The space of Hardy-weights for quasilinear equations: Mazya-type characterization and sufficient conditions for existence of minimizers

Yehuda Pinchover

Technion-Israel Institute of Technology Haifa, ISRAEL

INdAM Meeting "Mostly Maximum Principle"
Cortona, Italy
30.5-3.6.2022

Joint work with Ujjal Das

The setting

In this talk we consider a nonnegative energy functional

$$
Q_{p, A, V}[\varphi] \triangleq \int_{\Omega}\left(|\nabla \varphi|_{A}^{p}+V|\varphi|^{p}\right) \mathrm{d} x \geq 0 \quad \forall \phi \in W^{1, p}(\Omega) \cap C_{c}(\Omega)
$$

and its associated Euler-Lagrange equation

$$
Q_{p, A, V}^{\prime}(u) \triangleq \operatorname{div}\left(|\nabla u|_{A}^{p-2} A \nabla u\right)+V|u|^{p-2} u=0 \quad \text { in } \Omega,
$$

The setting

In this talk we consider a nonnegative energy functional

$$
Q_{p, A, V}[\varphi] \triangleq \int_{\Omega}\left(|\nabla \varphi|_{A}^{p}+V|\varphi|^{p}\right) \mathrm{d} x \geq 0 \quad \forall \phi \in W^{1, p}(\Omega) \cap C_{c}(\Omega)
$$

and its associated Euler-Lagrange equation

$$
Q_{p, A, V}^{\prime}(u) \triangleq \operatorname{div}\left(|\nabla u|_{A}^{p-2} A \nabla u\right)+V|u|^{p-2} u=0 \quad \text { in } \Omega,
$$

Here $\Omega \subset \mathbb{R}^{N}, N \geq 2$ is a domain, $1<p<\infty, A \in L_{\text {loc }}^{\infty}\left(\Omega ; \mathbb{R}^{N \times N}\right)$ is a symmetric and locally uniformly positive definite matrix function,

$$
|\xi|_{A}^{2} \triangleq \sum_{i, j=1}^{N} a_{i j}(x) \xi_{i} \xi_{j} \quad x \in \Omega, \xi \in \mathbb{R}^{N}
$$

and V is a real valued potential in a certain local Morrey space $M_{\mathrm{loc}}^{q}(p ; \Omega)$.

The setting

In this talk we consider a nonnegative energy functional

$$
Q_{p, A, V}[\varphi] \triangleq \int_{\Omega}\left(|\nabla \varphi|_{A}^{p}+V|\varphi|^{p}\right) \mathrm{d} x \geq 0 \quad \forall \phi \in W^{1, p}(\Omega) \cap C_{c}(\Omega)
$$

and its associated Euler-Lagrange equation

$$
Q_{p, A, V}^{\prime}(u) \triangleq \operatorname{div}\left(|\nabla u|_{A}^{p-2} A \nabla u\right)+V|u|^{p-2} u=0 \quad \text { in } \Omega,
$$

Here $\Omega \subset \mathbb{R}^{N}, N \geq 2$ is a domain, $1<p<\infty, A \in L_{\text {loc }}^{\infty}\left(\Omega ; \mathbb{R}^{N \times N}\right)$ is a symmetric and locally uniformly positive definite matrix function,

$$
|\xi|_{A}^{2} \triangleq \sum_{i, j=1}^{N} a_{i j}(x) \xi_{i} \xi_{j} \quad x \in \Omega, \xi \in \mathbb{R}^{N}
$$

and V is a real valued potential in a certain local Morrey space $M_{\mathrm{loc}}^{q}(p ; \Omega)$.
The operator $\Delta_{p, A}[u] \triangleq \operatorname{div}\left(|\nabla u|_{A}^{p-2} A \nabla u\right)$ is called the (p, A)-Laplacian.

Agmon-Allegretto-Piepenbrink-type (AAP)-theorem

Theorem (YP-Psaradakis (2016))
$Q_{p, A, V} \geq 0$ on $W^{1, p}(\Omega) \cap C_{c}(\Omega)$ iff the equation $Q_{p, A, V}^{\prime}(u)=0$ in Ω admits a positive weak solution (or positive supersolution) in $W_{\text {loc }}^{1, p}(\Omega)$.

Corollary
$Q_{p, A, V} \geq 0$ on $W^{1, p}(\Omega) \cap C_{c}(\Omega)$ iff the generalized weak maximum principle holds in any subdomain $\omega \in \Omega$. That is,

$$
Q_{p, A, V}^{\prime}(u) \geq 0 \text { in } \omega \text {, and } u \geq 0 \text { on } \partial \omega \Rightarrow u \geq 0 \text { in } \omega \text {. }
$$

Picone identity and the simplified energy

Let \mathbf{u} be a positive solution of $Q_{p, A, V}^{\prime}(u)=0$ in Ω. Then for all $0 \leq \phi \in C_{c}^{\infty}(\Omega)$ the following Picone-type identity holds:
$Q_{p, A, V}(\mathbf{u} \phi)=\int_{\Omega}\left[|\phi \nabla \mathbf{u}+\mathbf{u} \nabla \phi|_{A}^{p}-\phi^{p}|\nabla \mathbf{u}|_{A}^{p}-p \phi^{p-1} \mathbf{u}|\nabla \mathbf{u}|_{A}^{p-2} \nabla \mathbf{u} \cdot A \nabla \phi\right] \mathrm{d} x$.

Theorem (YP-Tertikas-Tintarev (2008))

Let \mathbf{u} be a positive solution of $Q_{p, A, V}^{\prime}(u)=0$ in Ω. Then for all $\mathbf{u} \phi \in W^{1, p}(\Omega) \cap C_{c}(\Omega)$ we have

$$
Q_{p, A, V}(\mathbf{u} \phi) \asymp E_{\mathbf{u}}(\phi) \triangleq \int_{\Omega} \mathbf{u}^{2}|\nabla \phi|_{A}^{2}\left(\phi|\nabla \mathbf{u}|_{A}+\mathbf{u}|\nabla \phi|_{A}\right)^{p-2} \mathrm{~d} x,
$$

where the equivalence constant depends only on p. The functional $E_{\mathbf{u}}$ is called the simplified energy of $Q_{p, A, V}$.

$\mathcal{H}_{p}(\Omega, V)$ the space of Hardy-weights

First aim: characterize the space $\mathcal{H}_{p}(\Omega, V)$ of all Hardy-weights, i.e., functions $g \in L_{\text {loc }}^{1}(\Omega)$ such that the following Hardy-type inequality holds:

$$
\int_{\Omega}|g||\phi|^{p} \mathrm{~d} x \leq C Q_{p, A, V}(\phi) \quad \forall \phi \in W^{1, p}(\Omega) \cap C_{c}(\Omega)
$$

for some $C>0$.
Suppose that $Q_{p, A, V} \geq 0$ in Ω. If $\mathcal{H}_{p}(\Omega, V)=\{0\}$, then $Q_{p, A, V}$ is said to be critical in Ω, otherwise, $Q_{p, A, V}$ is subcritical in Ω. If $Q_{p, A, V} \nsupseteq 0$ in Ω, then $Q_{p, A, V}$ is said to be supercritical in Ω.
$Q_{p, A, V \text {-capacity }}$

Definition

Let \mathbf{u} be a positive solution of $Q_{p, A, V}(u)=0$ in Ω. For a compact set $F \Subset \Omega$, the $Q_{p, A, V}$-capacity of F with respect to (\mathbf{u}, Ω) is defined by

$$
\operatorname{Cap}_{\mathbf{u}}(F, \Omega) \triangleq \inf \left\{Q_{p, A, V}(\phi) \mid \phi \in \mathcal{N}_{F, \mathbf{u}}(\Omega)\right\}
$$

where $\mathcal{N}_{F, \mathbf{u}}(\Omega) \triangleq\left\{\phi \in W^{1, p}(\Omega) \cap C_{c}(\Omega) \mid \phi \geq \mathbf{u}\right.$ on $\left.F\right\}$.
$Q_{p, A, V}$-capacity

Definition

Let \mathbf{u} be a positive solution of $Q_{p, A, V}(u)=0$ in Ω. For a compact set $F \Subset \Omega$, the $Q_{p, A, V}$-capacity of F with respect to (\mathbf{u}, Ω) is defined by

$$
\operatorname{Cap}_{\mathbf{u}}(F, \Omega) \triangleq \inf \left\{Q_{p, A, V}(\phi) \mid \phi \in \mathcal{N}_{F, \mathbf{u}}(\Omega)\right\}
$$

where $\mathcal{N}_{F, \mathbf{u}}(\Omega) \triangleq\left\{\phi \in W^{1, p}(\Omega) \cap C_{c}(\Omega) \mid \phi \geq \mathbf{u}\right.$ on $\left.F\right\}$.
We equip $\mathcal{H}_{p}(\Omega, V)$ with the norm:

$$
\|g\|_{\mathcal{H}_{p}^{\mathbf{u}}(\Omega, V)} \triangleq \sup \left\{\left.\frac{\int_{F}|g \| \mathbf{u}|^{p} \mathrm{~d} x}{\operatorname{Cap}_{\mathbf{u}}(F, \Omega)} \right\rvert\, F \Subset \Omega \text { compact s.t. } \operatorname{Cap}_{\mathbf{u}}(F, \Omega) \neq 0\right\} .
$$

In fact, $\mathcal{H}_{p}(\Omega, V)$ is a Banach function space. Moreover, in the subcritical case, certain weighted Lebesgue spaces are embedded in $\mathcal{H}_{p}(\Omega, V)$.

Maz'ya-type characterization of Hardy-weights

$$
\|g\|_{\mathcal{H}_{\rho}^{u}(\Omega, V)}=\sup \left\{\left.\frac{\int_{F}|g \| \mathbf{u}|^{p} \mathrm{~d} x}{\operatorname{Cap}_{\mathbf{u}}(F, \Omega)} \right\rvert\, F \Subset \Omega \text { compact s.t. } \operatorname{Cap}_{\mathbf{u}}(F, \Omega) \neq 0\right\} .
$$

Theorem (YP - Das (2022))

Let $p \in(1, \infty)$, and \mathbf{u} be a positive solution of $Q_{p, A, V}(u)=0$ in Ω. Let $g \in L_{\text {loc }}^{1}(\Omega)$, then $\|g\|_{\mathcal{H}}^{\mathrm{u}}(\Omega, V)<\infty$ iff the Hardy-type inequality

$$
\begin{equation*}
\int_{\Omega}|g \| \phi|^{p} \mathrm{~d} x \leq C Q_{p, A, V}(\phi) \quad \forall \phi \in W^{1, p}(\Omega) \cap C_{c}(\Omega) \tag{HI}
\end{equation*}
$$

holds. Moreover, let $\mathcal{B}_{g}(\Omega, V)$ be the best constant in (HI), then

$$
\|g\|_{\mathcal{H}_{p}^{u}(\Omega, V)} \leq \mathcal{B}_{g}(\Omega, V) \leq C_{p}\|g\|_{\mathcal{H}_{p}^{u}(\Omega, V)}
$$

where C_{p} depends only on p. Furthermore, $\|g\|_{\mathcal{B}(\Omega, V)} \triangleq \mathcal{B}_{g}(\Omega, V)$ is an equivalent norm on $\mathcal{H}_{p}(\Omega, V)$. In particular, up to the equivalence relation of norms, the norm $\|\cdot\|_{\mathcal{H}_{p}^{u}(\Omega, V)}$ is independent of the positive solution \mathbf{u}.

Proof of necessity:

Let $g \in L_{\text {loc }}^{1}(\Omega)$ be a Hardy-weight. Let $F \subset \Omega$ be a compact set. Then for any ψ such that $\psi \mathbf{u} \in W^{1, p}(\Omega) \cap C_{c}(\Omega)$ with $\psi \geq 1$ on F

$$
\int_{F}\left|g \left\|\left.\mathbf{u}\right|^{p} \mathrm{~d} x \leq \int_{\Omega}|g \| \psi \mathbf{u}|^{p} \mathrm{~d} x \leq \mathcal{B}_{g}(\Omega, V) Q_{p, A, V}(\psi \mathbf{u})\right.\right.
$$

Taking the infimum over all $\psi \mathbf{u} \in W^{1, p}(\Omega) \cap C_{c}(\Omega)$ with $\psi \geq 1$ on F, we get

$$
\int_{F}|g \| \mathbf{u}|^{p} \mathrm{~d} x \leq \mathcal{B}_{g}(\Omega, V) \operatorname{Cap}_{\mathbf{u}}(F, \Omega) \quad \text { for all compact sets } F \text { in } \Omega .
$$

Hence, $\|g\|_{\mathcal{H}_{p}^{u}(\Omega, V)} \leq \mathcal{B}_{g}(\Omega, V)$.

Proof of Sufficiency:

Let $\|g\|_{\mathcal{H}_{\rho}^{u}(\Omega, V)}<\infty$ and $0 \leq \psi \in C_{c}^{\infty}(\Omega)$. Define

$$
\psi_{j}(x) \triangleq \begin{cases}0 & \text { if } \psi \leq 2^{j-1} \\ {\left[\frac{\psi}{2^{j-1}}-1\right]^{\alpha}} & \text { if } 2^{j-1} \leq \psi \leq 2^{j}, \\ 1 & \text { if } 2^{j} \leq \psi\end{cases}
$$

where $\alpha=1$ if $p \geq 2$, and $\alpha=2 / p$ if $p<2$.

Proof of Sufficiency:

Let $\|g\|_{\mathcal{H}}^{\mu(\Omega, V)} \ll \infty$ and $0 \leq \psi \in C_{c}^{\infty}(\Omega)$. Define

$$
\psi_{j}(x) \triangleq \begin{cases}0 & \text { if } \psi \leq 2^{j-1} \\ {\left[\frac{\psi}{2^{j-1}}-1\right]^{\alpha}} & \text { if } 2^{j-1} \leq \psi \leq 2^{j}, \quad-\infty<j<\infty, \\ 1 & \text { if } 2^{j} \leq \psi\end{cases}
$$

where $\alpha=1$ if $p \geq 2$, and $\alpha=2 / p$ if $p<2$. Since
$\int_{F}\left|g\left\|\left.\mathbf{u}\right|^{p} \mathrm{~d} x \leq\right\| g \|_{\mathcal{H}}^{p}(\Omega, V) \operatorname{Cap}_{\mathbf{u}}(F, \Omega), \forall F \Subset \Omega \operatorname{compact}, \operatorname{Cap}_{\mathbf{u}}(F, \Omega) \neq 0\right.$.

$$
\Longrightarrow \int_{\left\{\psi \geq 2^{j}\right\}}\left|g\left\|\left.\mathbf{u}\right|^{p} \mathrm{~d} x \leq\right\| g \|_{\mathcal{H}_{p}^{u}(\Omega, V)} Q_{p, A, V}\left(\mathbf{u} \psi_{j}\right) \quad \psi_{j}=1 \text { on } \psi \geq 2^{j}\right.
$$

Using the co-area formula, replacing $Q_{p, A, V}$ with the simplified energy, estimating ψ_{j} and $\nabla \psi_{j}$, and finally summing up, one obtains

$$
\int_{\Omega}\left|g\left\|\left.\mathbf{u} \psi\right|^{p} \mathrm{~d} x \leq C_{p}\right\| g \|_{\mathcal{H}_{p}^{u}(\Omega, V)} Q_{p, A, V}(\mathbf{u} \psi)\right.
$$

Definition (Beppo Levi space)

The generalized Beppo Levi space $\mathcal{D}_{A, V^{+}}^{1, p}(\Omega)$ is the completion of $W^{1, p}(\Omega) \cap C_{c}(\Omega)$ with respect to the norm

$$
\|\phi\|_{\mathcal{D}_{A, V^{+}}^{1, p}(\Omega)} \triangleq\left[\left\||\nabla \phi|_{A}\right\|_{L^{p}(\Omega)}^{p}+\|\phi\|_{L^{p}\left(\Omega, V^{+} d x\right)}^{p}\right]^{1 / p}
$$

For $g \in \mathcal{H}_{p}(\Omega, V)$, consider the generalized principal eigenvalue

$$
\mathbb{S}_{g}(\Omega, V) \triangleq \inf \left\{\left.Q_{p, A, V}(\phi)\left|\phi \in W^{1, p}(\Omega) \cap C_{c}(\Omega), \int_{\Omega}\right| g| | \phi\right|^{p} \mathrm{~d} x=1\right\}
$$

In fact,

$$
\mathbb{S}_{g}(\Omega, V)=\inf \left\{Q_{p, A, V}(\phi)\left|\phi \in \mathcal{D}_{A, V^{+}}^{1, p}(\Omega), \int_{\Omega}\right| g \|\left.\phi\right|^{p} \mathrm{~d} x=1\right\}
$$

We say that the best constant $\mathcal{B}_{g}(\Omega, V)$ is attained if $\mathbb{S}_{g}(\Omega, V)=\left(\mathcal{B}_{g}(\Omega, V)\right)^{-1}$ is attained in $\mathcal{D}_{A, V^{+}}^{1, p}(\Omega)$.

Sufficient condition for attainment of the best constant

$$
\text { Let } \quad \mathcal{H}_{p, 0}(\Omega, V) \triangleq \overline{\mathcal{H}_{p}(\Omega, V) \cap L_{c}^{\infty}(\Omega)} \|^{\|\cdot\|_{\mathcal{H} p(\Omega, V)}}
$$

Theorem (For the case $V=V^{+}$)
If $g \in \mathcal{H}_{p, 0}\left(\Omega, V^{+}\right)$, then the functional

$$
T_{g}(\phi) \triangleq \int_{\Omega}|g \| \phi|^{p} \mathrm{~d} x
$$

is compact on $\mathcal{D}_{A, V^{+}}^{1, p}(\Omega)$. In particular, $\mathcal{B}_{g}\left(\Omega, V^{+}\right)$is attained in $\mathcal{D}_{A, V^{+}}^{1, p}(\Omega)$.
Since $\mathcal{H}_{p, 0}(\Omega, V) \subset \mathcal{H}_{p, 0}\left(\Omega, V^{+}\right)$, it follows that if $g \in \mathcal{H}_{p, 0}(\Omega, V)$, then T_{g} is compact in $\mathcal{D}_{A, V^{+}}^{1, p}(\Omega)$.

Attainment of the best constant I (spectral gap condition)

Theorem

Assume that $A \in C^{\gamma}, g \in \mathcal{H}_{p}(\Omega, V) \cap \mathcal{M}_{\mathrm{loc}}^{q}(p ; \Omega)$, and

$$
\mathbb{S}_{g}(\Omega)<\mathbb{S}_{g}^{\bar{\infty}}(\Omega) \triangleq \sup \left\{K \in \Omega \mid \mathbb{S}_{g}(\Omega \backslash K)\right\} .
$$

Assume that $\int_{\Omega \backslash K_{1}} V^{-} G^{p} \mathrm{~d} x<\infty$, where G is a positive solution of the equation $Q_{p, A, V-\mathbb{S}_{g}(\Omega)|g|}^{\prime}[u]=0$ in $\Omega \backslash K$ of minimal growth in a neighborhood of infinity in Ω, where $K \in K_{1} \in \Omega$.
Then, $\mathcal{B}_{g}(\Omega)$ is attained in $\mathcal{D}_{A, V^{+}}^{1, p}(\Omega)$.
Proof's outline: If $\mathbb{S}_{g}(\Omega)<\mathbb{S}_{g}^{\bar{\infty}}(\Omega)$, then $Q_{p, A, V-\mathbb{S}_{g}(\Omega)|g|}$ is critical in Ω, with a ground state Φ and a null-sequence $0 \leq \phi_{n} \leq \Phi$. It follows that $\int_{\Omega}\left(V^{-}+|g|\right) \Phi^{p} \mathrm{~d} x<\infty, \hat{\phi}_{n} \rightharpoonup \Phi$ in $\mathcal{D}_{A, V^{+}}^{1, p}(\Omega)$, and we may pass to the limit in the identity:
$\int_{\Omega}\left|\nabla \phi_{n}\right|_{A}^{p} \mathrm{~d} x+\int_{\Omega} V_{+}\left|\phi_{n}\right|_{A}^{p} \mathrm{~d} x=Q_{p, A, V-\mathbb{S}_{g}(\Omega)|g|}\left(\phi_{n}\right)+\int_{\Omega} V_{-} \phi_{n}^{p} \mathrm{~d} x+\mathbb{S}_{g}(\Omega) \int_{\Omega}|g| \phi_{n}^{p} \mathrm{~d} x$.

Attainment of the best constant II (spectral gap condition)

For $x \in \bar{\Omega}$ and $g \in \mathcal{H}_{p}(\Omega, V)$, define the Hardy constant of g at x by
$\mathbb{S}_{g}(x, \Omega) \triangleq \liminf _{r \rightarrow 0}\left\{\left.Q_{p, A, V}(\phi)\left|\phi \in \mathcal{D}_{A, V^{+}}^{1, p}\left(\Omega \cap B_{r}(x)\right), \int_{\Omega \cap B_{r}(x)}\right| g| | \phi\right|^{p} \mathrm{~d} x=1\right\}$,
and let $\Sigma_{g} \triangleq\left\{x \in \bar{\Omega} \mid \mathbb{S}_{g}(x, \Omega)<\infty\right\}$, and $\mathbb{S}_{g}^{*}(\Omega) \triangleq \inf _{x \in \bar{\Omega}} \mathbb{S}_{g}(x, \Omega)$.
Theorem
Let Ω be a bounded domain, $V \in \mathcal{M}_{\mathrm{loc}}^{q}(p ; \Omega)$ s.t. $V^{-} \in \mathcal{H}_{p, 0}\left(\Omega, V^{+}\right)$.
Suppose that $g \in \mathcal{H}_{p}(\Omega, V)$ s.t. $\left|\overline{\Sigma_{g}}\right|=0$.
If $\mathbb{S}_{g}(\Omega)<\mathbb{S}_{g}^{*}(\Omega)$, then $\mathcal{B}_{g}(\Omega)$ is attained in $\mathcal{D}_{A, V^{+}}^{1, p}(\Omega)$.
The proof relies on concentration compactness arguments.

Thank you for your attention!

