Coupling and doubling and timely decay

Alessio Porretta
University of Rome Tor Vergata
Mostly Maximum Principle
Cortona, May 30-June 3, 2022

Coupling and doubling and timely decay Isn't what nature has meant us to play?
[E. Kean: "Shakespeare's flowers", 1833]

A classical issue: analyse the convergence of solutions of FP equations in \mathbb{R}^{d} towards the unique stationary invariant measure

$$
\left\{\begin{array}{l}
\partial_{t} m+L m-\operatorname{div}(b(x) m)=0 \\
m(0)=m_{0}, \int_{\mathbb{R}^{d}} m_{0}=1
\end{array} \quad \xrightarrow{t \rightarrow \infty} \quad \bar{m}: \quad\left\{\begin{array}{l}
L(\bar{m})=\operatorname{div}(b \bar{m}), \\
\int_{\mathbb{R}^{d}} \bar{m}=1
\end{array}\right.\right.
$$

where L is a diffusion process (local or nonlocal).

A classical issue: analyse the convergence of solutions of FP equations in \mathbb{R}^{d} towards the unique stationary invariant measure

$$
\left\{\begin{array}{l}
\partial_{t} m+L m-\operatorname{div}(b(x) m)=0 \\
m(0)=m_{0}, \int_{\mathbb{R}^{d}} m_{0}=1
\end{array} \quad \xrightarrow{t \rightarrow \infty} \quad \bar{m}: \quad\left\{\begin{array}{l}
L(\bar{m})=\operatorname{div}(b \bar{m}), \\
\int_{\mathbb{R}^{d}} \bar{m}=1
\end{array}\right.\right.
$$

where L is a diffusion process (local or nonlocal).
Related to ergodicity of the associated stochastic process X_{t} :

$$
\underbrace{\frac{1}{T} \mathbb{E} \int_{0}^{T} \varphi\left(X_{t}\right) d t}_{=\frac{1}{T} \int_{0}^{T} \int_{\mathbb{R}^{d}} \varphi d m(t, x)} \xrightarrow{T \rightarrow \infty} \int_{\mathbb{R}^{d}} \varphi d \bar{m} \quad \forall \varphi \in C_{c}\left(\mathbb{R}^{d}\right)
$$

Model example is the Ornstein-Ulhenbeck process in \mathbb{R}^{d}.

$$
\begin{aligned}
d X_{t}=-X_{t} d t & +\sqrt{2} d B_{t} \quad \rightarrow \partial_{t} m-\Delta m-\operatorname{div}(x m)=0 \\
& \rightsquigarrow \text { FP equations with confining drift }
\end{aligned}
$$

Rate of convergence \rightsquigarrow time decay analysis

Rephrase the problem as time decay for zero average distributions:

$$
\left\{\begin{array}{l}
\partial_{t} \mu+L \mu-\operatorname{div}(b(t, x) \mu)=0 \\
\mu(0)=\mu_{0}, \int_{\mathbb{R}^{d}} \mu_{0}=0
\end{array} \quad \rightarrow \quad\|\mu(t)\| x \xrightarrow{t \rightarrow \infty} 0\right.
$$

Rate of convergence \rightsquigarrow time decay analysis

Rephrase the problem as time decay for zero average distributions:

$$
\left\{\begin{array}{l}
\partial_{t} \mu+L \mu-\operatorname{div}(b(t, x) \mu)=0 \\
\mu(0)=\mu_{0}, \int_{\mathbb{R}^{d}} \mu_{0}=0
\end{array} \quad \rightarrow \quad\|\mu(t)\| x \xrightarrow{t \rightarrow \infty} 0\right.
$$

Main focus: L can be a Levy operator
$L v=-\operatorname{tr}\left(Q(x) D^{2} v\right)-B \cdot D v-\int_{\mathbb{R}^{d}}\left\{v(x+z)-v(x)-(D v(x) \cdot z) 1_{|z| \leq 1}\right\} \nu(d z)$
Model case: the fractional Laplacian $\nu=\frac{d z}{|z| d+\alpha}$

Rate of convergence \rightsquigarrow time decay analysis

Rephrase the problem as time decay for zero average distributions:

$$
\left\{\begin{array}{l}
\partial_{t} \mu+L \mu-\operatorname{div}(b(t, x) \mu)=0 \\
\mu(0)=\mu_{0}, \int_{\mathbb{R}^{d}} \mu_{0}=0
\end{array} \quad \rightarrow\|\mu(t)\| x \xrightarrow{t \rightarrow \infty} 0\right.
$$

Main focus: L can be a Levy operator
$L v=-\operatorname{tr}\left(Q(x) D^{2} v\right)-B \cdot D v-\int_{\mathbb{R}^{d}}\left\{v(x+z)-v(x)-(D v(x) \cdot z) 1_{|z| \leq 1}\right\} \nu(d z)$
Model case: the fractional Laplacian $\nu=\frac{d z}{|z| d+\alpha}$
Motivation: Long time behavior of Nash equilibria in Mean-field game theory
In that context: b depends on the individual strategies
$\rightsquigarrow b(t, x)=H_{p}(x, D u)$, where u is the value function of the agents

Rate of convergence \rightsquigarrow time decay analysis

Rephrase the problem as time decay for zero average distributions:

$$
\left\{\begin{array}{l}
\partial_{t} \mu+L \mu-\operatorname{div}(b(t, x) \mu)=0 \\
\mu(0)=\mu_{0}, \int_{\mathbb{R}^{d}} \mu_{0}=0
\end{array} \quad \rightarrow\|\mu(t)\| x \xrightarrow{t \rightarrow \infty} 0\right.
$$

Main focus: L can be a Levy operator
$L v=-\operatorname{tr}\left(Q(x) D^{2} v\right)-B \cdot D v-\int_{\mathbb{R}^{d}}\left\{v(x+z)-v(x)-(D v(x) \cdot z) 1_{|z| \leq 1}\right\} \nu(d z)$
Model case: the fractional Laplacian $\nu=\frac{d z}{|z| d+\alpha}$
Motivation: Long time behavior of Nash equilibria in Mean-field game theory
In that context: b depends on the individual strategies
$\rightsquigarrow b(t, x)=H_{p}(x, D u)$, where u is the value function of the agents
Main point: $b(t, x)$ is not very regular, it is time-dependent, it is not well-known a priori, etc...
\rightsquigarrow need a very robust study of FP equation

Typical results for $\left\{\begin{array}{l}\partial_{t} m-\Delta m-\operatorname{div}(b(x) m)=0 \\ \int m_{0}=0\end{array}\right.$

- Rate is exponential if $b(x) \cdot x \geq|x|^{2}$ for $|x| \rightarrow+\infty$ (es. Ornstein-Uhlenbeck semigroup)

$$
\|m(t)\|_{X} \leq e^{-\omega t}\left\|m_{0}\right\|_{X}
$$

Typical results for $\left\{\begin{array}{l}\partial_{t} m-\Delta m-\operatorname{div}(b(x) m)=0 \\ \int m_{0}=0\end{array}\right.$

- Rate is exponential if $b(x) \cdot x \geq|x|^{2}$ for $|x| \rightarrow+\infty$ (es. Ornstein-Uhlenbeck semigroup)

$$
\|m(t)\|_{x} \leq e^{-\omega t}\left\|m_{0}\right\|_{X}
$$

- Rate is slower if $b(x) \cdot x \geq|x|^{\gamma}$ for $|x| \rightarrow+\infty$, with $\gamma \in(0,2)$ (slowly confining drifts \rightsquigarrow sub-geometrical rate)

Typical results for $\left\{\begin{array}{l}\partial_{t} m-\Delta m-\operatorname{div}(b(x) m)=0 \\ \int m_{0}=0\end{array}\right.$

- Rate is exponential if $b(x) \cdot x \geq|x|^{2}$ for $|x| \rightarrow+\infty$ (es. Ornstein-Uhlenbeck semigroup)

$$
\|m(t)\|_{x} \leq e^{-\omega t}\left\|m_{0}\right\|_{X}
$$

- Rate is slower if $b(x) \cdot x \geq|x|^{\gamma}$ for $|x| \rightarrow+\infty$, with $\gamma \in(0,2)$ (slowly confining drifts \rightsquigarrow sub-geometrical rate)
- Natural choice of X is a L^{1}-weighted space:

$$
\text { es: } \quad X=L^{1}\left(\langle x\rangle^{\kappa}\right), \quad\langle x\rangle=\sqrt{1+|x|^{2}}
$$

This implies decay in L^{1}-norm for $m(t)$ but requires some finite moments on the initial data m_{0}.

A (very partial !) look at the (very huge !) literature \rightsquigarrow two major axes

1. Approach by energy/entropy methods

Typical target:

$$
\partial_{t} m \underbrace{-\Delta m-\operatorname{div}(\nabla V m)}_{L m}=0
$$

A (very partial !) look at the (very huge !) literature \rightsquigarrow two major axes

1. Approach by energy/entropy methods

Typical target:

$$
\partial_{t} m \underbrace{-\Delta m-\operatorname{div}(\nabla V m)}_{L m}=0
$$

- Spectral gap in $L^{2}\left(e^{V}\right)$
[Gross '75, Liggett '91, Rockner-F.Y. Wang '01...semigroup theory...

A (very partial !) look at the (very huge !) literature \rightsquigarrow two major axes

1. Approach by energy/entropy methods

Typical target:

$$
\partial_{t} m \underbrace{-\Delta m-\operatorname{div}(\nabla V m)}_{L m}=0
$$

- Spectral gap in $L^{2}\left(e^{V}\right)$
[Gross '75, Liggett '91, Rockner-F.Y. Wang '01...semigroup theory...
- entropy dissipation

$$
\frac{d}{d t} H\left(m \mid e^{-V}\right) \leq-\gamma H\left(m \mid e^{-V}\right), \quad H\left(m \mid e^{-V}\right):=\int m(\log m+V) d x
$$

[Toscani, Villani, Markovich, Carrillo...]

A (very partial !) look at the (very huge !) literature \rightsquigarrow two major axes

1. Approach by energy/entropy methods

Typical target:

$$
\partial_{t} m \underbrace{-\Delta m-\operatorname{div}(\nabla V m)}_{L m}=0
$$

- Spectral gap in $L^{2}\left(e^{V}\right)$
[Gross '75, Liggett '91, Rockner-F.Y. Wang '01...semigroup theory...
- entropy dissipation
$\frac{d}{d t} H\left(m \mid e^{-V}\right) \leq-\gamma H\left(m \mid e^{-V}\right), \quad H\left(m \mid e^{-V}\right):=\int m(\log m+V) d x$
[Toscani, Villani, Markovich, Carrillo...]
- Extensions to fractional Laplacian: [Biler-Karch '03, Tristani '15, Gentil-Imbert '09,]

Key tools are functional inequalities: Poincaré inequality (strong and weak forms), log-Sobolev inequality... (Gross, Bakry-Emery, Villani..)

1. Approach by probabilistic methods/ideas
[Meyn \&Tweedie '93, Douc-Fort-Guillin '09, Hairer, Hairer-Mattingly '11, ...] Typical setting:

$$
m(t)=e^{t A} m_{0}
$$

where A is a diffusion process.

1. Approach by probabilistic methods/ideas

[Meyn \&Tweedie '93, Douc-Fort-Guillin '09, Hairer, Hairer-Mattingly '11, ...] Typical setting:

$$
m(t)=e^{t A} m_{0}
$$

where A is a diffusion process.

- \exists of a Lyapunov function + local strict positivity of the semigroup \rightsquigarrow exponential decay. In rough terms:

$$
\left\{\begin{array}{l}
\exists \varphi(x): A^{*} \varphi \geq \gamma \varphi-C 1_{K}, K \text { compact } \\
m(t, x) \geq \nu>0 \quad \forall x \in K
\end{array} \quad \Rightarrow\|m(t)\| x \leq C e^{-\omega t}\left\|m_{0}\right\|_{x}\right.
$$

where X is a L^{1}-weighted space (depends on Lyapunov function φ).

1. Approach by probabilistic methods/ideas

[Meyn \&Tweedie '93, Douc-Fort-Guillin '09, Hairer, Hairer-Mattingly '11, ...] Typical setting:

$$
m(t)=e^{t A} m_{0}
$$

where A is a diffusion process.

- \exists of a Lyapunov function + local strict positivity of the semigroup \rightsquigarrow exponential decay. In rough terms:

$$
\left\{\begin{array}{l}
\exists \varphi(x): A^{*} \varphi \geq \gamma \varphi-C 1_{K}, K \text { compact } \\
m(t, x) \geq \nu>0 \quad \forall x \in K
\end{array} \quad \Rightarrow\|m(t)\| x \leq C e^{-\omega t}\left\|m_{0}\right\|_{x}\right.
$$

where X is a L^{1}-weighted space (depends on Lyapunov function φ).

1. Approach by probabilistic methods/ideas

[Meyn \&Tweedie '93, Douc-Fort-Guillin '09, Hairer, Hairer-Mattingly '11, ...] Typical setting:

$$
m(t)=e^{t A} m_{0}
$$

where A is a diffusion process.

- \exists of a Lyapunov function + local strict positivity of the semigroup \rightsquigarrow exponential decay. In rough terms:

$$
\left\{\begin{array}{l}
\exists \varphi(x): A^{*} \varphi \geq \gamma \varphi-C 1_{K}, K \text { compact } \\
m(t, x) \geq \nu>0 \quad \forall x \in K
\end{array} \quad \Rightarrow\|m(t)\| x \leq C e^{-\omega t}\left\|m_{0}\right\|_{x}\right.
$$

where X is a L^{1}-weighted space (depends on Lyapunov function φ).

- Further works also used a mix of ingredients (Lyapunov + Poincaré, decomposition methods... See e.g. [Bakry-Cattiaux-Guillin JFA '08], [Mischler, Mouhot-Mischler '09, Kavian-Mischler-Ndao '21], [LaFleche'20],...

We suggest a simplification/generalization of some of the previous ideas

We suggest a simplification/generalization of some of the previous ideas

- By duality, the decay of FP equations is entirely deduced from dissipation estimates of drift-diffusion equations

We suggest a simplification/generalization of some of the previous ideas

- By duality, the decay of FP equations is entirely deduced from dissipation estimates of drift-diffusion equations
- The core lies in new weighted oscillation estimates for

$$
\left\{\begin{array}{l}
\partial_{t} u+L^{*} u+b(t, x) \cdot D u=0 \\
u(0)=u_{0}
\end{array}\right.
$$

We define the seminorm

$$
[u]_{\varphi}:=\sup _{x, y \in \mathbb{R}^{2 d}} \frac{|u(x)-u(y)|}{\varphi(x)+\varphi(y)}
$$

where typically $\varphi(x)$ is a Lyapunov function.

We suggest a simplification/generalization of some of the previous ideas

- By duality, the decay of FP equations is entirely deduced from dissipation estimates of drift-diffusion equations
- The core lies in new weighted oscillation estimates for

$$
\left\{\begin{array}{l}
\partial_{t} u+L^{*} u+b(t, x) \cdot D u=0 \\
u(0)=u_{0}
\end{array}\right.
$$

We define the seminorm

$$
[u]_{\varphi}:=\sup _{x, y \in \mathbb{R}^{2 d}} \frac{|u(x)-u(y)|}{\varphi(x)+\varphi(y)}
$$

where typically $\varphi(x)$ is a Lyapunov function. Special case: $\varphi(x)$ is of power-type:

$$
[u]_{\langle x\rangle^{k}}=\sup _{x, y \in \mathbb{R}^{2 d}} \frac{|u(x)-u(y)|}{\langle x\rangle^{k}+\langle y\rangle^{k}}, \quad\langle x\rangle=\sqrt{1+|x|^{2}} .
$$

Sample result: fractional Laplacian + drift

$$
\left\{\begin{array}{l}
\partial_{t} u+(-\Delta)^{\alpha / 2} u+b(t, x) \cdot D u=0 \quad t>0 \\
u(0)=u_{0}
\end{array}\right.
$$

Theorem (A)

Assume that

$$
b(t, x) \cdot x \geq \lambda|x|^{2} \quad \forall(x, t):|x| \text { is large }
$$

Under either of the following conditions:
(i) $\alpha \in(1,2]$ and $(b(t, x)-b(t, y)) \cdot(x-y) \geq-c_{0}|x-y|$, for all t, x, y
(ii) $\alpha \in(0,1]$ and
$(b(t, x)-b(t, y)) \cdot(x-y) \geq-c_{0}|x-y|\left(1 \wedge|x-y|^{1-\alpha+\delta}\right)$,
for some $\delta>0, c_{0}>0$,
then there exist K, ω :

$$
[u(t)]_{\langle x\rangle^{k}} \leq K e^{-\omega t}\left[u_{0}\right]_{\langle x\rangle^{k}}
$$

Theorem (B)

Under the same conditions of Theorem (A), the solution of the FP equation

$$
\left\{\begin{array}{l}
\partial_{t} m+(-\Delta)^{\alpha / 2} m-\operatorname{div}(b(t, x) m)=0 \\
\mu(0)=m_{0}, \int_{\mathbb{R}^{d}} m_{0}=0
\end{array}\right.
$$

decays exponentially:

$$
\|m(t)\|_{L^{1}\left(\langle x)^{\kappa}\right)} \leq K e^{-\omega t}\left\|m_{0}\right\|_{L^{1}\left((x)^{k}\right)}
$$

Theorem (B)

Under the same conditions of Theorem (A), the solution of the FP equation

$$
\left\{\begin{array}{l}
\partial_{t} m+(-\Delta)^{\alpha / 2} m-\operatorname{div}(b(t, x) m)=0 \\
\mu(0)=m_{0}, \int_{\mathbb{R}^{d}} m_{0}=0
\end{array}\right.
$$

decays exponentially:

$$
\|m(t)\|_{L^{1}\left(\langle x\rangle^{\kappa}\right)} \leq K e^{-\omega t}\left\|m_{0}\right\|_{L^{1}\left(\langle x\rangle^{k}\right)}
$$

Rmk: the conditions on the drift are $b(t, x) \cdot x \geq|x|^{2}$ for $|x| \rightarrow \infty$ and
(i) $\alpha \in(1,2]$ and $(b(t, x)-b(t, y)) \cdot(x-y) \geq-c_{0}|x-y|$,
(ii) $\alpha \in(0,1]$ and, for some $\delta>0$,
$(b(t, x)-b(t, y)) \cdot(x-y) \geq-c_{0}|x-y|\left(1 \wedge|x-y|^{1-\alpha+\delta}\right)$

- for $\alpha \in(1,2]$ (elliptic case), minimal requirements on $b(t, x)$: "confining at infinity + locally bounded".

Theorem (B)

Under the same conditions of Theorem (A), the solution of the FP equation

$$
\left\{\begin{array}{l}
\partial_{t} m+(-\Delta)^{\alpha / 2} m-\operatorname{div}(b(t, x) m)=0 \\
\mu(0)=m_{0}, \int_{\mathbb{R}^{d}} m_{0}=0
\end{array}\right.
$$

decays exponentially:

$$
\|m(t)\|_{L^{1}\left(\langle x\rangle^{\kappa}\right)} \leq K e^{-\omega t}\left\|m_{0}\right\|_{L^{1}\left(\langle x\rangle^{k}\right)}
$$

Rmk: the conditions on the drift are $b(t, x) \cdot x \geq|x|^{2}$ for $|x| \rightarrow \infty$ and
(i) $\alpha \in(1,2]$ and $(b(t, x)-b(t, y)) \cdot(x-y) \geq-c_{0}|x-y|$,
(ii) $\alpha \in(0,1]$ and, for some $\delta>0$,
$(b(t, x)-b(t, y)) \cdot(x-y) \geq-c_{0}|x-y|\left(1 \wedge|x-y|^{1-\alpha+\delta}\right)$

- for $\alpha \in(1,2]$ (elliptic case), minimal requirements on $b(t, x)$: "confining at infinity + locally bounded".
- for $\alpha \in(0,1]$, some local Hölder regularity is required on the (non dissipative part of) drift $b(t, x)$.

Proof of Thm (B) from Thm (A):

- By duality we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \xi m(t) d x & =\int_{\mathbb{R}^{d}} m_{0} u(0) d x \\
\forall \xi, u & :\left\{\begin{array}{l}
-\partial_{t} u+(-\Delta)^{\alpha / 2} u+b(t, x) \cdot D u=0 \quad \text { in }(0, t) \\
u(t)=\xi
\end{array}\right.
\end{aligned}
$$

Proof of Thm (B) from Thm (A):

- By duality we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \xi m(t) d x & =\int_{\mathbb{R}^{d}} m_{0} u(0) d x \\
\forall \xi, u & :\left\{\begin{array}{l}
-\partial_{t} u+(-\Delta)^{\alpha / 2} u+b(t, x) \cdot D u=0 \quad \text { in }(0, t) \\
u(t)=\xi,
\end{array}\right.
\end{aligned}
$$

- Using m_{0} with zero average we have, $\forall c \in \mathbb{R}$

$$
\begin{align*}
\int_{\mathbb{R}^{d}} \xi m(t) d x=\int_{\mathbb{R}^{d}} m_{0} u(0) d x & =\int_{\mathbb{R}^{d}} m_{0}(u(0)+c) d x \tag{1}\\
& \leq\|u(0)+c\|_{L^{\infty}(\langle x\rangle-k d x)}\left\|m_{0}\right\|_{L^{1}\left(\langle x)^{k}\right)}
\end{align*}
$$

Proof of Thm (B) from Thm (A):

- By duality we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \xi m(t) d x & =\int_{\mathbb{R}^{d}} m_{0} u(0) d x \\
\forall \xi, u & :\left\{\begin{array}{l}
-\partial_{t} u+(-\Delta)^{\alpha / 2} u+b(t, x) \cdot D u=0 \quad \text { in }(0, t) \\
u(t)=\xi,
\end{array}\right.
\end{aligned}
$$

- Using m_{0} with zero average we have, $\forall c \in \mathbb{R}$

$$
\begin{align*}
\int_{\mathbb{R}^{d}} \xi m(t) d x=\int_{\mathbb{R}^{d}} m_{0} u(0) d x & =\int_{\mathbb{R}^{d}} m_{0}(u(0)+c) d x \tag{1}\\
& \leq\|u(0)+c\|_{L^{\infty}\left(\langle x\rangle^{-k} d x\right)}\left\|m_{0}\right\|_{L^{1}\left(\langle x\rangle^{k}\right)}
\end{align*}
$$

- We use equivalence of seminorms

$$
\inf _{c \in \mathbb{R}}\|u+c\|_{\left.L^{\infty}(\langle x\rangle\rangle^{-k} d x\right)}=\sup _{x, y \in \mathbb{R}^{2 d}} \frac{|u(x)-u(y)|}{\langle x\rangle^{k}+\langle y\rangle^{k}}=[u]_{\langle x\rangle^{k}}
$$

Proof of Thm (B) from Thm (A):

- By duality we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \xi m(t) d x & =\int_{\mathbb{R}^{d}} m_{0} u(0) d x \\
\forall \xi, u & :\left\{\begin{array}{l}
-\partial_{t} u+(-\Delta)^{\alpha / 2} u+b(t, x) \cdot D u=0 \quad \text { in }(0, t) \\
u(t)=\xi
\end{array}\right.
\end{aligned}
$$

- Using m_{0} with zero average we have, $\forall c \in \mathbb{R}$

$$
\begin{align*}
\int_{\mathbb{R}^{d}} \xi m(t) d x=\int_{\mathbb{R}^{d}} m_{0} u(0) d x & =\int_{\mathbb{R}^{d}} m_{0}(u(0)+c) d x \tag{1}\\
& \left.\leq\|u(0)+c\|_{L^{\infty}(\langle x\rangle-k} d x\right)\left\|m_{0}\right\|_{L^{1}\left(\langle x\rangle^{k}\right)}
\end{align*}
$$

- We use equivalence of seminorms

$$
\inf _{c \in \mathbb{R}}\|u+c\|_{L^{\infty}\left(\langle x\rangle^{-k} d x\right)}=\sup _{x, y \in \mathbb{R}^{2 d}} \frac{|u(x)-u(y)|}{\langle x\rangle^{k}+\langle y\rangle^{k}}=[u]_{\langle x\rangle^{k}}
$$

- We minimize on c in (1) and use Thm (A)

$$
\int_{\mathbb{R}^{d}} \xi m(t) d x \leq\left\|m_{0}\right\|_{L^{1}\left(\langle x\rangle^{k}\right)}[u(0)]_{\langle x\rangle^{k}} \leq\left\|m_{0}\right\|_{L^{1}\left(\langle x\rangle^{k}\right)} K e^{-\omega t}\|\xi\|_{L^{\infty}\left(\langle x\rangle^{-k} d x\right)}
$$

We prove similar results for the slowly confining case:

$$
\begin{equation*}
b(t, x) \cdot x \geq c|x|^{\gamma} \quad \forall(x, t):|x| \text { is large } \tag{2}
\end{equation*}
$$

whenever

$$
\gamma \in(0,2)
$$

Theorem

Assume that b satisfies (2) with $\gamma \in(2-\alpha, 2)$ and b satisfies the conditions of Theorem (A). Let m be the solution of the FP equation

$$
\left\{\begin{array}{l}
\partial_{t} m+(-\Delta)^{\alpha / 2} m-\operatorname{div}(b(t, x) m)=0 \\
\mu(0)=m_{0}, \int_{\mathbb{R}^{d}} m_{0}=0 .
\end{array}\right.
$$

Then, for any $k \in(2-\gamma, \alpha)$ and $\bar{k}>k$, we have

$$
\|m(t)\|_{L^{1}\left(\langle \rangle^{k}\right)} \leq K(1+t)^{-q}\left\|m_{0}\right\|_{\left.L^{1}(\langle \rangle\rangle^{\bar{k}}\right)} \quad \text { where } q=\frac{\bar{k}-k}{2-\gamma} .
$$

Main novelty of this approach: decay of FP equations \Longleftrightarrow decay in weighted seminorms for drift-diffusion eqs

$$
\left\{\begin{array}{l}
\partial_{t} u+(-\Delta)^{\alpha / 2} u+b(t, x) \cdot D u=0 \quad t>0 \\
u(0)=u_{0},
\end{array} \quad \rightsquigarrow \quad[u(t)]_{\langle x\rangle^{k}} \leq K e^{-\omega t}\left[u_{0}\right]_{\langle x\rangle^{k}} .\right.
$$

Main novelty of this approach: decay of FP equations \Longleftrightarrow decay in weighted seminorms for drift-diffusion eqs

$$
\left\{\begin{array}{l}
\partial_{t} u+(-\Delta)^{\alpha / 2} u+b(t, x) \cdot D u=0 \quad t>0 \\
u(0)=u_{0}, \\
\quad \rightsquigarrow \quad[u(t)]_{\langle x\rangle^{k}} \leq K e^{-\omega t}\left[u_{0}\right]_{\langle x\rangle^{k}}
\end{array}\right.
$$

Rephrasing:

$$
\begin{equation*}
\exists \omega, K>0: u(t, x)-u(t, y) \leq K e^{-\omega t}\left(\langle x\rangle^{k}+\langle y\rangle^{k}\right) \tag{3}
\end{equation*}
$$

Main novelty of this approach: decay of FP equations \Longleftrightarrow decay in weighted seminorms for drift-diffusion eqs

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\partial_{t} u+(-\Delta)^{\alpha / 2} u+b(t, x) \cdot D u=0 \quad t>0 \\
u(0)=u_{0},
\end{array}\right. \\
\quad \rightsquigarrow \quad[u(t)]_{\langle x\rangle^{k}} \leq K e^{-\omega t}\left[u_{0}\right]_{\langle x\rangle^{k}}
\end{array}\right.
$$

Rephrasing:

$$
\begin{equation*}
\exists \omega, K>0: u(t, x)-u(t, y) \leq K e^{-\omega t}\left(\langle x\rangle^{k}+\langle y\rangle^{k}\right) \tag{3}
\end{equation*}
$$

Main idea: (3) is OK if we prove

$$
\begin{equation*}
u(t, x)-u(t, y) \leq e^{-\omega t}\left\{K\left[\langle x\rangle^{k}+\langle y\rangle^{k}\right]+\psi(|x-y|)\right\} \tag{4}
\end{equation*}
$$

for some bounded $\psi(\cdot)$.

Main novelty of this approach: decay of FP equations \Longleftrightarrow decay in weighted seminorms for drift-diffusion eqs

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\partial_{t} u+(-\Delta)^{\alpha / 2} u+b(t, x) \cdot D u=0 \quad t>0 \\
u(0)=u_{0},
\end{array}\right. \\
\quad \rightsquigarrow \quad[u(t)]_{\langle x\rangle^{k}} \leq K e^{-\omega t}\left[u_{0}\right]_{\langle x\rangle^{k}}
\end{array}\right.
$$

Rephrasing:

$$
\begin{equation*}
\exists \omega, K>0: u(t, x)-u(t, y) \leq K e^{-\omega t}\left(\langle x\rangle^{k}+\langle y\rangle^{k}\right) \tag{3}
\end{equation*}
$$

Main idea: (3) is OK if we prove

$$
\begin{equation*}
u(t, x)-u(t, y) \leq e^{-\omega t}\left\{K\left[\langle x\rangle^{k}+\langle y\rangle^{k}\right]+\psi(|x-y|)\right\} \tag{4}
\end{equation*}
$$

for some bounded $\psi(\cdot)$.

- $\psi(|x-y|)$ takes care of small range interactions

Typically: ψ is a concave bounded function which is locally Hölder

- long range interactions only happen at infinity \rightsquigarrow dominated by the Lyapunov function

Decay of weighted seminorms:

$$
\begin{equation*}
u(t, x)-u(t, y) \leq e^{-\omega t}\{K \underbrace{\left[\langle x\rangle^{k}+\langle y\rangle^{k}\right]}_{\text {Lyapunov }}+\underbrace{\psi(|x-y|)}_{\text {local ellipticity }}\} \tag{5}
\end{equation*}
$$

- Estimate (5) is an evidence of ergodicity of the underlying process. Similar results exist in the probabilistic literature in the form of contraction estimates for transition probabilities in Wasserstein's metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...

Decay of weighted seminorms:

$$
\begin{equation*}
u(t, x)-u(t, y) \leq e^{-\omega t}\{K \underbrace{\left[\langle x\rangle^{k}+\langle y\rangle^{k}\right]}_{\text {Lyapunov }}+\underbrace{\psi(|x-y|)}_{\text {local ellipticity }}\} \tag{5}
\end{equation*}
$$

- Estimate (5) is an evidence of ergodicity of the underlying process. Similar results exist in the probabilistic literature in the form of contraction estimates for transition probabilities in Wasserstein's metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...
- Our proof is entirely analytic and quite elementary: max. principle + doubling variables' method

Decay of weighted seminorms:

$$
\begin{equation*}
u(t, x)-u(t, y) \leq e^{-\omega t}\{K \underbrace{\left[\langle x\rangle^{k}+\langle y\rangle^{k}\right]}_{\text {Lyapunov }}+\underbrace{\psi(|x-y|)}_{\text {local ellipticity }}\} \tag{5}
\end{equation*}
$$

- Estimate (5) is an evidence of ergodicity of the underlying process. Similar results exist in the probabilistic literature in the form of contraction estimates for transition probabilities in Wasserstein's metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...
- Our proof is entirely analytic and quite elementary: max. principle + doubling variables' method
We upgrade (especially for nonlocal diffusions) the method developed in [lshii-Lions '92] for viscosity solutions, extended to nonlocal operators in [Barles-Chasseigne-Imbert '11], [Barles-Chasseigne-Ciomaga-Imbert '13] (see also [Barles-Ley-Topp '17], [Chasseigne-Ley-Nguyen]..)

Decay of weighted seminorms:

$$
\begin{equation*}
u(t, x)-u(t, y) \leq e^{-\omega t}\{K \underbrace{\left[\langle x\rangle^{k}+\langle y\rangle^{k}\right]}_{\text {Lyapunov }}+\underbrace{\psi(|x-y|)}_{\text {local ellipticity }}\} \tag{5}
\end{equation*}
$$

- Estimate (5) is an evidence of ergodicity of the underlying process. Similar results exist in the probabilistic literature in the form of contraction estimates for transition probabilities in Wasserstein's metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...
- Our proof is entirely analytic and quite elementary: max. principle + doubling variables' method
We upgrade (especially for nonlocal diffusions) the method developed in [Ishii-Lions '92] for viscosity solutions, extended to nonlocal operators in [Barles-Chasseigne-Imbert '11], [Barles-Chasseigne-Ciomaga-Imbert '13] (see also [Barles-Ley-Topp '17], [Chasseigne-Ley-Nguyen]..)
Key-point: [P.-Priola '12]:
PDE doubling variables methods \leftrightarrow probabilistic coupling methods

Coupling method in probability

[Doeblin '38], [Lindvall, Rogers '86], [Chen-Li '89], [F.Y. Wang '11]... Given a process X_{t} starting from $x \in \mathbb{R}^{d}, Y_{t}$ starting from $y \in \mathbb{R}^{d}$ \rightsquigarrow look for a new process Z_{t} in the product space $\mathbb{R}^{2 d}$:
(i) the marginal laws of Z_{t} are the laws of X_{t}, Y_{t} respectively
(ii) $Z_{t}=\left(X_{t}, X_{t}\right)$ after the first time Z_{t} hits the diagonal $\Delta:=\{x=y\}$.

Coupling method in probability

[Doeblin '38], [Lindvall, Rogers '86], [Chen-Li '89], [F.Y. Wang '11]... Given a process X_{t} starting from $x \in \mathbb{R}^{d}, Y_{t}$ starting from $y \in \mathbb{R}^{d}$ \rightsquigarrow look for a new process Z_{t} in the product space $\mathbb{R}^{2 d}$:
(i) the marginal laws of Z_{t} are the laws of X_{t}, Y_{t} respectively
(ii) $Z_{t}=\left(X_{t}, X_{t}\right)$ after the first time Z_{t} hits the diagonal $\Delta:=\{x=y\}$.

Goal: optimize the estimate

$$
u(t, x)-u(t, y)=\mathbb{E}_{z_{t}}\left[u_{0}\left(x_{t}\right)-u_{0}\left(y_{t}\right)\right] \leq 2\left\|u_{0}\right\|_{\infty} \mathbb{P}\left(t<T_{c}\right)
$$

\rightsquigarrow the Lipschitz estimate is reduced to estimate the hitting time of the diagonal T_{c} (best over all couplings !)

Coupling method in probability

[Doeblin '38], [Lindvall, Rogers '86], [Chen-Li '89], [F.Y. Wang '11]... Given a process X_{t} starting from $x \in \mathbb{R}^{d}, Y_{t}$ starting from $y \in \mathbb{R}^{d}$ \rightsquigarrow look for a new process Z_{t} in the product space $\mathbb{R}^{2 d}$:
(i) the marginal laws of Z_{t} are the laws of X_{t}, Y_{t} respectively
(ii) $Z_{t}=\left(X_{t}, X_{t}\right)$ after the first time Z_{t} hits the diagonal $\Delta:=\{x=y\}$.

Goal: optimize the estimate

$$
u(t, x)-u(t, y)=\mathbb{E}_{z_{t}}\left[u_{0}\left(x_{t}\right)-u_{0}\left(y_{t}\right)\right] \leq 2\left\|u_{0}\right\|_{\infty} \mathbb{P}\left(t<T_{c}\right)
$$

\rightsquigarrow the Lipschitz estimate is reduced to estimate the hitting time of the diagonal T_{c} (best over all couplings !)
Ex (coupling by reflection) [from W. Kendall' s course, Warwick '17]

[P-Priola '12] \rightsquigarrow the analytical version:
u, v are sub/super sol. of $\partial_{t} u=\operatorname{tr}\left(q(x) D^{2} u\right)+b(x) D u$ in \mathbb{R}^{d}
$\Rightarrow \quad z(x, y):=u(x)-v(y)$ is a subsolution in $\mathbb{R}^{2 d}$ of

$$
\left\{\begin{array}{l}
\partial_{t} z=\mathcal{A}_{c}(z) \quad \text { in } \mathbb{R}^{2 d} \\
\mathcal{A}_{c}=\operatorname{tr}\left(q(x) D_{x}^{2}+q(y) D_{y}^{2}+2 c(x, y) D_{x y}^{2}\right)-b(x) D_{x}-b(y) D_{y}
\end{array}\right.
$$

for every choice of the coupling diffusion $c(x, y)$ such that \mathcal{A}_{c} is elliptic
[P-Priola '12] \rightsquigarrow the analytical version:
u, v are sub/super sol. of $\partial_{t} u=\operatorname{tr}\left(q(x) D^{2} u\right)+b(x) D u$ in \mathbb{R}^{d}

$$
\begin{gathered}
\Rightarrow \quad z(x, y):=u(x)-v(y) \text { is a subsolution in } \mathbb{R}^{2 d} \text { of } \\
\left\{\begin{array}{l}
\partial_{t} z=\mathcal{A}_{c}(z) \quad \text { in } \mathbb{R}^{2 d} \\
\mathcal{A}_{c}=\operatorname{tr}\left(q(x) D_{x}^{2}+q(y) D_{y}^{2}+2 c(x, y) D_{x y}^{2}\right)-b(x) D_{x}-b(y) D_{y}
\end{array}\right.
\end{gathered}
$$

for every choice of the coupling diffusion $c(x, y)$ such that \mathcal{A}_{c} is elliptic
Roughly speaking, we have

$$
u(t, x)-u(t, y) \leq \inf _{\mathcal{A}_{c}}\left\{\psi(t, x, y),: \partial_{t} \psi-\mathcal{A}_{c}(\psi) \geq 0\right\}
$$

\rightsquigarrow find best choice of the coupling matrix $c(x, y)$ and supersolution ψ.
[P-Priola '12] \rightsquigarrow the analytical version:
u, v are sub/super sol. of $\partial_{t} u=\operatorname{tr}\left(q(x) D^{2} u\right)+b(x) D u$ in \mathbb{R}^{d}

$$
\begin{gathered}
\Rightarrow \quad z(x, y):=u(x)-v(y) \text { is a subsolution in } \mathbb{R}^{2 d} \text { of } \\
\left\{\begin{array}{l}
\partial_{t} z=\mathcal{A}_{c}(z) \quad \text { in } \mathbb{R}^{2 d} \\
\mathcal{A}_{c}=\operatorname{tr}\left(q(x) D_{x}^{2}+q(y) D_{y}^{2}+2 c(x, y) D_{x y}^{2}\right)-b(x) D_{x}-b(y) D_{y}
\end{array}\right.
\end{gathered}
$$

for every choice of the coupling diffusion $c(x, y)$ such that \mathcal{A}_{c} is elliptic
Roughly speaking, we have

$$
u(t, x)-u(t, y) \leq \inf _{\mathcal{A}_{c}}\left\{\psi(t, x, y),: \partial_{t} \psi-\mathcal{A}_{c}(\psi) \geq 0\right\}
$$

\rightsquigarrow find best choice of the coupling matrix $c(x, y)$ and supersolution ψ.
Typical ex: $(q(x)=I) \psi=\psi(|x-y|), c(x, y)=I d-2(\widehat{x-y} \otimes \widehat{x-y})$
[P-Priola '12] \rightsquigarrow the analytical version:
u, v are sub/super sol. of $\partial_{t} u=\operatorname{tr}\left(q(x) D^{2} u\right)+b(x) D u$ in \mathbb{R}^{d}

$$
\begin{gathered}
\Rightarrow \quad z(x, y):=u(x)-v(y) \text { is a subsolution in } \mathbb{R}^{2 d} \text { of } \\
\left\{\begin{array}{l}
\partial_{t} z=\mathcal{A}_{c}(z) \quad \text { in } \mathbb{R}^{2 d} \\
\mathcal{A}_{c}=\operatorname{tr}\left(q(x) D_{x}^{2}+q(y) D_{y}^{2}+2 c(x, y) D_{x y}^{2}\right)-b(x) D_{x}-b(y) D_{y}
\end{array}\right.
\end{gathered}
$$

for every choice of the coupling diffusion $c(x, y)$ such that \mathcal{A}_{c} is elliptic Roughly speaking, we have

$$
u(t, x)-u(t, y) \leq \inf _{\mathcal{A}_{c}}\left\{\psi(t, x, y),: \partial_{t} \psi-\mathcal{A}_{c}(\psi) \geq 0\right\}
$$

\rightsquigarrow find best choice of the coupling matrix $c(x, y)$ and supersolution ψ.
Typical ex: $(q(x)=I) \psi=\psi(|x-y|), c(x, y)=I d-2(\widehat{x-y} \otimes \widehat{x-y})$

- The method is nonlinear: coupling methods are embedded into doubling variables approach for viscosity solutions

For jump processes, one can use a similar idea: double the variables and prescribe the jumps for y to suitably "adapt" to the jumps of x.

For jump processes, one can use a similar idea: double the variables and prescribe the jumps for y to suitably "adapt" to the jumps of x.

Rough sketch of the argument:

- Look at the maximum points of
$W(t, x, y):=u(t, x)-u(t, y)-K_{t}\{\underbrace{[\varphi(x)+\varphi(y)]}_{\text {Lyapunov }}+\underbrace{\psi(|x-y|)}_{\text {concave increasing }}\}$
Claim: no positive maximum can occur.

For jump processes, one can use a similar idea: double the variables and prescribe the jumps for y to suitably "adapt" to the jumps of x.

Rough sketch of the argument:

- Look at the maximum points of

$$
W(t, x, y):=u(t, x)-u(t, y)-K_{t}\{\underbrace{[\varphi(x)+\varphi(y)]}_{\text {Lyapunov }}+\underbrace{\psi(|x-y|)}_{\text {concave increasing }}\}
$$

Claim: no positive maximum can occur.

- Let (t, x, y) be a max. point $\rightsquigarrow W(t, x, y) \geq W(t, x+z, y+z)$

$$
\rightsquigarrow \quad \mathcal{L}[u](x)-\mathcal{L}[u](y) \geq K_{t}(\mathcal{L}[\varphi](x)+\mathcal{L}[\varphi](y))
$$

But we also have

$$
W(t, x, y) \geq W(t, x+z, y+A z) \quad \text { for any matrix } A
$$

Ex: $A:=I d-2(\widehat{x-y} \otimes \widehat{x-y})$ (reflection of the jumps)
\rightsquigarrow exploits the concavity of ψ for small interactions.

Key-estimate:
Lemma Suppose that

$$
\mathcal{L}[u](x):=\int_{\mathbb{R}^{d}}\left\{u(x+z)-u(x)-(D u(x) \cdot z) 1_{|z| \leq 1}\right\} \nu(d z)
$$

where the Levy measure ν satisfies, in a neighborhood of the origin

$$
\exists \lambda>0: \quad \frac{\lambda}{|z|^{d+\alpha}} \leq \frac{d \nu}{d z}
$$

If (x, y) is a local maximum point of the function

$$
u(x)-u(y)-([\varphi(x)+\varphi(y)]+\psi(|x-y|))
$$

then

$$
\begin{aligned}
\mathcal{L}[u](x)-\mathcal{L}[u](y) \geq & {[\mathcal{L}[\varphi](x)+\mathcal{L}[\varphi](y)] } \\
& -4 \lambda \int_{0}^{1}(1-s) \int_{B} \psi^{\prime \prime}(r+2 s(\widehat{x-y} \cdot z))|z|^{2} \frac{d z}{|z|^{d+\sigma}} d s
\end{aligned}
$$

where $B:=\left\{z \in \mathbb{R}^{d}:|z|<(|x-y| \wedge 1)\right\}$.

Comments:

- Similar arguments also apply to get regularizing effects. Ex ($\alpha>1+$ strong confinement)

$$
\|D u(t)\|_{L^{\infty}\left((x)^{-k}\right)} \leq \frac{K e^{-\omega t}}{t^{\frac{1}{\alpha}}}[u(0)]_{\langle x)^{k}} \quad \forall t>0
$$

- The choice of coupling by reflection is just one natural choice for Levy measures $\nu \gtrsim \frac{\lambda}{|z|^{d+\alpha}}$.

Comments:

- Similar arguments also apply to get regularizing effects. Ex ($\alpha>1+$ strong confinement)

$$
\|D u(t)\|_{L^{\infty}\left((x)^{-k}\right)} \leq \frac{K e^{-\omega t}}{t^{\frac{1}{\alpha}}}[u(0)]_{\langle x)^{k}} \quad \forall t>0
$$

- The choice of coupling by reflection is just one natural choice for Levy measures $\nu \gtrsim \frac{\lambda}{\mid z]^{d+\alpha}}$.
Different choices provide extensions to inhomogeneous fractional diffusions.

Comments:

- Similar arguments also apply to get regularizing effects. Ex ($\alpha>1+$ strong confinement)

$$
\|D u(t)\|_{L^{\infty}((x\rangle-k)} \leq \frac{K e^{-\omega t}}{t^{\frac{1}{\alpha}}}[u(0)]_{\langle x\rangle^{k}} \quad \forall t>0
$$

- The choice of coupling by reflection is just one natural choice for Levy measures $\nu \gtrsim \frac{\lambda}{\mid z]^{d+\alpha}}$.
Different choices provide extensions to inhomogeneous fractional diffusions.

Key idea: doubling variables allows to embed the coupling ideas in simple analytic version

Comments:

- Similar arguments also apply to get regularizing effects. Ex ($\alpha>1+$ strong confinement $)$

$$
\|D u(t)\|_{L^{\infty}((x\rangle-k)} \leq \frac{K e^{-\omega t}}{t^{\frac{1}{\alpha}}}[u(0)]_{\langle x\rangle^{k}} \quad \forall t>0
$$

- The choice of coupling by reflection is just one natural choice for Levy measures $\nu \gtrsim \frac{\lambda}{\mid z^{d+\alpha}}$.
Different choices provide extensions to inhomogeneous fractional diffusions.

Key idea: doubling variables allows to embed the coupling ideas in simple analytic version

More tricky perspective (future goal): how to export same approach to degenerate Kolmogorov operators (Hormander types of diffusions, kinetic models,...)

Conclusions:

- We suggest a new strategy for proving long time decay rates of Fokker-Planck equations (both local and nonlocal diffusions).
Our method relies on refined estimates on the decay of weighted seminorms for the adjoint problem.

Conclusions:

- We suggest a new strategy for proving long time decay rates of Fokker-Planck equations (both local and nonlocal diffusions).
Our method relies on refined estimates on the decay of weighted seminorms for the adjoint problem.
- With a unifying approach we recover (and extend) many results obtained with several different methods, including e.g. [Toscani-Villani], [Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or [Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.

Conclusions:

- We suggest a new strategy for proving long time decay rates of Fokker-Planck equations (both local and nonlocal diffusions).
Our method relies on refined estimates on the decay of weighted seminorms for the adjoint problem.
- With a unifying approach we recover (and extend) many results obtained with several different methods, including e.g. [Toscani-Villani], [Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or [Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.
- Our proof can be thought as a purely analytic version of the probabilistic approach since [Meyn \&Tweedie] and more recently [Douc-Fort-Guillin], [Hairer-Mattingly].

Conclusions:

- We suggest a new strategy for proving long time decay rates of Fokker-Planck equations (both local and nonlocal diffusions).
Our method relies on refined estimates on the decay of weighted seminorms for the adjoint problem.
- With a unifying approach we recover (and extend) many results obtained with several different methods, including e.g. [Toscani-Villani], [Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or [Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.
- Our proof can be thought as a purely analytic version of the probabilistic approach since [Meyn \&Tweedie] and more recently [Douc-Fort-Guillin], [Hairer-Mattingly].

It contains as a by-product a purely analytical proof of many results on ergodicity or time-contraction rates of diffusion semigroups obtained in the probabilistic literature through coupling methods.

Conclusions:

- We suggest a new strategy for proving long time decay rates of Fokker-Planck equations (both local and nonlocal diffusions).
Our method relies on refined estimates on the decay of weighted seminorms for the adjoint problem.
- With a unifying approach we recover (and extend) many results obtained with several different methods, including e.g. [Toscani-Villani], [Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or [Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.
- Our proof can be thought as a purely analytic version of the probabilistic approach since [Meyn \&Tweedie] and more recently [Douc-Fort-Guillin], [Hairer-Mattingly].

It contains as a by-product a purely analytical proof of many results on ergodicity or time-contraction rates of diffusion semigroups obtained in the probabilistic literature through coupling methods.

- We have succefully applied those results to analyse long-time convergence of mean field games with Levy operators [work in progress with O. Ersland \& E. Jakobsen]

Thanks for the attention !

