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Introduction

Problem

With Ω b X, X open in Rn, examine the validity of the comparison principle (comparison)

u ≤ w on ∂Ω =⇒ u ≤ w on Ω (CP)

for each pair u ∈ USC(Ω),w ∈ LSC(Ω) in the two (often equivalent) settings:

Nonlinear potential theory: (u,w) is an F-subharmonic/ F-superharmonic pair on Ω for
some subequation (contraint set)

F ⊂ J 2(X ) := X × J 2 := X × R× Rn × S(n). (SE)

Fully nonlinear PDEs: (u,w) is a subsolution/ supersolution pair for the equation

F (x , J2x u) := F (x , u(x),Du(x),D2u(x)) = 0, x ∈ Ω, (E)

determined by an operator F ∈ C (J 2(X )).

All notions above are to be interpreted pointwise in the viscosity sense in terms of
upper/lower test jets J2,±x u ⊂ J 2, x ∈ Ω.

Part of a program concerning the interplay between potential theory and operator theory.
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Plan of the talk

1) Nonlinear potential theory: key concepts.

2) Potential theoretic comparison: by monotonicity, duality and fiberegularity:

comparison holds if there is “sufficient monotonicity”; there exists a (constant coefficient)
monotonicity cone M for the constraint F and M admits a classical strict subharmonic;
the class of monotonicity cones are well understood [Cirant-Harvey-Lawson-P; Annals of
Math Studies, to appear];
comparison does not depend on domain shape, but domain size can play a role.

3) Operator theoretic setting: constrained and unconstrained cases

4) Correspondence Principle:

for a given operator-subequation pair (F ,F), determine conditions under which (u,w) is an
F-subharmonic/ F-superharmonic pair if and only if (u,w) is a subsolution/ supersolution
pair for F (J2u) = 0;
gives equivalent formulations of the Dirichlet problem in the two settings.

N.B. F will often needed to be restricted to a suitable background constraint G ⊂ J 2(X ), and
leads to the notion of G-admissible viscosity sub/supersolutions. The canonical relations
between F and F are

F = {(x , J) ∈ G : F (x , J) ≥ 0} and ∂F = {(x , J) ∈ G : F (x , J) = 0}
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Philosophical motivation for the larger program

Opportunities for cross-fertilization and synergy between potential theory and operator theory:

Geometry, topology of the constraint F ! structural conditions on the operator F .

F “frees” a given PDE from any particular form of F (many different operators F
correspond to the same constraint F); related to a key point in [Krylov; TAMS’95].

“Forgetting” about the operator leads to interesting questions that at first glance might
not seem important for operator theory; (see the survey paper [Harvey-P., ’22])

pluri-potential theory results =⇒ conjectures in general potential theory & PDEs

Many new PDEs to discover; e.g. Harvey-Lawson show that every callibrated geometry
has an underlying potential theory, but known “natural” operators are “rare gems”.

However, any given subequation F suggests families of “non natural” canonical operators
such as

F (x , J) :=

{
dist(J, ∂Fx) J ∈ Fx

−dist(J, ∂Fx) J ∈ J 2 \ Fx

On the other hand, when a natural F is known for the potential theory (F polynomial or
smooth), F will have much to say about the potential theory using operator theory (e.g.,
taking derivatives of the equation).
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Illustrative examples

Ex1: (Perturbed Monge-Ampère) With M ∈ C (Ω,S(n)) and f ∈ C (Ω,R) non-negative:

det(D2u + M(x)) = f (x), x ∈ Ω b Rn

Fails to satisfy the standard viscosity structual conditions for comparison
[Crandall-Ishii-Lions, BAMS’92], which would require M = L2 with L ∈ Lip(Ω,S(n))

Comparison holds on all Ω b Rn [Cirant-P., PM’17] where

Fx := {A ∈ S(n) : A + M(x) ≥ 0 and F (x ,A) := det(A + M(x))− f (x) ≥ 0}

defines a fiberegular subequation even if M is merely continuous.

Ex2: (Special Lagrangian potential equation from callibrated geometry) With phase
function h ∈ C (Ω, I ) where I = (−nπ/2, nπ/2) consider [Harvey-Lawson, ActaM’82]:

G (D2u) :=
n∑

k=1

arctan (λk(D2u)) = h(x), x ∈ Ω b Rn

Comparison known for constant phases [Harvey-Lawson, CPAM’09] (also Perron).

For non-constant phases, comparison is difficult: strong degeneration of the operator G if
h assumes a special phase value θk = (n − 2k)π/2, k = 1, . . . n − 1.

Best comparison to date: phases taking values in any phase interval [Cirant-P., ME’21]

Ik = (θk−1, θk), k = 1, . . . n where Fx := {A ∈ S(n) : F (x ,A) := G (A)− h(x) ≥ 0}
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Ex3: (Optimal transport equations) With f ∈ C (Ω,R) non-negative and g ∈ C (Rn) having
a directional monotonicity cone D ⊂ Rn consider

g(Du)det(D2u) = f (x), x ∈ Ω b Rn

Examples for g include g(p) = pn and g(p) = p1 · · · pk with 1 ≤ k ≤ n, etc.

Comparison for f constant in [Cirant-Harvey-Lawson-P., AoMS, to appear] and g constant
in [Cirant-P., ME’21]; general case in [Cirant-P.-Redaelli, prepint ’22].

A product structure helps with the correspondence principle.

Ex4: (Equations where comparison fails on all small balls) [CHLP, AoMS, to appear] Fix
α ∈ (1,+∞) and consider F ,G ∈ C (Rn × S(n)) (constant coefficients):

F (p,A) := λmin(M(p,A)) and G (p,A) := λmax(M(p,A)) where

M(p,A) := A + |p|
α−1
n (Pp⊥ + αPp)) if p 6= 0 and M(0,A) := A.

where for p 6= 0, Pp,Pp⊥ are the projections onto the subspaces [p], [p]⊥.

The comparison principle, maximum principle and uniqueness of solutions fail on all balls.

The maximal monotonicity cone for the associated (compatible) subsequations F ,G is
M := {0} × P ⊂ Rn × S(n), which has empty interior.

Kevin R. Payne Comparison principles



1. Key concepts in the nonlinear potential theory setting

1. Subequation: Introduced in [Harvey-Lawson, CPAM’09, JDG’11] as a class of “good”
constraint sets F ⊂ J 2(X ) on which to base a potential theory; the axioms are:

(P) F satisfies the positivity condition fiberwise; that is, for each x ∈ X

(r , p,A) ∈ Fx ⇒ (r , p,A + P) ∈ Fx , ∀P ≥ 0 in S(n).

(N) F satisfies the negativity condition fiberwise; that is, for each x ∈ X

(r , p,A) ∈ Fx ⇒ (r + s, p,A) ∈ Fx , ∀ s ≤ 0 in R.

(T) F satisfies three conditions of topological stability

F = F◦, (F◦)x = (Fx)◦, Fx = (Fx)◦.

F is closed (by (T)) and usually assumed non-empty and proper.

(P), (N) and (T) have implications for the F-potential theory, together with duality.

classical subharmonics: F = {(r , p,A) : trA ≥ 0}
convex functions: F = {(r , p,A) : A ≥ 0} = {(r , p,A) : λmin(A) ≥ 0}
subaffine functions: F = {(r , p,A) : λmax(A) ≥ 0}
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Subharmonics and duality

2. Subharmonics: A function u ∈ USC(X ) is F-subharmononic on X if

J2,+x u ⊂ Fx , ∀ x ∈ X where

J2,+x u := {J2xϕ : ϕ is C 2 near x , u ≤ ϕ near x with equality in x},

is the space of upper test jets. Denote by F(X ) the space of F-subharmononics on X .

3. Duality: [Harvey-Lawson CPAM’09, JDG’11] For a given subequation F ⊂ J 2(X ) the
Dirichlet dual is

F̃ := (−F◦)c = −(F◦)c (relative to J 2(X ))

and, by property (T), can be calculated fiberwise

F̃x := (−(Fx)◦)c = −((Fx)◦)c (relative to J 2), ∀ x ∈ X .

If F is a subequation, then so is F̃ and one has reflexivity:
˜̃F = F .

N.B. Duality is used to define superharmonics: w ∈ LSC(X ) is F-superharmonic on X if

−w ∈ USC(X ) is F̃-subharmonic on X , which in terms of lower test jets is equivalent to

J2,−x w ⊂ (Int Fx)c , ∀ x ∈ X .
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Monotonicity and fiberegularity

4. Monotonicity: is a unifying concept where F is M-monotone for M⊂ J 2(X ) if

Fx +Mx ⊂ Fx for each x ∈ X .

The minimal monotonicity cone M0 := {(r , 0,A) ∈ J 2 : r ≤ 0 and A ≥ 0} encodes
properties (P) and (N) ! operators F which are proper elliptic (needed for comparison).

Monotonicity combines with duality in the fundamental jet addition formula

Fx +Mx ⊂ Fx =⇒ Fx + F̃x ⊂ M̃x , for each x ∈ X ,

5. Fiberegularity: is often sufficient to extend results from constant to variable coefficients.

A subequation F ⊂ J 2(X ) is fiberegular if the fiber map is (Hausdorff) continuous; i.e. if

Θ : (X , | · |)→ (K(J 2), dH) with Θ(x) := Fx , ∀ x ∈ X

is continuous, where dH is the Hausdorff distance on the closed subsets of J 2.

Useful reformulation when F is M-monotone (some monotonicity cone subequation M):
for each fixed J0 ∈ IntM, Ω b X and η > 0 there exists δ > 0 such that

x , y ∈ Ω, |x − y | < δ =⇒ Θ(x) + ηJ0 ⊂ Θ(y).

Ensures that “small perturbations of all short range translates of an F-subharmonic
remain F-subharmonic”.
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2. Comparison by monotonicity-duality-fiberegularity

Theorem (General comparison theorem)

Let Ω ⊂ Rn be a bounded domain. Suppose that a subequation F ⊂ J 2(Ω) is fiberegular and
M-monotone on Ω for some monotonicity cone subequation M. If M admits a strict
subharmonic ψ ∈ C 2(Ω) ∩ C (Ω) on Ω, then comparison holds for F on Ω; that is,

u ≤ w on ∂Ω =⇒ u ≤ w on Ω (CP)

for all u ∈ USC(Ω), F-subharmonic on Ω, and w ∈ LSC(Ω), F-superharmonic on Ω.

Fx ≡ F ⊂ S(n) in [Harvey-Lawson, CPAM’09]: constant coefficient pure second order,
M = P and ψ exists for every F .

F ⊂ Ω× S(n) in [Cirant-P., PM’17]: fiberegular pure second order, M = P and ψ exists
for every F .

F ⊂ Ω× (R× S(n)) in [Cirant-P., ME’21], fiberegular gradient-free, M = Q = N ×P
and ψ exists for every F .

Fx ≡ F ⊂ J 2(Ω) in [Cirant-Harvey-Lawson-P, AoMS, to appear]: constant coefficients,
complete study of which cones M admit ψ on Ω.

General case in [Cirant-P.-Redaelli, preprint ’22]; imports the class of admissible cones M
from the constant coefficient case.
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Outline of the proof

Step 1 (Duality reformulation): Use duality to reformulate (CP) as:

u + v ≤ 0 on ∂Ω =⇒ u + v ≤ 0 on Ω (CP’)

for all u ∈ USC(Ω), F-subharmonic on Ω, and v ∈ USC(Ω), F̃-subharmonic on Ω.

Just define v := −w and use duality.

(CP’) is the zero maximum principle (ZMP) for the sum of F and F̃ subharmonics:

∀ z ∈ USC(Ω) ∩ (F(Ω) + F̃(Ω)) : z ≤ 0 on ∂Ω =⇒ z ≤ 0 on Ω (ZMP)

Step 2 (Jet Addition): Establish the fundamental jet addition formula

Fx +Mx ⊂ Fx =⇒ Fx + F̃x ⊂ M̃x , for each x ∈ X ,

using elementary properties of duality and monotonicity (Harvey-Lawson, SDG’13).

This is the key to duality.

Very useful if M has constant coefficients.
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Step 3 (Local quasi-convexity): For locally quasi-convex functions u, v , establish:

the Almost Everywhere Theorem:

J2x u = (u(x),Du(x),D2u(x)) ∈ Fx for Ln-a.e. x ∈ X ⇐⇒ u ∈ F(X ),

the Subharmonic Addition Theorem (quasi-convex version): for subequations F ,G and H

Fx + Gx ⊂ Hx , for each x ∈ X (Jet addition)

implies

u + v ∈ H(X ), for all u ∈ F(X ), v ∈ G(X ). (Subharmonic addition)

in order to conclude

z = u + v ∈ M̃(Ω) if u ∈ F(Ω) and v ∈ F̃(Ω) are locally quasi-convex.

N.B. This difficult step relies on the Jensen [ARMA’88] or Slodkowski [ASNSP’84] Lemma,
which control the measure of upper contact points near x for locally quasi-convex functions.
These Lemmas and are equivalent ( [Harvey-Lawson, arXiv’16, P.-Redaelli ’22]).
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Step 4: Use fiberegularity to prove the Subharmonic Addition Theorem (M-monotone
version):

u ∈ F(Ω), v ∈ F̃(Ω) =⇒ u + v ∈ M̃(Ω)

if F (and hence F̃) is fiberegular and M-monotone for some constant coefficient
mponotonicity subequation cone M which admits a C 2-strict subharmonic ψ on Ω.

Use sup-convolution approximations uε, vε of u, v :

uε(x) := sup
y∈X

(
u(y)− 1

2ε
|y − x |2

)
, x ∈ X , which are

1

ε
-quasi-convex.

If F and (hence) F̃ have constant coefficients, then the approximations remain
subharmonic and the extension holds [Cirant-Harvey-Lawson-P, AoMS, to appear].

For fiberegular and M-monotone subequations with ψ as above, one can prove a uniform
translation property: for each θ > 0 there exist η = η(ψ, θ) > 0 and δ = δ(ψ, θ) > 0 such
that

uy ,θ = τyu + θψ belongs to F(Ωδ), ∀ y ∈ Bδ(0),

where τyu( · ) := u( · − y).
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Step 5: Apply the following constant coefficient result of [CHLP, AoMS, to appear]

Theorem (The Zero Maximum Principle for Dual Monotonicity Cones)

Suppose that M is a constant coefficient monotonicity cone subequation that admits a stict
subharmonic ψ ∈ C 2(Ω) ∩ C (Ω) on a domain Ω b Rn. Then the zero maximum principle holds

for M̃ on Ω; that is,
z ≤ 0 on ∂Ω =⇒ z ≤ 0 on Ω (ZMP)

for all z ∈ USC(Ω) ∩ M̃(Ω).

M̃ is a (constant coefficient) subequation and hence satisfies the sliding property

z −m ∈ M̃(Ω) for each m ∈ [0,+∞).

Since z −m < 0 on ∂Ω compact

z −m + εψ ≤ 0 on ∂Ω for each ε sufficiently small.

Since z −m ∈ M̃(Ω) and since εψ ∈ C (Ω) ∩ C 2(Ω) is strictly M-subharmonic, by

definitional comparison (with F = M̃ and F̃ =
˜̃M =M) one has

z −m + εψ ≤ 0 on Ω for each ε sufficiently small,

and passes to the limit for ε→ 0+.
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Monotonicity cone subequations

Question

Given a constant coefficient monotonicity cone subequation M, for which bounded domains
Ω ⊂ Rn do there exist the needed strictly M-subharmonic ψ ∈ C 2(Ω) ∩ C (Ω)? This ensures
comparison in every potential theory determined by a fiberegular and M-monotone F .

Detailed study of monotonicity cone subequations in [CHLP, AoMs].

There is a three parameter fundamental family of monotonicity cone subequations:

M(γ,D,R) :=

{
(r , p,A) ∈ J 2 : r ≤ −γ|p|, p ∈ D, A ≥ |p|

R
I

}
where

γ ∈ [0,+∞),R ∈ (0,+∞] and D ⊆ Rn,

with D a directional cone (closed convex cone, vertex in 0, non-empty interior).

“Fundamental” means that for any M, there exists M(γ,D,R) with M(γ,D,R) ⊂M.
Hence every M-monotone F is M(γ,D,R)-monotone for some triple (γ,D,R).

There is a simple dichotomy; one has the needed ψ on Ω (and hence comparison):

R = +∞: for every Ω
R < +∞: for every Ω contained in a translate of the truncated cone DR := D ∩ BR(0).

.
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3. The operator theoretic setting

The class of PDEs amenable to the above consierations are determined by the following:

Proper elliptic operators: Any operator F ∈ C (G) such that for each x ∈ X and each
(r , p,A) ∈ Gx one has

F (x , r , p,A) ≤ F (x , r + s, p,A + P) ∀ s ≤ 0 in R and ∀P ≥ 0 in S(n). (PE)

where either
G = J 2(X ) (unconstrained case)

or
G ( J 2(X ) is a subequation constraint set (constrained case)

The pair (F ,G) will be called a proper elliptic (operator-subequation) pair.

A given operator F must often be restricted to a suitable background constraint domain
G ⊂ J 2(X ) in order to satisfy the minimal monotonicty (PE) (the constrained case).

The historical example is the Monge-Ampère operator F (D2u) = det(D2u), where one
restricts F to the convexity subequation G = P := {A ∈ S(n) : A ≥ 0}.
This is the simplest example of an operator defined by a Dirichlet-G̊arding polynomial,
which illutrate best the constained case.
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Viscosity solution notions

Definition (Admissible viscosity solutions)

Given F ∈ C (G) with G = J 2(X ) or G ( J 2(X ) a subequation on an open subset X ⊂ Rn:

(a) u ∈ USC(X ) is a (G-admissible) viscosity subsolution of F (J2u) = 0 on X if for every
x ∈ X one has

J ∈ J2,+x u ⇒ J ∈ Gx and F (x , J) ≥ 0; (sub)

(b) u ∈ LSC(Ω) is a (G-admissible) viscosity supersolution of F (J2u) = 0 on X if for every
x ∈ X one has

J ∈ J2,−x u ⇒ either [ J ∈ Gx and F (x , J) ≤ 0 ] or J 6∈ Gx . (super)

In the unconstrained case where G ≡ J 2(X ), the definitions are standard.

In the constrained case where G ( J 2(X ), the definitions give a systematic way of doing
of what is sometimes done in an ad-hoc way [Ishii-Lions, JDE’90], [Trudinger, ARMA’90].

In the constrained case, (sub) says that subsolutions are also G-subharmonic and (super)
says that F (x , J) ≤ 0 for the lower test jets which lie in the constraint Gx .

Kevin R. Payne Comparison principles



4. The Correspondence principle

Question (1)

For a given operator-subequation pair (F ,F) on an open set X , determine conditions under
which (u,w) is an F-subharmonic/ F-superharmonic pair if and only if (u,w) is a subsolution/
supersolution pair for F (J2u) = 0.

For subharmonics/subsolutions u the equivalence asks that: for each x ∈ X one has

J2,+x u ⊂ Fx ⇐⇒ both J2,+x u ⊂ Gx and F (x , J) ≥ 0 for each J ∈ J2,+x u. (CSub)

This holds if and only if one has the correspondence relation

F = {(x , J) ∈ G : F (x , J) ≥ 0}. (1)

For superharmonics/supersolutions w the equivalence asks that: for each x ∈ X one has

J2,+x (−w) ⊂ F̃x ⇐⇒ J 6∈ Gx or [J ∈ Gxand F (x , J) ≤ 0], ∀ J ∈ J2,−x w . (CSuper)

Using duality and J2,+x (−w) = −J2,−x w one can see that that the equivalence (CSuper)
holds if and only if one has compatibility

Int F = {(x , J) ∈ G : F (x , J) > 0}. (2)

which for subequations F defined by (1) is equivalent to

∂F = {(x , J) ∈ F : F (x , J) = 0}. (3)
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Theorem (Correspondence Principle)

Suppose that F ∈ C (G) is proper elliptic and F , defined by the correspondence relation (1), is
a subequation. If compatibility (2) is satisfied, then (u,w) is an F-subharmonic/
F-superharmonic pair if and only if (u,w) is a subsolution/ supersolution pair for F (J2u) = 0.

In particular, for every Ω b X , a function u ∈ C (Ω) is F-harmonic on Ω if and only if u is
a G-admissible viscosity solution of F (J2u) = 0 on Ω and the potential theoretic and
operator theoretic formulations of the Dirichet problem are equivalent.

Given (F ,G) or given F , finding the other so that both the correspondence relation (1)
and compatibility (2) hold can be impossible, easy or in between requiring some work.

Question (2)

Given a proper elliptic operator F with domain G ⊂ J 2(X ), can we ensure that the constraint
set F defined by the correspondence relation (1)

F := {(x , J) ∈ G : F (x , J) ≥ 0}

is a subequation and satisfies compatibility (2)

Int F = {(x , J) ∈ G : F (x , J) > 0}.

Kevin R. Payne Comparison principles



Structural conditions on F

When is F := {(x , J) ∈ G : F (x , J) ≥ 0} a subequation?

One needs positivity (P), negativity (N) and topological stability (T).

(P) and (N) are equivalent to the (fiberwise) monotnicity property that for each x ∈ X

(r , p,A) ∈ Fx ⇒ (r + s, p,A + P) ∈ Fx , ∀ s ≤ 0 in R,P ≥ 0 in S(n);

this follows from (P) and (N) for the domain G and and the proper ellipticity of F on G
This leaves property (T).

Lemma (Cirant-P.-Redaelli’22)

Suppose that (F ,G) is an M-monotone operator-subequation pair for some monotonicity cone
subequation, with G = J 2(X ) or G ( J 2(X ) a fiberegular subequation. Suppose that (F ,G)
satisfies the regularity condition: for some fixed J0 ∈ IntM, given Ω b X and η > 0, there
exists δ = δ(η,Ω) > 0 such that

F (y , J + ηJ0) ≥ F (x , J), ∀ x , y ∈ Ω with |x − y | < δ.

Then the constraint set F defined by (1) is a (fiberegular M-monotone) subequation.
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Finally, with (F ,G) and F as in the Lemma, it reamins only to check compatibility (2)

Int F = {(x , J) ∈ G : F (x , J) > 0}.

In the fiberegular and M-monotone context, it suffices to have the fiberwise condition

Int Fx = {J ∈ Gx : F (x , J) > 0}, ∀ x ∈ X .

This condition is often easily checked for a given pair (F ,G) which determines F by
checking that F (x , J) = 0 for J ∈ ∂Fx and using some strict monotonicity such as: for
each x ∈ X with some fixed J0 ∈ IntM there exists t0 > 0 such that

F (x , J + tJ0) > F (x , J), ∀t ∈ (0, t0),∀ J ∈ ∂Fx .
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