geq 0
$$

Viscosity Solution (Motivation-II)

Suppose now $F: \mathcal{S}^{n \times n} \times B_{1} \rightarrow \mathbb{R}$ so that
(Monotonicity) $\quad \forall x \in B_{1}, M \geq N$ in $\mathcal{S}^{n \times n} \Longrightarrow F(M, x) \geq F(N, x)$

$$
u \in C^{2}\left(B_{1}\right) \text { with } F\left(D^{2} u, x\right) \geq 0 \text { in } B_{1} .
$$

Assume that $\varphi \in C^{2}\left(B_{\delta}\left(x_{0}\right)\right)$ touches u by above at x_{0}

Then, since $(u-\varphi)$ has a local maximum at x_{0} then

Viscosity Solution (Motivation-II)

Suppose now $F: \mathcal{S}^{n \times n} \times B_{1} \rightarrow \mathbb{R}$ so that
(Monotonicity) $\quad \forall x \in B_{1}, M \geq N$ in $\mathcal{S}^{n \times n} \Longrightarrow F(M, x) \geq F(N, x)$

$$
u \in C^{2}\left(B_{1}\right) \text { with } F\left(D^{2} u, x\right) \geq 0 \text { in } B_{1} .
$$

Assume that $\varphi \in C^{2}\left(B_{\delta}\left(x_{0}\right)\right)$ touches u by above at x_{0}

Then, since $(u-\varphi)$ has a local maximum at x_{0} then

Viscosity Solution (Motivation-II)

Suppose now $F: \mathcal{S}^{n \times n} \times B_{1} \rightarrow \mathbb{R}$ so that
(Monotonicity) $\quad \forall x \in B_{1}, M \geq N$ in $\mathcal{S}^{n \times n} \Longrightarrow F(M, x) \geq F(N, x)$

$$
u \in C^{2}\left(B_{1}\right) \text { with } F\left(D^{2} u, x\right) \geq 0 \text { in } B_{1} .
$$

Assume that $\varphi \in C^{2}\left(B_{\delta}\left(x_{0}\right)\right)$ touches u by above at x_{0}

Then, since $(u-\varphi)$ has a local maximum at x_{0} then

$$
D^{2} \varphi\left(x_{0}\right) \geq D^{2} u\left(x_{0}\right) \Longrightarrow F\left(D^{2} \varphi\left(x_{0}\right), x_{0}\right) \geq F\left(D^{2} u\left(x_{0}\right), x_{0}\right) \geq 0
$$

Definition Viscosity Solution

Suppose now $F: \mathcal{S}^{n \times n} \times B_{1} \rightarrow \mathbb{R}$ so that
(Monotonicity) $\forall x \in B_{1}, M \geq N$ in $\mathcal{S}^{n \times n} \Longrightarrow F(M, x) \geq F(N, x)$ $u \in C^{0}\left(B_{1}\right)$ satisfies $F\left(D^{2} u, x\right) \geq f(x)$ in the viscosity sense if whenever $\varphi \in C^{2}\left(B_{\delta}\left(x_{0}\right)\right)$ touches u by above at x_{0}

Definition Viscosity Solution

Suppose now $F: \mathcal{S}^{n \times n} \times B_{1} \rightarrow \mathbb{R}$ so that
(Monotonicity) $\forall x \in B_{1}, M \geq N$ in $\mathcal{S}^{n \times n} \Longrightarrow F(M, x) \geq F(N, x)$ $u \in C^{0}\left(B_{1}\right)$ satisfies $F\left(D^{2} u, x\right) \geq f(x)$ in the viscosity sense if whenever $\varphi \in C^{2}\left(B_{\delta}\left(x_{0}\right)\right)$ touches u by above at x_{0}

$$
F\left(D^{2} \varphi\left(x_{0}\right), x_{0}\right) \geq F\left(D^{2} u\left(x_{0}\right), x_{0}\right) \geq 0
$$

