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Coupling and doubling and timely decay
Isn’t what nature has meant us to play ?

[E. Kean: “Shakespeare’s flowers”, 1833]

A. Porretta Adjoint methods and coupling in time-decay estimates



Fokker-Planck equations: trend to equilibrium

A classical issue: analyse the convergence of solutions of FP equations in
Rd towards the unique stationary invariant measure{
∂tm + Lm − div (b(x)m) = 0

m(0) = m0 ,
∫
Rdm0 = 1

t→∞−→ m̄ :

{
L(m̄) = div (bm̄) ,∫

Rd m̄ = 1

where L is a diffusion process (local or nonlocal).

Related to ergodicity of the associated stochastic process Xt :

1

T
E
∫ T

0

ϕ(Xt)dt︸ ︷︷ ︸
= 1

T

∫ T
0

∫
Rd ϕdm(t,x)

T→∞→
∫
Rd

ϕ dm̄ ∀ϕ ∈ Cc(Rd)

Model example is the Ornstein-Ulhenbeck process in Rd .

dXt = −Xtdt +
√

2dBt → ∂tm −∆m − div (xm) = 0

 FP equations with confining drift
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Rate of convergence  time decay analysis

Rephrase the problem as time decay for zero average distributions:{
∂tµ+ Lµ− div (b(t, x)µ) = 0

µ(0) = µ0 ,
∫
Rd µ0 = 0

→ ‖µ(t)‖X
t→∞→ 0

Main focus: L can be a Levy operator

Lv = −tr(Q(x)D2v)−B ·Dv−
∫
Rd

{v(x+z)−v(x)−(Dv(x)·z)1|z|≤1}ν(dz)

Model case: the fractional Laplacian ν = dz
|z|d+α

Motivation: Long time behavior of Nash equilibria in Mean-field game
theory

In that context: b depends on the individual strategies
 b(t, x) = Hp(x ,Du), where u is the value function of the agents

Main point: b(t, x) is not very regular, it is time-dependent, it is not
well-known a priori, etc...
 need a very robust study of FP equation
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Typical results for

{
∂tm −∆m − div (b(x)m) = 0∫
m0 = 0

Rate is exponential if b(x) · x ≥ |x |2 for |x | → +∞
(es. Ornstein-Uhlenbeck semigroup)

‖m(t)‖X ≤ e−ωt‖m0‖X

Rate is slower if b(x) · x ≥ |x |γ for |x | → +∞, with γ ∈ (0, 2)
(slowly confining drifts  sub-geometrical rate)

Natural choice of X is a L1-weighted space:

es: X = L1(〈x〉κ) , 〈x〉 =
√

1 + |x |2

This implies decay in L1-norm for m(t) but requires some finite
moments on the initial data m0.
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A (very partial !) look at the (very huge !) literature  two major axes

1. Approach by energy/entropy methods
Typical target:

∂tm−∆m − div (∇V m)︸ ︷︷ ︸
Lm

= 0

Spectral gap in L2(eV )
[Gross ’75, Liggett ’91, Rockner-F.Y. Wang ’01...semigroup theory...

entropy dissipation

d

dt
H(m|e−V ) ≤ −γ H(m|e−V ) , H(m|e−V ) :=

∫
m(logm+V )dx

[Toscani, Villani, Markovich, Carrillo...]

Extensions to fractional Laplacian: [Biler-Karch ’03, Tristani ’15,

Gentil-Imbert ’09, ....]

Key tools are functional inequalities: Poincaré inequality (strong and
weak forms), log-Sobolev inequality... (Gross, Bakry-Emery, Villani..)

A. Porretta Adjoint methods and coupling in time-decay estimates



A (very partial !) look at the (very huge !) literature  two major axes

1. Approach by energy/entropy methods
Typical target:

∂tm−∆m − div (∇V m)︸ ︷︷ ︸
Lm

= 0

Spectral gap in L2(eV )
[Gross ’75, Liggett ’91, Rockner-F.Y. Wang ’01...semigroup theory...

entropy dissipation

d

dt
H(m|e−V ) ≤ −γ H(m|e−V ) , H(m|e−V ) :=

∫
m(logm+V )dx

[Toscani, Villani, Markovich, Carrillo...]

Extensions to fractional Laplacian: [Biler-Karch ’03, Tristani ’15,

Gentil-Imbert ’09, ....]

Key tools are functional inequalities: Poincaré inequality (strong and
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weak forms), log-Sobolev inequality... (Gross, Bakry-Emery, Villani..)

A. Porretta Adjoint methods and coupling in time-decay estimates



1. Approach by probabilistic methods/ideas

[Meyn &Tweedie ’93, Douc-Fort-Guillin ’09, Hairer, Hairer-Mattingly ’11, ...]

Typical setting:
m(t) = etAm0

where A is a diffusion process.

∃ of a Lyapunov function + local strict positivity of the semigroup
 exponential decay. In rough terms:{
∃ϕ(x) : A∗ϕ ≥ γϕ− C 1K , K compact

m(t, x) ≥ ν > 0 ∀x ∈ K
⇒ ‖m(t)‖X ≤ C e−ωt‖m0‖X

where X is a L1-weighted space (depends on Lyapunov function ϕ).

Further works also used a mix of ingredients (Lyapunov + Poincaré,
decomposition methods... See e.g. [Bakry-Cattiaux-Guillin JFA ’08],

[Mischler, Mouhot-Mischler ’09, Kavian-Mischler-Ndao ’21],

[LaFleche’20],...
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We suggest a simplification/generalization of some of the previous ideas

By duality, the decay of FP equations is entirely deduced from
dissipation estimates of drift-diffusion equations

The core lies in new weighted oscillation estimates for{
∂tu + L∗u + b(t, x) · Du = 0

u(0) = u0 ,

We define the seminorm

[u]ϕ := sup
x,y∈R2d

|u(x)− u(y)|
ϕ(x) + ϕ(y)

where typically ϕ(x) is a Lyapunov function.
Special case: ϕ(x) is of power-type:

[u]〈x〉k = sup
x,y∈R2d

|u(x)− u(y)|
〈x〉k + 〈y〉k

, 〈x〉 =
√

1 + |x |2 .
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Sample result: fractional Laplacian + drift{
∂tu + (−∆)α/2u + b(t, x) · Du = 0 t > 0

u(0) = u0 ,

Theorem (A)

Assume that

b(t, x) · x ≥ λ |x |2 ∀(x , t) : |x | is large

Under either of the following conditions:

(i) α ∈ (1, 2] and (b(t, x)− b(t, y)) · (x − y) ≥ −c0|x − y |, for all t, x , y

(ii) α ∈ (0, 1] and
(b(t, x)− b(t, y)) · (x − y) ≥ −c0|x − y |(1 ∧ |x − y |1−α+δ),
for some δ > 0, c0 > 0,

then there exist K , ω:

[u(t)]〈x〉k ≤ K e−ωt [u0]〈x〉k
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Theorem (B)

Under the same conditions of Theorem (A), the solution of the FP
equation {

∂tm + (−∆)α/2m − div (b(t, x)m) = 0

µ(0) = m0 ,
∫
Rd m0 = 0

decays exponentially:

‖m(t)‖L1(〈x〉κ) ≤ K e−ωt ‖m0‖L1(〈x〉k )

Rmk: the conditions on the drift are b(t, x) · x ≥ |x |2 for |x | → ∞ and

(i) α ∈ (1, 2] and (b(t, x)− b(t, y)) · (x − y) ≥ −c0|x − y |,
(ii) α ∈ (0, 1] and, for some δ > 0,
(b(t, x)− b(t, y)) · (x − y) ≥ −c0|x − y |(1 ∧ |x − y |1−α+δ)

for α ∈ (1, 2] (elliptic case), minimal requirements on b(t, x):
“confining at infinity + locally bounded”.

for α ∈ (0, 1], some local Hölder regularity is required on the (non
dissipative part of) drift b(t, x).
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Proof of Thm (B) from Thm (A):

By duality we have∫
Rd

ξm(t)dx =

∫
Rd

m0 u(0)dx

∀ξ, u :

{
−∂tu + (−∆)α/2u + b(t, x) · Du = 0 in (0, t)

u(t) = ξ ,

Using m0 with zero average we have, ∀c ∈ R∫
Rd

ξm(t)dx =

∫
Rd

m0 u(0)dx =

∫
Rd

m0 (u(0) + c)dx

≤ ‖u(0) + c‖L∞(〈x〉−kdx)‖m0‖L1(〈x〉k )

(1)

We use equivalence of seminorms

inf
c∈R
‖u + c‖L∞(〈x〉−kdx) = sup

x,y∈R2d

|u(x)− u(y)|
〈x〉k + 〈y〉k

= [u]〈x〉k

We minimize on c in (1) and use Thm (A)∫
Rd

ξm(t)dx ≤ ‖m0‖L1(〈x〉k )[u(0)]〈x〉k ≤ ‖m0‖L1(〈x〉k ) Ke
−ωt‖ξ‖L∞(〈x〉−kdx)
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Rd

m0 u(0)dx

∀ξ, u :
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Rd
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Rd

m0 u(0)dx =
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Rd
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We prove similar results for the slowly confining case:

b(t, x) · x ≥ c |x |γ ∀(x , t) : |x | is large (2)

whenever
γ ∈ (0, 2)

Theorem

Assume that b satisfies (2) with γ ∈ (2− α, 2) and b satisfies the
conditions of Theorem (A). Let m be the solution of the FP equation{

∂tm + (−∆)α/2m − div (b(t, x)m) = 0

µ(0) = m0 ,
∫
Rd m0 = 0 .

Then, for any k ∈ (2− γ, α) and k̄ > k , we have

‖m(t)‖L1(〈x〉k ) ≤ K (1 + t)−q ‖m0‖L1(〈x〉k̄ ) where q = k̄−k
2−γ .
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Main novelty of this approach: decay of FP equations ⇐⇒ decay in
weighted seminorms for drift-diffusion eqs{

∂tu + (−∆)α/2u + b(t, x) · Du = 0 t > 0

u(0) = u0 ,

 [u(t)]〈x〉k ≤ K e−ωt [u0]〈x〉k

Rephrasing:

∃ ω,K > 0 : u(t, x)− u(t, y) ≤ K e−ωt
(
〈x〉k + 〈y〉k

)
(3)

Main idea: (3) is OK if we prove

u(t, x)− u(t, y) ≤ e−ωt
{
K [〈x〉k + 〈y〉k ] + ψ(|x − y |)

}
(4)

for some bounded ψ(·).

ψ(|x − y |) takes care of small range interactions
Typically: ψ is a concave bounded function which is locally Hölder

long range interactions only happen at infinity
 dominated by the Lyapunov function
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Decay of weighted seminorms:

u(t, x)− u(t, y) ≤ e−ωt

K [〈x〉k + 〈y〉k ]︸ ︷︷ ︸
Lyapunov

+ ψ(|x − y |)︸ ︷︷ ︸
local ellipticity

 (5)

Estimate (5) is an evidence of ergodicity of the underlying process.

Similar results exist in the probabilistic literature in the form of
contraction estimates for transition probabilities in Wasserstein’s
metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...

Our proof is entirely analytic and quite elementary:
max. principle + doubling variables’ method

We upgrade (especially for nonlocal diffusions) the method developed in
[Ishii-Lions ’92] for viscosity solutions, extended to nonlocal operators in
[Barles-Chasseigne-Imbert ’11], [Barles-Chasseigne-Ciomaga-Imbert ’13]

(see also [Barles-Ley-Topp ’17], [Chasseigne-Ley-Nguyen]..)

Key-point: [P.-Priola ’12]:

PDE doubling variables methods ↔ probabilistic coupling methods
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Coupling method in probability
[Doeblin ’38], [Lindvall, Rogers ’86], [Chen-Li ’89], [F.Y. Wang ’11]...

Given a process Xt starting from x ∈ Rd , Yt starting from y ∈ Rd

 look for a new process Zt in the product space R2d :

(i) the marginal laws of Zt are the laws of Xt ,Yt respectively

(ii) Zt = (Xt ,Xt) after the first time Zt hits the diagonal ∆ := {x = y}.

Goal: optimize the estimate

u(t, x)− u(t, y) = EZt [u0(xt)− u0(yt)] ≤ 2‖u0‖∞P(t < Tc)

 the Lipschitz estimate is reduced to estimate the hitting time of the
diagonal Tc (best over all couplings !)

Ex (coupling by reflection) [from W. Kendall’ s course, Warwick ’17]
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[P-Priola ’12]  the analytical version:

u, v are sub/super sol. of ∂tu = tr
(
q(x)D2u

)
+ b(x)Du in Rd

⇒ z(x , y) := u(x)− v(y) is a subsolution in R2d of∂tz = Ac(z) in R2d

Ac = tr
(
q(x)D2

x + q(y)D2
y + 2c(x , y)D2

xy

)
− b(x)Dx − b(y)Dy

for every choice of the coupling diffusion c(x , y) such that Ac is elliptic

Roughly speaking, we have

u(t, x)− u(t, y) ≤ inf
Ac

{ψ(t, x , y), : ∂tψ −Ac(ψ) ≥ 0 }.

 find best choice of the coupling matrix c(x , y) and supersolution ψ.

Typical ex: (q(x) = I ) ψ = ψ(|x − y |), c(x , y) = Id − 2(x̂ − y ⊗ x̂ − y)

• The method is nonlinear: coupling methods are embedded into
doubling variables approach for viscosity solutions
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For jump processes, one can use a similar idea: double the variables and
prescribe the jumps for y to suitably ”adapt” to the jumps of x .

Rough sketch of the argument:

Look at the maximum points of

W (t, x , y) := u(t, x)−u(t, y)−Kt

[ϕ(x) + ϕ(y)]︸ ︷︷ ︸
Lyapunov

+ ψ(|x − y |)︸ ︷︷ ︸
concave increasing


Claim: no positive maximum can occur.

Let (t, x , y) be a max. point  W (t, x , y) ≥W (t, x + z , y + z)

 L[u](x)− L[u](y) ≥ Kt (L[ϕ](x) + L[ϕ](y))

But we also have

W (t, x , y) ≥W (t, x + z , y + Az) for any matrix A

Ex: A := Id − 2(x̂ − y ⊗ x̂ − y) (reflection of the jumps)

 exploits the concavity of ψ for small interactions.
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Key-estimate:

Lemma Suppose that

L[u](x) :=

∫
Rd

{u(x + z)− u(x)− (Du(x) · z)1|z|≤1}ν(dz)

where the Levy measure ν satisfies, in a neighborhood of the origin

∃λ > 0 :
λ

|z |d+α
≤ dν

dz
.

If (x , y) is a local maximum point of the function

u(x)− u(y)− ([ϕ(x) + ϕ(y)] + ψ(|x − y |))

then

L[u](x)− L[u](y) ≥ [L[ϕ](x) + L[ϕ](y)]

− 4λ

∫ 1

0

(1− s)

∫
B

ψ′′(r + 2s(x̂ − y · z))|z |2 dz

|z |d+σ
ds,

where B := {z ∈ Rd : |z | < (|x − y | ∧ 1)}.
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Comments:

Similar arguments also apply to get regularizing effects.
Ex (α > 1 + strong confinement)

‖Du(t)‖L∞(〈x〉−k ) ≤
K e−ωt

t
1
α

[u(0)]〈x〉k ∀t > 0 .

The choice of coupling by reflection is just one natural choice for
Levy measures ν & λ

|z|d+α .

Different choices provide extensions to inhomogeneous fractional
diffusions.

Key idea: doubling variables allows to embed the coupling ideas in
simple analytic version

More tricky perspective (future goal): how to export same approach
to degenerate Kolmogorov operators (Hormander types of diffusions,
kinetic models,...)
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Conclusions:

We suggest a new strategy for proving long time decay rates of
Fokker-Planck equations (both local and nonlocal diffusions).

Our method relies on refined estimates on the decay of weighted
seminorms for the adjoint problem.

With a unifying approach we recover (and extend) many results obtained
with several different methods, including e.g. [Toscani-Villani],
[Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or
[Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.

Our proof can be thought as a purely analytic version of the probabilistic
approach since [Meyn &Tweedie] and more recently [Douc-Fort-Guillin],
[Hairer-Mattingly].

It contains as a by-product a purely analytical proof of many results on
ergodicity or time-contraction rates of diffusion semigroups obtained in
the probabilistic literature through coupling methods.

We have succefully applied those results to analyse long-time convergence
of mean field games with Levy operators
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Thanks for the attention !
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