The space of Hardy-weights for quasilinear equations: Mazya-type characterization and sufficient conditions for existence of minimizers

Yehuda Pinchover

Technion-Israel Institute of Technology Haifa, ISRAEL

INdAM Meeting "Mostly Maximum Principle" Cortona, Italy

30.5 -3.6.2022

Joint work with Ujjal Das

Yehuda Pinchover (Technion)

The space of Hardy-weights

30.5-3.6.2022 1 / 14

The setting

In this talk we consider a nonnegative energy functional

 $Q_{p,A,V}[\varphi] \triangleq \int_{\Omega} \left(|\nabla \varphi|_A^p + V |\varphi|^p \right) \mathrm{d} x \ge 0 \qquad \forall \phi \in W^{1,p}(\Omega) \cap C_c(\Omega),$

and its associated Euler-Lagrange equation

 $Q'_{p,A,V}(u) \triangleq \operatorname{div}(|\nabla u|^{p-2}_A A \nabla u) + V|u|^{p-2}u = 0 \quad \text{in } \Omega,$

The setting

In this talk we consider a nonnegative energy functional

 $Q_{p,A,V}[\varphi] \triangleq \int_{\Omega} \left(|\nabla \varphi|_A^p + V |\varphi|^p \right) \mathrm{d} x \ge 0 \qquad \forall \phi \in W^{1,p}(\Omega) \cap C_c(\Omega),$

and its associated Euler-Lagrange equation

 $Q'_{p,A,V}(u) \triangleq \operatorname{div}(|\nabla u|^{p-2}_A A \nabla u) + V|u|^{p-2}u = 0 \quad \text{in } \Omega,$

Here $\Omega \subset \mathbb{R}^N$, $N \ge 2$ is a domain, $1 , <math>A \in L^{\infty}_{loc}(\Omega; \mathbb{R}^{N \times N})$ is a symmetric and locally uniformly positive definite matrix function,

$$|\xi|_A^2 \triangleq \sum_{i,j=1}^N a_{ij}(x)\xi_i\xi_j \qquad x \in \Omega, \ \xi \in \mathbb{R}^N,$$

and V is a real valued potential in a certain local Morrey space $M_{loc}^{q}(p; \Omega)$.

イロト 不得 トイヨト イヨト 二日

The setting

In this talk we consider a nonnegative energy functional

 $Q_{p,A,V}[\varphi] \triangleq \int_{\Omega} \left(|\nabla \varphi|_A^p + V |\varphi|^p \right) \mathrm{d} x \ge 0 \qquad \forall \phi \in W^{1,p}(\Omega) \cap C_c(\Omega),$

and its associated Euler-Lagrange equation

 $Q'_{p,A,V}(u) \triangleq \operatorname{div}(|\nabla u|^{p-2}_A A \nabla u) + V|u|^{p-2}u = 0 \quad \text{in } \Omega,$

Here $\Omega \subset \mathbb{R}^N$, $N \ge 2$ is a domain, $1 , <math>A \in L^{\infty}_{loc}(\Omega; \mathbb{R}^{N \times N})$ is a symmetric and locally uniformly positive definite matrix function,

$$|\xi|_A^2 \triangleq \sum_{i,j=1}^N a_{ij}(x)\xi_i\xi_j \qquad x \in \Omega, \ \xi \in \mathbb{R}^N,$$

and V is a real valued potential in a certain local Morrey space $M^q_{loc}(p; \Omega)$. The operator $\Delta_{p,A}[u] \triangleq \operatorname{div}(|\nabla u|_A^{p-2}A\nabla u)$ is called the (p, A)-Laplacian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Agmon-Allegretto-Piepenbrink-type (AAP)-theorem

Theorem (YP-Psaradakis (2016))

 $Q_{p,A,V} \ge 0$ on $W^{1,p}(\Omega) \cap C_c(\Omega)$ iff the equation $Q'_{p,A,V}(u) = 0$ in Ω admits a positive weak solution (or positive supersolution) in $W^{1,p}_{loc}(\Omega)$.

Corollary

 $Q_{p,A,V} \ge 0$ on $W^{1,p}(\Omega) \cap C_c(\Omega)$ iff the generalized weak maximum principle holds in any subdomain $\omega \in \Omega$. That is,

 $Q'_{p,A,V}(u) \ge 0 \text{ in } \omega, \text{ and } u \ge 0 \text{ on } \partial \omega \implies u \ge 0 \text{ in } \omega.$

イロト 不得下 イヨト イヨト 二日

Picone identity and the simplified energy

Let **u** be a positive solution of $Q'_{p,A,V}(u) = 0$ in Ω . Then for all $0 \le \phi \in C_c^{\infty}(\Omega)$ the following Picone-type identity holds:

$$Q_{\rho,A,V}(\mathbf{u}\phi) = \int_{\Omega} \left[|\phi \nabla \mathbf{u} + \mathbf{u} \nabla \phi|_{A}^{\rho} - \phi^{\rho} |\nabla \mathbf{u}|_{A}^{\rho} - \rho \phi^{\rho-1} \mathbf{u} |\nabla \mathbf{u}|_{A}^{\rho-2} \nabla \mathbf{u} \cdot A \nabla \phi \right] \mathrm{d}x.$$

Theorem (YP-Tertikas-Tintarev (2008))

Let **u** be a positive solution of $Q'_{p,A,V}(u) = 0$ in Ω . Then for all $\mathbf{u}\phi \in W^{1,p}(\Omega) \cap C_c(\Omega)$ we have

$$Q_{\boldsymbol{\rho},\boldsymbol{A},\boldsymbol{V}}(\mathbf{u}\phi) \asymp E_{\mathbf{u}}(\phi) \triangleq \int_{\Omega} \mathbf{u}^2 |\nabla \phi|_{\boldsymbol{A}}^2 (\phi |\nabla \mathbf{u}|_{\boldsymbol{A}} + \mathbf{u} |\nabla \phi|_{\boldsymbol{A}})^{\boldsymbol{p}-2} \mathrm{d}x,$$

where the equivalence constant depends only on p. The functional $E_{\mathbf{u}}$ is called the simplified energy of $Q_{p,A,V}$.

イロト イポト イヨト イヨト

$\mathcal{H}_p(\Omega, V)$ the space of Hardy-weights

First aim: characterize the space $\mathcal{H}_p(\Omega, V)$ of all Hardy-weights, i.e., functions $g \in L^1_{loc}(\Omega)$ such that the following Hardy-type inequality holds:

 $\int_{\Omega} |g| |\phi|^{p} \, \mathrm{d} x \leq C Q_{p,A,V}(\phi) \qquad \forall \phi \in W^{1,p}(\Omega) \cap C_{c}(\Omega)$

for some C > 0.

Suppose that $Q_{p,A,V} \ge 0$ in Ω . If $\mathcal{H}_p(\Omega, V) = \{0\}$, then $Q_{p,A,V}$ is said to be critical in Ω , otherwise, $Q_{p,A,V}$ is subcritical in Ω . If $Q_{p,A,V} \not\ge 0$ in Ω , then $Q_{p,A,V}$ is said to be supercritical in Ω .

イロト 不得下 イヨト イヨト 二日

$Q_{p,A,V}$ -capacity

Definition

Let **u** be a positive solution of $Q_{p,A,V}(u) = 0$ in Ω . For a compact set $F \subseteq \Omega$, the $Q_{p,A,V}$ -capacity of F with respect to (\mathbf{u}, Ω) is defined by $\operatorname{Cap}_{\mathbf{u}}(F, \Omega) \triangleq \inf\{Q_{p,A,V}(\phi) \mid \phi \in \mathcal{N}_{F,\mathbf{u}}(\Omega)\},\$

where $\mathcal{N}_{F,\mathbf{u}}(\Omega) \triangleq \{\phi \in W^{1,p}(\Omega) \cap C_c(\Omega) \mid \phi \geq \mathbf{u} \text{ on } F\}.$

くほと くほと くほと

$Q_{p,A,V}$ -capacity

Definition

Let **u** be a positive solution of $Q_{p,A,V}(u) = 0$ in Ω . For a compact set $F \subseteq \Omega$, the $Q_{p,A,V}$ -capacity of F with respect to (\mathbf{u}, Ω) is defined by $\operatorname{Cap}_{\mathbf{u}}(F, \Omega) \triangleq \inf\{Q_{p,A,V}(\phi) \mid \phi \in \mathcal{N}_{F,\mathbf{u}}(\Omega)\},\$

where $\mathcal{N}_{F,\mathbf{u}}(\Omega) \triangleq \{\phi \in W^{1,p}(\Omega) \cap C_c(\Omega) \mid \phi \geq \mathbf{u} \text{ on } F\}.$

We equip $\mathcal{H}_{p}(\Omega, V)$ with the norm:

 $\|g\|_{\mathcal{H}^{\mathbf{u}}_{p}(\Omega,V)} \triangleq \sup \bigg\{ \frac{\int_{F} |g| |\mathbf{u}|^{p} \, \mathrm{d}x}{\operatorname{Cap}_{\mathbf{u}}(F,\Omega)} \mid F \Subset \Omega \text{ compact s.t. } \operatorname{Cap}_{\mathbf{u}}(F,\Omega) \neq 0 \bigg\}.$

In fact, $\mathcal{H}_p(\Omega, V)$ is a Banach function space. Moreover, in the subcritical case, certain weighted Lebesgue spaces are embedded in $\mathcal{H}_p(\Omega, V)$.

イロト イポト イヨト イヨト 二日

Maz'ya-type characterization of Hardy-weights

$$\|g\|_{\mathcal{H}^{\mathbf{u}}_{p}(\Omega,V)} = \sup \left\{ \frac{\int_{F} |g| |\mathbf{u}|^{p} \, \mathrm{d}x}{\operatorname{Cap}_{\mathbf{u}}(F,\Omega)} \mid F \Subset \Omega \text{ compact s.t. } \operatorname{Cap}_{\mathbf{u}}(F,\Omega) \neq 0 \right\}$$

Theorem (YP - Das (2022))

Let $p \in (1, \infty)$, and **u** be a positive solution of $Q_{p,A,V}(u) = 0$ in Ω . Let $g \in L^1_{loc}(\Omega)$, then $\|g\|_{\mathcal{H}^{\mathbf{u}}_p(\Omega,V)} < \infty$ iff the Hardy-type inequality

$$\int_{\Omega} |g| |\phi|^{p} \, \mathrm{d}x \leq CQ_{p,A,V}(\phi) \qquad \forall \phi \in W^{1,p}(\Omega) \cap C_{c}(\Omega)$$
(HI)

holds. Moreover, let $\mathcal{B}_{g}(\Omega, V)$ be the best constant in (HI), then $\|g\|_{\mathcal{H}^{u}_{p}(\Omega, V)} \leq \mathcal{B}_{g}(\Omega, V) \leq C_{p}\|g\|_{\mathcal{H}^{u}_{p}(\Omega, V)},$

where C_p depends only on p. Furthermore, $\|g\|_{\mathcal{B}(\Omega,V)} \triangleq \mathcal{B}_g(\Omega,V)$ is an equivalent norm on $\mathcal{H}_p(\Omega,V)$. In particular, up to the equivalence relation of norms, the norm $\|\cdot\|_{\mathcal{H}_p^u(\Omega,V)}$ is independent of the positive solution **u**.

Proof of necessity:

Let $g \in L^1_{loc}(\Omega)$ be a Hardy-weight. Let $F \subset \Omega$ be a compact set. Then for any ψ such that $\psi \mathbf{u} \in W^{1,p}(\Omega) \cap C_c(\Omega)$ with $\psi \ge 1$ on F

$$\int_{\mathcal{F}} |g| |\mathbf{u}|^{p} \, \mathrm{d} x \leq \int_{\Omega} |g| |\psi \mathbf{u}|^{p} \, \mathrm{d} x \leq \mathcal{B}_{g}(\Omega, V) Q_{p, \mathcal{A}, V}(\psi \mathbf{u}) \, .$$

Taking the infimum over all $\psi \mathbf{u} \in W^{1,p}(\Omega) \cap C_c(\Omega)$ with $\psi \ge 1$ on F, we get

 $\int_{F} |g| |\mathbf{u}|^{p} \, \mathrm{d}x \leq \mathcal{B}_{g}(\Omega, V) \mathrm{Cap}_{\mathbf{u}}(F, \Omega) \quad \text{for all compact sets } F \text{ in } \Omega.$

Hence, $\|g\|_{\mathcal{H}^{\mathbf{u}}_{p}(\Omega, V)} \leq \mathcal{B}_{g}(\Omega, V).$

Proof of Sufficiency:

Let $\|g\|_{\mathcal{H}^{\mathbf{u}}_{p}(\Omega,V)} < \infty$ and $0 \leq \psi \in C^{\infty}_{c}(\Omega)$. Define

$$\psi_j(\mathbf{x}) \triangleq \begin{cases} 0 & \text{if } \psi \le 2^{j-1} \,, \\ \left[\frac{\psi}{2^{j-1}} - 1\right]^{\alpha} & \text{if } 2^{j-1} \le \psi \le 2^j \,, \\ 1 & \text{if } 2^j \le \psi \,, \end{cases} \quad -\infty < j < \infty,$$

where $\alpha = 1$ if $p \ge 2$, and $\alpha = 2/p$ if p < 2.

- < A > < B > < B >

Proof of Sufficiency:

Let $\|g\|_{\mathcal{H}^{u}_{p}(\Omega,V)} < \infty$ and $0 \leq \psi \in C^{\infty}_{c}(\Omega)$. Define

$$\psi_j(\mathbf{x}) \triangleq \begin{cases} 0 & \text{if } \psi \le 2^{j-1} \,, \\ \left[\frac{\psi}{2^{j-1}} - 1\right]^{\alpha} & \text{if } 2^{j-1} \le \psi \le 2^j \,, \\ 1 & \text{if } 2^j \le \psi \,, \end{cases} \quad -\infty < j < \infty,$$

where $\alpha = 1$ if $p \ge 2$, and $\alpha = 2/p$ if p < 2. Since $\int_{F} |g| |\mathbf{u}|^{p} dx \le ||g||_{\mathcal{H}_{p}^{\mathbf{u}}(\Omega, V)} \operatorname{Cap}_{\mathbf{u}}(F, \Omega), \forall F \Subset \Omega \text{ compact, } \operatorname{Cap}_{\mathbf{u}}(F, \Omega) \neq 0.$

$$\Longrightarrow \int_{\{\psi \ge 2^j\}} |g| |\mathbf{u}|^p \, \mathrm{d} x \le \|g\|_{\mathcal{H}^{\mathbf{u}}_{p}(\Omega, V)} Q_{p, A, V}(\mathbf{u}\psi_j) \quad \psi_j = 1 \text{ on } \psi \ge 2^j.$$

Using the co-area formula, replacing $Q_{p,A,V}$ with the simplified energy, estimating ψ_j and $\nabla \psi_j$, and finally summing up, one obtains

$$\int_{\Omega} |g| |\mathbf{u}\psi|^p \, \mathrm{d}x \le C_p \|g\|_{\mathcal{H}^{\mathbf{u}}_p(\Omega, V)} Q_{p, \mathcal{A}, V}(\mathbf{u}\psi).$$

•

Definition (Beppo Levi space)

The generalized Beppo Levi space $\mathcal{D}^{1,p}_{A,V^+}(\Omega)$ is the completion of $W^{1,p}(\Omega) \cap C_c(\Omega)$ with respect to the norm

$$\|\phi\|_{\mathcal{D}^{1,p}_{A,V^+}(\Omega)} \triangleq \left[\||\nabla\phi|_A\|_{L^p(\Omega)}^p + \|\phi\|_{L^p(\Omega,V^+ \,\mathrm{dx})}^p \right]^{1/p}$$

For $g \in \mathcal{H}_{p}(\Omega, V)$, consider the generalized principal eigenvalue

$$\mathbb{S}_{g}(\Omega, V) \triangleq \inf \{ Q_{p,A,V}(\phi) \mid \phi \in W^{1,p}(\Omega) \cap C_{c}(\Omega), \int_{\Omega} |g| |\phi|^{p} \, \mathrm{d}x = 1 \}.$$

In fact,

$$\mathbb{S}_{\boldsymbol{g}}(\Omega,V) = \inf\{Q_{\boldsymbol{p},\boldsymbol{A},V}(\phi) \mid \phi \in \mathcal{D}_{\boldsymbol{A},V^+}^{\boldsymbol{1},\boldsymbol{p}}(\Omega), \int_{\Omega} |\boldsymbol{g}| |\phi|^{\boldsymbol{p}} \, \mathrm{d}x = 1\}.$$

We say that the best constant $\mathcal{B}_g(\Omega, V)$ is attained if $\mathbb{S}_g(\Omega, V) = (\mathcal{B}_g(\Omega, V))^{-1}$ is attained in $\mathcal{D}^{1,p}_{A,V^+}(\Omega)$.

Sufficient condition for attainment of the best constant

Let
$$\mathcal{H}_{p,0}(\Omega, V) \triangleq \overline{\mathcal{H}_p(\Omega, V) \cap L^{\infty}_c(\Omega)}^{\|\cdot\|_{\mathcal{H}_p(\Omega, V)}}$$

Theorem (For the case $V = V^+$) If $g \in \mathcal{H}_{p,0}(\Omega, V^+)$, then the functional

$$T_{g}(\phi) \triangleq \int_{\Omega} |g| |\phi|^{p} \,\mathrm{d}x$$

is compact on $\mathcal{D}^{1,p}_{A,V^+}(\Omega)$. In particular, $\mathcal{B}_g(\Omega, V^+)$ is attained in $\mathcal{D}^{1,p}_{A,V^+}(\Omega)$.

Since $\mathcal{H}_{p,0}(\Omega, V) \subset \mathcal{H}_{p,0}(\Omega, V^+)$, it follows that if $g \in \mathcal{H}_{p,0}(\Omega, V)$, then T_g is compact in $\mathcal{D}^{1,p}_{A,V^+}(\Omega)$.

Attainment of the best constant I (spectral gap condition)

Theorem

Assume that $A \in C^{\gamma}$, $g \in \mathcal{H}_{p}(\Omega, V) \cap \mathcal{M}^{q}_{loc}(p; \Omega)$, and

 $\mathbb{S}_{g}(\Omega) < \mathbb{S}_{g}^{\overline{\infty}}(\Omega) \triangleq \sup\{K \Subset \Omega \mid \mathbb{S}_{g}(\Omega \setminus K)\}.$

Assume that $\int_{\Omega \setminus K_1} V^- G^p dx < \infty$, where G is a positive solution of the equation $Q'_{p,A,V-\mathbb{S}_g(\Omega)|g|}[u] = 0$ in $\Omega \setminus K$ of minimal growth in a neighborhood of infinity in Ω , where $K \Subset K_1 \Subset \Omega$. Then, $\mathcal{B}_g(\Omega)$ is attained in $\mathcal{D}^{1,p}_{A,V^+}(\Omega)$.

Proof's outline: If $\mathbb{S}_{g}(\Omega) < \mathbb{S}_{g}^{\overline{\infty}}(\Omega)$, then $Q_{p,A,V-\mathbb{S}_{g}(\Omega)|g|}$ is critical in Ω , with a ground state Φ and a null-sequence $0 \leq \phi_{n} \leq \Phi$. It follows that $\int_{\Omega} (V^{-} + |g|) \Phi^{p} dx < \infty$, $\hat{\phi}_{n} \rightharpoonup \Phi$ in $\mathcal{D}_{A,V^{+}}^{1,p}(\Omega)$, and we may pass to the limit in the identity:

$$\int_{\Omega} |\nabla \phi_n|_A^p \mathrm{d}x + \int_{\Omega} V_+ |\phi_n|_A^p \mathrm{d}x = Q_{p,A,V-\mathbb{S}_g(\Omega)|g|}(\phi_n) + \int_{\Omega} V_- \phi_n^p \mathrm{d}x + \mathbb{S}_g(\Omega) \int_{\Omega} |g| \phi_n^p \mathrm{d}x.$$

Attainment of the best constant II (spectral gap condition)

For $x \in \overline{\Omega}$ and $g \in \mathcal{H}_{\rho}(\Omega, V)$, define the Hardy constant of g at x by

$$\mathbb{S}_{g}(x,\Omega) \triangleq \liminf_{r \to 0} \{ Q_{p,\mathcal{A},V}(\phi) \mid \phi \in \mathcal{D}^{1,p}_{\mathcal{A},V^{+}}(\Omega \cap B_{r}(x)), \int_{\Omega \cap B_{r}(x)} |g| |\phi|^{p} \mathrm{d}x = 1 \},$$

and let $\Sigma_g \triangleq \{x \in \overline{\Omega} \mid \mathbb{S}_g(x, \Omega) < \infty\}$, and $\mathbb{S}_g^*(\Omega) \triangleq \inf_{x \in \overline{\Omega}} \mathbb{S}_g(x, \Omega)$.

Theorem

Let Ω be a bounded domain, $V \in \mathcal{M}^q_{loc}(p; \Omega)$ s.t. $V^- \in \mathcal{H}_{p,0}(\Omega, V^+)$. Suppose that $g \in \mathcal{H}_p(\Omega, V)$ s.t. $|\overline{\Sigma_g}| = 0$. If $\mathbb{S}_g(\Omega) < \mathbb{S}^*_g(\Omega)$, then $\mathcal{B}_g(\Omega)$ is attained in $\mathcal{D}^{1,p}_{A,V^+}(\Omega)$.

The proof relies on concentration compactness arguments.

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ

Thank you for your attention!

Yehuda Pinchover (Technion)

The space of Hardy-weights

≣ ▶ ৰ ≣ ▶ ≣ ৩৭৫ 30.5–3.6.2022 14 / 14

(日) (同) (三) (三)