Comparison principles by monotonicity, duality and fiberegularity

Kevin R. Payne

UNIVERSITÀ DI MILANO

31 may 2022

Mostly Maximum Principle: INdAM Workshop, Cortona

Joint work w/ Marco Cirant - Università di Padova, F. Reese Harvey - Rice University, H. Blaine Lawson, Jr. - Stony Brook University and Davide Redaelli - Università di Padova

イロト イポト イヨト イヨト

Introduction

Problem

With $\Omega \in X$, X open in \mathbb{R}^n , examine the validity of the comparison principle (comparison)

$$u \leq w \text{ on } \partial \Omega \implies u \leq w \text{ on } \Omega$$
 (CP)

for each pair $u \in \text{USC}(\overline{\Omega})$, $w \in \text{LSC}(\overline{\Omega})$ in the two (often equivalent) settings: **Nonlinear potential theory**: (u, w) is an \mathcal{F} -subharmonic/ \mathcal{F} -superharmonic pair on Ω for some subequation (contraint set)

$$\mathcal{F} \subset \mathcal{J}^2(X) := X \times \mathcal{J}^2 := X \times \mathbb{R} \times \mathbb{R}^n \times \mathcal{S}(n).$$
 (SE)

(E)

Fully nonlinear PDEs: (u, w) is a subsolution/ supersolution pair for the equation

$$F(x, J_x^2 u) := F(x, u(x), Du(x), D^2 u(x)) = 0, x \in \Omega,$$

determined by an operator $F \in C(\mathcal{J}^2(X))$.

- All notions above are to be interpreted pointwise in the viscosity sense in terms of upper/lower test jets J^{2,±}_x u ⊂ J², x ∈ Ω.
- Part of a program concerning the interplay between potential theory and operator theory.

Plan of the talk

- 1) Nonlinear potential theory: key concepts.
- 2) Potential theoretic comparison: by monotonicity, duality and fiberegularity:
 - comparison holds if there is "sufficient monotonicity"; there exists a (constant coefficient) monotonicity cone \mathcal{M} for the constraint \mathcal{F} and \mathcal{M} admits a classical strict subharmonic;
 - the class of monotonicity cones are well understood [Cirant-Harvey-Lawson-P; Annals of Math Studies, to appear];
 - comparison does not depend on domain shape, but domain size can play a role.
- 3) Operator theoretic setting: constrained and unconstrained cases
- 4) Correspondence Principle:
 - for a given operator-subequation pair (F, \mathcal{F}) , determine conditions under which (u, w) is an \mathcal{F} -subharmonic/ \mathcal{F} -superharmonic pair **if and only if** (u, w) is a subsolution/ supersolution pair for $F(J^2u) = 0$;
 - gives equivalent formulations of the Dirichlet problem in the two settings.

N.B. F will often needed to be restricted to a suitable background constraint $\mathcal{G} \subset \mathcal{J}^2(X)$, and leads to the notion of \mathcal{G} -admissible viscosity sub/supersolutions. The canonical relations between \mathcal{F} and F are

$$\mathcal{F} = \{ (x, J) \in \mathcal{G} : F(x, J) \ge 0 \} \text{ and } \partial \mathcal{F} = \{ (x, J) \in \mathcal{G} : F(x, J) = 0 \}$$

Philosophical motivation for the larger program

Opportunities for cross-fertilization and synergy between potential theory and operator theory:

- Geometry, topology of the constraint $\mathcal{F} \iff$ structural conditions on the operator \mathcal{F} .
- *F* "frees" a given PDE from any particular form of *F* (many different operators *F* correspond to the same constraint *F*); related to a key point in [Krylov; TAMS'95].
- "Forgetting" about the operator leads to interesting questions that at first glance might not seem important for operator theory; (see the survey paper [Harvey-P., '22])

pluri-potential theory results \implies conjectures in general potential theory & PDEs

- Many new PDEs to discover; e.g. Harvey-Lawson show that every *callibrated geometry* has an underlying potential theory, but known "natural" operators are "rare gems".
- However, any given subequation \mathcal{F} suggests families of "non natural" *canonical operators* such as

 $egin{aligned} \mathcal{F}(x,J) &:= \left\{ egin{aligned} \operatorname{dist}(J,\partial\mathcal{F}_x) & J\in\mathcal{F}_x \ -\operatorname{dist}(J,\partial\mathcal{F}_x) & J\in\mathcal{J}^2\setminus\mathcal{F}_x \end{aligned}
ight. \end{aligned}$

• On the other hand, when a natural *F* is known for the potential theory (*F* polynomial or smooth), *F* will have much to say about the potential theory using operator theory (e.g., taking derivatives of the equation).

Ex1: (Perturbed Monge-Ampère) With $M \in C(\Omega, S(n))$ and $f \in C(\Omega, \mathbb{R})$ non-negative:

 $\det(D^2u+M(x))=f(x), \ x\in\Omega\Subset\mathbb{R}^n$

- Fails to satisfy the standard viscosity structual conditions for comparison [Crandall-Ishii-Lions, BAMS'92], which would require $M = L^2$ with $L \in \text{Lip}(\Omega, S(n))$
- Comparison holds on all $\Omega \subseteq \mathbb{R}^n$ [Cirant-P., PM'17] where

 $\mathcal{F}_x := \{A \in \mathcal{S}(n) : A + M(x) \ge 0 \text{ and } F(x, A) := \det(A + M(x)) - f(x) \ge 0\}$

defines a fiberegular subequation even if M is merely continuous.

Ex2: (Special Lagrangian potential equation from callibrated geometry) With *phase* function $h \in C(\Omega, I)$ where $I = (-n\pi/2, n\pi/2)$ consider [Harvey-Lawson, ActaM'82]: $G(D^2u) := \sum_{k=1}^{n} \arctan(\lambda_k(D^2u)) = h(x), \quad x \in \Omega \Subset \mathbb{R}^n$

- Comparison known for constant phases [Harvey-Lawson, CPAM'09] (also Perron).
- For non-constant phases, comparison is difficult: strong degeneration of the operator G if h assumes a special phase value $\theta_k = (n 2k)\pi/2, k = 1, \dots, n 1$.
- Best comparison to date: phases taking values in any phase interval [Cirant-P., ME'21]

$$I_k = (\theta_{k-1}, \theta_k), \quad k = 1, \dots, n \text{ where } \mathcal{F}_x := \{A \in \mathcal{S}(n) : F(x, A) := \mathcal{G}(A) - h(x) \ge 0\}$$

Ex3: (Optimal transport equations) With $f \in C(\Omega, \mathbb{R})$ non-negative and $g \in C(\mathbb{R}^n)$ having a directional monotonicity cone $\mathcal{D} \subset \mathbb{R}^n$ consider

 $g(Du) \det(D^2 u) = f(x), x \in \Omega \Subset \mathbb{R}^n$

- Examples for g include $g(p) = p_n$ and $g(p) = p_1 \cdots p_k$ with $1 \le k \le n$, etc.
- Comparison for f constant in [Cirant-Harvey-Lawson-P., AoMS, to appear] and g constant in [Cirant-P., ME'21]; general case in [Cirant-P.-Redaelli, prepint '22].
- A product structure helps with the correspondence principle.
- **Ex4:** (Equations where comparison fails on all small balls) [CHLP, AoMS, to appear] Fix $\alpha \in (1, +\infty)$ and consider $F, G \in C(\mathbb{R}^n \times S(n))$ (constant coefficients):

 $F(p, A) := \lambda_{\min}(M(p, A))$ and $G(p, A) := \lambda_{\max}(M(p, A))$ where

 $M(p,A) := A + |p|^{\frac{\alpha-1}{n}} (P_{p^{\perp}} + \alpha P_p))$ if $p \neq 0$ and M(0,A) := A.

where for $p \neq 0$, P_p , $P_{p^{\perp}}$ are the projections onto the subspaces $[p], [p]^{\perp}$.

- The comparison principle, maximum principle and uniqueness of solutions fail on all balls.
- The maximal monotonicity cone for the associated (compatible) subsequations \mathcal{F}, \mathcal{G} is $\mathcal{M} := \{0\} \times \mathcal{P} \subset \mathbb{R}^n \times \mathcal{S}(n)$, which has empty interior.

1. Key concepts in the nonlinear potential theory setting

1. Subequation: Introduced in [Harvey-Lawson, CPAM'09, JDG'11] as a class of "good" constraint sets $\mathcal{F} \subset \mathcal{J}^2(X)$ on which to base a potential theory; the axioms are: (P) \mathcal{F} satisfies the positivity condition fiberwise; that is, for each $x \in X$

 $(r, p, A) \in \mathcal{F}_x \Rightarrow (r, p, A + P) \in \mathcal{F}_x, \forall P \ge 0 \text{ in } \mathcal{S}(n).$

(N) \mathcal{F} satisfies the negativity condition fiberwise; that is, for each $x \in X$

 $(r, p, A) \in \mathcal{F}_x \Rightarrow (r + s, p, A) \in \mathcal{F}_x, \forall s \leq 0 \text{ in } \mathbb{R}.$

(T) \mathcal{F} satisfies three conditions of topological stability

$$\mathcal{F} = \overline{\mathcal{F}^{\circ}}, \ (\mathcal{F}^{\circ})_{x} = (\mathcal{F}_{x})^{\circ}, \ \mathcal{F}_{x} = \overline{(\mathcal{F}_{x})^{\circ}}.$$

- \mathcal{F} is closed (by (T)) and usually assumed non-empty and proper.
- (P), (N) and (T) have implications for the \mathcal{F} -potential theory, together with duality.
- classical subharmonics: $\mathcal{F} = \{(r, p, A) : \operatorname{tr} A \ge 0\}$
- convex functions: $\mathcal{F} = \{(r, p, A) : A \ge 0\} = \{(r, p, A) : \lambda_{\min}(A) \ge 0\}$
- subaffine functions: $\mathcal{F} = \{(r, p, A) : \lambda_{\max}(A) \ge 0\}$

Subharmonics and duality

2. Subharmonics: A function $u \in USC(X)$ is \mathcal{F} -subharmononic on X if

 $J_x^{2,+}u \subset \mathcal{F}_x, \ \forall x \in X$ where

 $J_x^{2,+}u := \{J_x^2\varphi: \varphi \text{ is } C^2 \text{ near } x, \ u \leq \varphi \text{ near } x \text{ with equality in } x\},$

is the space of *upper test jets*. Denote by $\mathcal{F}(X)$ the space of \mathcal{F} -subharmononics on X.

3. Duality: [Harvey-Lawson CPAM'09, JDG'11] For a given subequation $\mathcal{F} \subset \mathcal{J}^2(X)$ the *Dirichlet dual* is

$$\widetilde{\mathcal{F}}:=(-\mathcal{F}^\circ)^c=-(\mathcal{F}^\circ)^c~~(ext{relative to}~\mathcal{J}^2(X))$$

and, by property (T), can be calculated fiberwise

$$\widetilde{\mathcal{F}}_x := (-(\mathcal{F}_x)^\circ)^c = -((\mathcal{F}_x)^\circ)^c \ \, (\text{relative to } \mathcal{J}^2), \ \, \forall \, x \in X.$$

• If \mathcal{F} is a subequation, then so is $\widetilde{\mathcal{F}}$ and one has *reflexivity*: $\widetilde{\widetilde{\mathcal{F}}} = \mathcal{F}$.

N.B. Duality is used to define **superharmonics**: $w \in LSC(X)$ is \mathcal{F} -superharmonic on X if $-w \in USC(X)$ is $\widetilde{\mathcal{F}}$ -subharmonic on X, which in terms of *lower test jets* is equivalent to

 $J_x^{2,-}w \subset (\text{Int } \mathcal{F}_x)^c, \ \forall x \in X.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Monotonicity and fiberegularity

4. Monotonicity: is a unifying concept where \mathcal{F} is \mathcal{M} -monotone for $\mathcal{M} \subset \mathcal{J}^2(X)$ if

 $\mathcal{F}_x + \mathcal{M}_x \subset \mathcal{F}_x$ for each $x \in X$.

- The minimal monotonicity cone M₀ := {(r, 0, A) ∈ J² : r ≤ 0 and A ≥ 0} encodes properties (P) and (N) ↔ operators F which are proper elliptic (needed for comparison).
- Monotonicity combines with duality in the fundamental jet addition formula

 $\mathcal{F}_x + \mathcal{M}_x \subset \mathcal{F}_x \implies \mathcal{F}_x + \widetilde{\mathcal{F}}_x \subset \widetilde{\mathcal{M}}_x, \text{ for each } x \in X,$

- 5. Fiberegularity: is often sufficient to extend results from constant to variable coefficients.
 - A subequation $\mathcal{F} \subset \mathcal{J}^2(X)$ is *fiberegular* if the fiber map is (Hausdorff) continuous; i.e. if

 $\Theta: (X, |\cdot|) \to (\mathcal{K}(\mathcal{J}^2), d_{\mathcal{H}}) \text{ with } \Theta(x) := \mathcal{F}_x, \ \forall x \in X$

is continuous, where $d_{\mathcal{H}}$ is the Hausdorff distance on the closed subsets of \mathcal{J}^2 .

 Useful reformulation when F is M-monotone (some monotonicity cone subequation M): for each fixed J₀ ∈ Int M, Ω ∈ X and η > 0 there exists δ > 0 such that

 $x, y \in \Omega, |x - y| < \delta \implies \Theta(x) + \eta J_0 \subset \Theta(y).$

 Ensures that "small perturbations of all short range translates of an *F*-subharmonic remain *F*-subharmonic".

2. Comparison by monotonicity-duality-fiberegularity

Theorem (General comparison theorem)

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Suppose that a subequation $\mathcal{F} \subset \mathcal{J}^2(\Omega)$ is fiberegular and \mathcal{M} -monotone on Ω for some monotonicity cone subequation \mathcal{M} . If \mathcal{M} admits a strict subharmonic $\psi \in C^2(\Omega) \cap C(\overline{\Omega})$ on Ω , then comparison holds for \mathcal{F} on $\overline{\Omega}$; that is,

$$u \leq w \text{ on } \partial \Omega \implies u \leq w \text{ on } \Omega$$

(CP)

for all $u \in \text{USC}(\overline{\Omega})$, \mathcal{F} -subharmonic on Ω , and $w \in \text{LSC}(\overline{\Omega})$, \mathcal{F} -superharmonic on Ω .

- $\mathcal{F}_x \equiv \mathcal{F} \subset \mathcal{S}(n)$ in [Harvey-Lawson, CPAM'09]: constant coefficient pure second order, $\mathcal{M} = \mathcal{P}$ and ψ exists for every \mathcal{F} .
- $\mathcal{F} \subset \Omega \times \mathcal{S}(n)$ in [Cirant-P., PM'17]: fiberegular pure second order, $\mathcal{M} = \mathcal{P}$ and ψ exists for every \mathcal{F} .
- $\mathcal{F} \subset \Omega \times (\mathbb{R} \times \mathcal{S}(n))$ in [Cirant-P., ME'21], fiberegular gradient-free, $\mathcal{M} = \mathcal{Q} = \mathcal{N} \times \mathcal{P}$ and ψ exists for every \mathcal{F} .
- *F_x* ≡ *F* ⊂ *J*²(Ω) in [Cirant-Harvey-Lawson-P, AoMS, to appear]: constant coefficients, complete study of which cones *M* admit ψ on Ω.
- General case in [Cirant-P.-Redaelli, preprint '22]; imports the class of admissible cones \mathcal{M} from the constant coefficient case.

Outline of the proof

Step 1 (Duality reformulation): Use duality to reformulate (CP) as:

$$u + v \leq 0 \text{ on } \partial \Omega \implies u + v \leq 0 \text{ on } \Omega$$
 (CP')

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

for all $u \in \text{USC}(\overline{\Omega})$, \mathcal{F} -subharmonic on Ω , and $v \in \text{USC}(\overline{\Omega})$, $\widetilde{\mathcal{F}}$ -subharmonic on Ω .

- Just define v := -w and use duality.
- (CP') is the zero maximum principle (ZMP) for the sum of \mathcal{F} and $\widetilde{\mathcal{F}}$ subharmonics:

 $\forall z \in \mathrm{USC}(\overline{\Omega}) \cap (\mathcal{F}(\Omega) + \widetilde{\mathcal{F}}(\Omega)): \qquad z \leq 0 \text{ on } \partial\Omega \implies z \leq 0 \text{ on } \Omega \quad (\mathsf{ZMP})$

Step 2 (Jet Addition): Establish the fundamental jet addition formula

$$\mathcal{F}_x + \mathcal{M}_x \subset \mathcal{F}_x \implies \mathcal{F}_x + \widetilde{\mathcal{F}}_x \subset \widetilde{\mathcal{M}}_x, \ \text{ for each } x \in X,$$

using elementary properties of duality and monotonicity (Harvey-Lawson, SDG'13).

- This is the key to duality.
- Very useful if \mathcal{M} has constant coefficients.

Step 3 (Local quasi-convexity): For locally quasi-convex functions *u*, *v*, establish:

• the Almost Everywhere Theorem:

 $J_x^2 u = (u(x), Du(x), D^2 u(x)) \in \mathcal{F}_x \text{ for } \mathcal{L}^n \text{-a.e. } x \in X \iff u \in \mathcal{F}(X),$

• the Subharmonic Addition Theorem (quasi-convex version): for subequations \mathcal{F}, \mathcal{G} and \mathcal{H}

 $\mathcal{F}_x + \mathcal{G}_x \subset \mathcal{H}_x$, for each $x \in X$ (Jet addition)

implies

$$u + v \in \mathcal{H}(X)$$
, for all $u \in \mathcal{F}(X), v \in \mathcal{G}(X)$. (Subharmonic addition)

in order to conclude

 $z = u + v \in \widetilde{\mathcal{M}}(\Omega)$ if $u \in \mathcal{F}(\Omega)$ and $v \in \widetilde{\mathcal{F}}(\Omega)$ are locally quasi-convex.

N.B. This difficult step relies on the Jensen [ARMA'88] or Slodkowski [ASNSP'84] Lemma, which control the measure of *upper contact points* near x for locally quasi-convex functions. These Lemmas and are equivalent ([Harvey-Lawson, arXiv'16, P.-Redaelli '22]).

Step 4: Use **fiberegularity** to prove the *Subharmonic Addition Theorem* (\mathcal{M} -monotone version):

$$u \in \mathcal{F}(\Omega), v \in \widetilde{\mathcal{F}}(\Omega) \implies u + v \in \widetilde{\mathcal{M}}(\Omega)$$

if \mathcal{F} (and hence $\widetilde{\mathcal{F}}$) is fiberegular and \mathcal{M} -monotone for some constant coefficient mponotonicity subequation cone \mathcal{M} which admits a C^2 -strict subharmonic ψ on Ω .

• Use sup-convolution approximations u^{ε} , v^{ε} of u, v:

$$u^{\varepsilon}(x) := \sup_{y \in X} \left(u(y) - \frac{1}{2\varepsilon} |y - x|^2 \right), \ x \in X, \text{ which are } \frac{1}{\varepsilon} \text{-quasi-convex.}$$

- If *F* and (hence) *F* have constant coefficients, then the approximations remain subharmonic and the extension holds [Cirant-Harvey-Lawson-P, AoMS, to appear].
- For fiberegular and \mathcal{M} -monotone subequations with ψ as above, one can prove a *uniform* translation property: for each $\theta > 0$ there exist $\eta = \eta(\psi, \theta) > 0$ and $\delta = \delta(\psi, \theta) > 0$ such that

$$u_{y,\theta} = \tau_y u + \theta \psi$$
 belongs to $\mathcal{F}(\Omega_{\delta}), \quad \forall y \in B_{\delta}(0),$

where $\tau_y u(\cdot) := u(\cdot - y)$.

Step 5: Apply the following constant coefficient result of [CHLP, AoMS, to appear]

Theorem (The Zero Maximum Principle for Dual Monotonicity Cones)

Suppose that \mathcal{M} is a constant coefficient monotonicity cone subequation that admits a stict subharmonic $\psi \in C^2(\Omega) \cap C(\overline{\Omega})$ on a domain $\Omega \Subset \mathbb{R}^n$. Then the zero maximum principle holds for $\widetilde{\mathcal{M}}$ on $\overline{\Omega}$; that is,

 $z \leq 0 \text{ on } \partial \Omega \implies z \leq 0 \text{ on } \Omega$

(ZMP)

for all $z \in \text{USC}(\overline{\Omega}) \cap \widetilde{\mathcal{M}}(\Omega)$.

• $\widetilde{\mathcal{M}}$ is a (constant coefficient) subequation and hence satisfies the *sliding property* $z - m \in \widetilde{\mathcal{M}}(\Omega)$ for each $m \in [0, +\infty)$.

• Since z - m < 0 on $\partial \Omega$ compact

 $z - m + \varepsilon \psi \leq 0$ on $\partial \Omega$ for each ε sufficiently small.

• Since $z - m \in \widetilde{\mathcal{M}}(\Omega)$ and since $\varepsilon \psi \in C(\overline{\Omega}) \cap C^2(\Omega)$ is strictly \mathcal{M} -subharmonic, by *definitional comparison* (with $\mathcal{F} = \widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{F}} = \widetilde{\widetilde{\mathcal{M}}} = \mathcal{M}$) one has

 $z - m + \varepsilon \psi \leq 0$ on Ω for each ε sufficiently small,

and passes to the limit for $\varepsilon \to 0^+$.

Question

Given a constant coefficient monotonicity cone subequation \mathcal{M} , for which bounded domains $\Omega \subset \mathbb{R}^n$ do there exist the needed strictly \mathcal{M} -subharmonic $\psi \in C^2(\Omega) \cap C(\overline{\Omega})$? This ensures comparison in every potential theory determined by a fiberegular and \mathcal{M} -monotone \mathcal{F} .

- Detailed study of monotonicity cone subequations in [CHLP, AoMs].
- There is a three parameter *fundamental family* of monotonicity cone subequations:

$$\mathcal{M}(\gamma, \mathcal{D}, R) := \left\{ (r, p, A) \in \mathcal{J}^2 : \ r \leq -\gamma |p|, \ p \in \mathcal{D}, \ A \geq rac{|p|}{R} I
ight\}$$
 where $\gamma \in [0, +\infty), R \in (0, +\infty] ext{ and } \mathcal{D} \subseteq \mathbb{R}^n,$

with \mathcal{D} a *directional cone* (closed convex cone, vertex in 0, non-empty interior).

- "Fundamental" means that for any \mathcal{M} , there exists $\mathcal{M}(\gamma, \mathcal{D}, R)$ with $\mathcal{M}(\gamma, \mathcal{D}, R) \subset \mathcal{M}$. Hence every \mathcal{M} -monotone \mathcal{F} is $\mathcal{M}(\gamma, \mathcal{D}, R)$ -monotone for some triple (γ, \mathcal{D}, R) .
- There is a simple dichotomy; one has the needed ψ on Ω (and hence comparison):
 - $R = +\infty$: for every Ω
 - $R < +\infty$: for every Ω contained in a translate of the truncated cone $\mathcal{D}_R := \mathcal{D} \cap B_R(0)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

3. The operator theoretic setting

The class of PDEs amenable to the above consierations are determined by the following: **Proper elliptic operators:** Any operator $F \in C(\mathcal{G})$ such that for each $x \in X$ and each $(r, p, A) \in \mathcal{G}_x$ one has

 $F(x, r, p, A) \le F(x, r+s, p, A+P) \quad \forall s \le 0 \text{ in } \mathbb{R} \text{ and } \forall P \ge 0 \text{ in } S(n).$ (PE)

where either

 $\mathcal{G} = \mathcal{J}^2(X)$ (unconstrained case)

or

 $\mathcal{G} \subsetneq \mathcal{J}^2(X)$ is a subequation constraint set (constrained case)

The pair (F, G) will be called a *proper elliptic (operator-subequation) pair*.

- A given operator F must often be restricted to a suitable background constraint domain $\mathcal{G} \subset \mathcal{J}^2(X)$ in order to satisfy the minimal monotonicty (PE) (the constrained case).
- The historical example is the Monge-Ampère operator $F(D^2u) = \det(D^2u)$, where one restricts F to the convexity subequation $\mathcal{G} = \mathcal{P} := \{A \in \mathcal{S}(n) : A \ge 0\}.$
- This is the simplest example of an operator defined by a *Dirichlet-Gårding polynomial*, which illutrate best the constained case.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Definition (Admissible viscosity solutions)

Given F ∈ C(G) with G = J²(X) or G ⊊ J²(X) a subequation on an open subset X ⊂ ℝⁿ:
(a) u ∈ USC(X) is a (G-admissible) viscosity subsolution of F(J²u) = 0 on X if for every x ∈ X one has

$$J \in J_x^{2,+}u \Rightarrow J \in \mathcal{G}_x$$
 and $F(x,J) \ge 0;$ (sub)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

(b) $u \in LSC(\Omega)$ is a (*G*-admissible) viscosity supersolution of $F(J^2u) = 0$ on X if for every $x \in X$ one has

$$J \in J_x^{2,-}u \Rightarrow either [J \in \mathcal{G}_x \text{ and } F(x,J) \leq 0] \text{ or } J \notin \mathcal{G}_x.$$
 (super)

- In the unconstrained case where $\mathcal{G} \equiv \mathcal{J}^2(X)$, the definitions are standard.
- In the constrained case where G ⊆ J²(X), the definitions give a systematic way of doing of what is sometimes done in an ad-hoc way [Ishii-Lions, JDE'90], [Trudinger, ARMA'90].
- In the constrained case, (sub) says that subsolutions are also \mathcal{G} -subharmonic and (super) says that $F(x, J) \leq 0$ for the lower test jets which lie in the constraint \mathcal{G}_x .

4. The Correspondence principle

Question (1)

For a given operator-subequation pair (F, \mathcal{F}) on an open set X, determine conditions under which (u, w) is an \mathcal{F} -subharmonic/ \mathcal{F} -superharmonic pair if and only if (u, w) is a subsolution/ supersolution pair for $F(J^2u) = 0$.

• For subharmonics/subsolutions u the equivalence asks that: for each $x \in X$ one has

 $J_x^{2,+}u \subset \mathcal{F}_x \iff \text{both} \quad J_x^{2,+}u \subset \mathcal{G}_x \text{ and } F(x,J) \ge 0 \text{ for each } J \in J_x^{2,+}u.$ (CSub) This holds if and only if one has the correspondence relation

$$\mathcal{F} = \{ (x, J) \in \mathcal{G} : F(x, J) \ge 0 \}.$$
(1)

• For superharmonics/supersolutions w the equivalence asks that: for each $x \in X$ one has

 $J_x^{2,+}(-w) \subset \widetilde{\mathcal{F}}_x \iff J \notin \mathcal{G}_x \text{ or } [J \in \mathcal{G}_x \text{ and } F(x,J) \leq 0], \ \forall J \in J_x^{2,-}w.$ (CSuper)

Using duality and $J_x^{2,+}(-w) = -J_x^{2,-}w$ one can see that the equivalence (CSuper) holds if and only if one has **compatibility**

Int
$$\mathcal{F} = \{(x, J) \in \mathcal{G} : F(x, J) > 0\}.$$
 (2)

which for subequations \mathcal{F} defined by (1) is equivalent to

$$\partial \mathcal{F} = \{ (x, J) \in \mathcal{F} : F(x, J) = 0 \}.$$

Theorem (Correspondence Principle)

Suppose that $F \in C(\mathcal{G})$ is proper elliptic and \mathcal{F} , defined by the correspondence relation (1), is a subequation. If compatibility (2) is satisfied, then (u, w) is an \mathcal{F} -subharmonic/ \mathcal{F} -superharmonic pair if and only if (u, w) is a subsolution/ supersolution pair for $F(J^2u) = 0$.

- In particular, for every Ω ∈ X, a function u ∈ C(Ω) is F-harmonic on Ω if and only if u is a G-admissible viscosity solution of F(J²u) = 0 on Ω and the potential theoretic and operator theoretic formulations of the Dirichet problem are equivalent.
- Given (F, \mathcal{G}) or given \mathcal{F} , finding the other so that both the correspondence relation (1) and compatibility (2) hold can be impossible, easy or in between requiring some work.

Question (2)

Given a proper elliptic operator F with domain $\mathcal{G} \subset \mathcal{J}^2(X)$, can we ensure that the constraint set \mathcal{F} defined by the correspondence relation (1)

 $\mathcal{F} := \{ (x, J) \in \mathcal{G} : F(x, J) \ge 0 \}$

is a subequation and satisfies compatibility (2)

Int $\mathcal{F} = \{(x, J) \in \mathcal{G} : F(x, J) > 0\}.$

Structural conditions on F

When is $\mathcal{F} := \{(x, J) \in \mathcal{G} : F(x, J) \ge 0\}$ a subequation?

- \bullet One needs positivity (P), negativity (N) and topological stability (T).
- (P) and (N) are equivalent to the (fiberwise) monotnicity property that for each $x \in X$

 $(r, p, A) \in \mathcal{F}_x \Rightarrow (r+s, p, A+P) \in \mathcal{F}_x, \forall s \leq 0 \text{ in } \mathbb{R}, P \geq 0 \text{ in } \mathcal{S}(n);$

this follows from (P) and (N) for the domain \mathcal{G} and and the proper ellipticity of F on \mathcal{G} • This leaves property (T).

Lemma (Cirant-P.-Redaelli'22)

Suppose that (F, \mathcal{G}) is an \mathcal{M} -monotone operator-subequation pair for some monotonicity cone subequation, with $\mathcal{G} = \mathcal{J}^2(X)$ or $\mathcal{G} \subsetneq \mathcal{J}^2(X)$ a fiberegular subequation. Suppose that (F, \mathcal{G}) satisfies the regularity condition: for some fixed $J_0 \in \text{Int } \mathcal{M}$, given $\Omega \Subset X$ and $\eta > 0$, there exists $\delta = \delta(\eta, \Omega) > 0$ such that

$$F(y, J + \eta J_0) \ge F(x, J), \quad \forall x, y \in \Omega \text{ with } |x - y| < \delta.$$

Then the constraint set \mathcal{F} defined by (1) is a (fiberegular \mathcal{M} -monotone) subequation.

Finally, with (F, \mathcal{G}) and \mathcal{F} as in the Lemma, it reamins only to check compatibility (2)

Int $\mathcal{F} = \{(x, J) \in \mathcal{G} : F(x, J) > 0\}.$

• In the fiberegular and \mathcal{M} -monotone context, it suffices to have the fiberwise condition

Int $\mathcal{F}_x = \{J \in \mathcal{G}_x : F(x, J) > 0\}, \forall x \in X.$

This condition is often easily checked for a given pair (F, G) which determines F by checking that F(x, J) = 0 for J ∈ ∂F_x and using some strict monotonicity such as: for each x ∈ X with some fixed J₀ ∈ Int M there exists t₀ > 0 such that

 $F(x, J+tJ_0) > F(x, J), \ \forall t \in (0, t_0), \forall J \in \partial \mathcal{F}_x.$

References

- M. Cirant, F.R. Harvey, H.B. Lawson, Jr. and K.R. Payne, Comparison principles by monotonicity and duality for constant coefficient nonlinear potential theory and PDEs, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, to appear; arXiV: 2009.01611v1 170 pages, published online 3 Sep 2020.
- M. Cirant and K.R. Payne, On viscosity solutions to the Dirichlet problem for elliptic branches of nonhomogeneous fully nonlinear equation, Publ. Mat. 61 (2017), 529–575.
- M. Cirant and K.R. Payne, *Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient*, Math. Eng. **3** (2021), Paper No. 045, 45 pp.
- M. Cirant, K.R. Payne and D.F. Redaelli, *Comparison principles for nonlinear potential theory and PDEs with with fiberegularity and sufficient monotonicity*, preprint, 2022.
- F.R. Harvey and H.B. Lawson, Jr., *Dirichlet duality and the nonlinear Dirichlet problem*, Comm. Pure Appl. Math. **62** (2009), 396–443.
- F.R. Harvey and H.B. Lawson, Jr., *Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds*, J. Differential Geom. **88** (2011), 395–482.
- K.R. Payne and D.F. Redaelli, *Primer on quasi-convex functions in nonlinear potential theory*, prepint 2022.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで