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Coupling and doubling and timely decay
Isn't what nature has meant us to play ?

[E. Kean: “Shakespeare’s flowers”, 1833]

A. Porretta Adjoint methods and coupling in time-decay estimates



Fokker-Planck equations: trend to equilibrium

A classical issue: analyse the convergence of solutions of FP equations in
R towards the unique stationary invariant measure

Orm+ Lm — div (b(x)m) =0 tsoo o L(m) = div (bm),
{m(O)—mo,fRdmo—l m {fRdrﬁ—l

where L is a diffusion process (local or nonlocal).
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A classical issue: analyse the convergence of solutions of FP equations in
R towards the unique stationary invariant measure

Orm+ Lm — div (b(x)m) =0 tsoo o L(m) = div (bm),
{m(O)—mo,fRdmo—l m {fRdrﬁ—l

where L is a diffusion process (local or nonlocal).

Related to ergodicity of the associated stochastic process X;:

1 T
—IE/ o(X)dt ' [ odm Ve e C(RY)
T 0 Rd

=3 Jo Jrd wdm(t.x)
Model example is the Ornstein-Ulhenbeck process in RY.

dX; = —X,dt + V2dB; — 0rm — Am — div (xm) =0

~~ FP equations with confining drift
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Rate of convergence ~~

Rephrase the problem as time decay for zero average distributions:

Ot + Ly — div (b(t, =0 00
eyt Ly = div (B(E, x)p) S )X 0
4(0) = 1o [ io — 0
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Rephrase the problem as time decay for zero average distributions:

Ot + Ly — div (b(t, =0 00
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Main focus: L can be a Levy operator

v = —tr(Q(x)D?v)—B-Dv— Rd{v(x+z)—v(x)—(Dv(X)'z)1|z|§1}I/(dz)

Model case: the fractional Laplacian v = \zﬂlzm
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Model case: the fractional Laplacian v = \zﬂlzm

Motivation: Long time behavior of Nash equilibria in Mean-field game
theory

In that context: b depends on the individual strategies
~ b(t,x) = Hp(x, Du), where u is the value function of the agents
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Rate of convergence ~~

Rephrase the problem as time decay for zero average distributions:

Ot + Ly — div (b(t, =0 00
eyt Ly = div (B(E, x)p) S )X 0
4(0) = 1o [ io — 0

Main focus: L can be a Levy operator

v = —tr(Q(x)D?v)—B-Dv— Rd{v(x+z)—v(x)—(Dv(X)'z)1|z|§1}I/(dz)

Model case: the fractional Laplacian v = \zﬂlzm

Motivation: Long time behavior of Nash equilibria in Mean-field game
theory

In that context: b depends on the individual strategies
~ b(t,x) = Hp(x, Du), where u is the value function of the agents

Main point: b(t, x) is not very regular, it is time-dependent, it is not
well-known a priori, etc...
~> need a very robust study of FP equation
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Orm — Am — div (b(x)m) =0

Typical results for
f mo = 0

e Rate is exponential if b(x) - x > |x|? for [x| — +o0
(es. Ornstein-Uhlenbeck semigroup)

Im(e)llx < e™**|[mol|x
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Orm — Am — div (b(x)m) =0

Typical results for
f mo = 0

e Rate is exponential if b(x) - x > |x|? for [x| — +o0
(es. Ornstein-Uhlenbeck semigroup)

Im(e)llx < e™**|[mol|x

o Rate is slower if b(x) - x > |x|7 for |x| — +oo, with v € (0,2)
(slowly confining drifts ~~ sub-geometrical rate)
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Orm — Am — div (b(x)m) =0

Typical results for
f mo = 0

e Rate is exponential if b(x) - x > |x|? for [x| — +o0
(es. Ornstein-Uhlenbeck semigroup)

Im(e)llx < e™**|[mol|x

o Rate is slower if b(x) - x > |x|7 for |x| — +oo, with v € (0,2)
(slowly confining drifts ~~ sub-geometrical rate)

o Natural choice of X is a L'-weighted space:
es: X = L'((x)"), (x) = /14 |x|?

This implies decay in L!-norm for m(t) but requires some finite
moments on the initial data mg.
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A (very partial 1) look at the (very huge !) literature ~~ two major axes

1. Approach by energy/entropy methods
Typical target:
Orm—Am— div (VVm)=0

Lm
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A (very partial 1) look at the (very huge !) literature ~~ two major axes

1. Approach by energy/entropy methods
Typical target:
Orm—Am— div (VVm)=0

Lm

o Spectral gap in L?(e")
[Gross '75, Liggett '91, Rockner-F.Y. Wang '01...semigroup theory...

@ entropy dissipation

%H(m|e_v) < —yH(mle™"), H(m|e™") := /m(log m+V)dx

[Toscani, Villani, Markovich, Carrillo...]
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A (very partial 1) look at the (very huge !) literature ~~ two major axes

1. Approach by energy/entropy methods
Typical target:
Orm—Am— div (VVm)=0

Lm
o Spectral gap in L?(e")
[Gross '75, Liggett '91, Rockner-F.Y. Wang '01...semigroup theory...
@ entropy dissipation

%H(m|e_v) < —yH(mle™"), H(m|e™") := /m(log m+V)dx

[Toscani, Villani, Markovich, Carrillo...]

o Extensions to fractional Laplacian: [Biler-Karch '03, Tristani '15,
Gentil-lmbert 09, ....]

Key tools are functional inequalities: Poincaré inequality (strong and
weak forms), log-Sobolev inequality... (Gross, Bakry-Emery, Villani..)
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1. Approach by probabilistic methods/ideas
[Meyn &Tweedie '93, Douc-Fort-Guillin '09, Hairer, Hairer-Mattingly '11, ...]

Typical setting:
m(t) = e“mg

where A is a diffusion process.
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1. Approach by probabilistic methods/ideas
[Meyn &Tweedie '93, Douc-Fort-Guillin '09, Hairer, Hairer-Mattingly '11, ...]

Typical setting:
m(t) = e“mg

where A is a diffusion process.

@ J of a Lyapunov function + local strict positivity of the semigroup
~ exponential decay. In rough terms:

= Im(t)x < Ce ™ Imolx

Fp(x) : A% > vp — Clk, K compact
m(t,x) >v >0 VYxeK

where X is a L'-weighted space (depends on Lyapunov function ¢).
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1. Approach by probabilistic methods/ideas
[Meyn &Tweedie '93, Douc-Fort-Guillin '09, Hairer, Hairer-Mattingly '11, ...]
Typical setting:
m(t) = e”mg
where A is a diffusion process.

@ J of a Lyapunov function + local strict positivity of the semigroup
~ exponential decay. In rough terms:

= Im(t)x < Ce ™ Imolx

Fp(x) : A% > vp — Clk, K compact
m(t,x) >v >0 VYxeK

where X is a L'-weighted space (depends on Lyapunov function ¢).

o Further works also used a mix of ingredients (Lyapunov + Poincaré,
decomposition methods... See e.g. [Bakry-Cattiaux-Guillin JFA "08],
[Mischler, Mouhot-Mischler '09, Kavian-Mischler-Ndao '21],
[LaFleche’20],...
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We suggest a simplification/generalization of some of the previous ideas
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dissipation estimates of drift-diffusion equations
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We suggest a simplification/generalization of some of the previous ideas

@ By duality, the decay of FP equations is entirely deduced from
dissipation estimates of drift-diffusion equations

@ The core lies in new weighted oscillation estimates for

Oru+ L*u+ b(t,x)-Du=0
u(0) = wp,

We define the seminorm

oy 60— uly)
Ll = ek o)+ 9(y)

where typically ¢(x) is a Lyapunov function.
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We suggest a simplification/generalization of some of the previous ideas

@ By duality, the decay of FP equations is entirely deduced from
dissipation estimates of drift-diffusion equations

@ The core lies in new weighted oscillation estimates for

Oru+ L*u+ b(t,x)-Du=0
u(0) = wp,
We define the seminorm

oy 60— uly)
Ll = ek o)+ 9(y)

where typically ¢(x) is a Lyapunov function.
Special case: (x) is of power-type:

[ulgr = sup M () = VI+[x].

X7y6R2d X>
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Sample result: fractional Laplacian + drift
O+ (—A)*2u+ b(t,x)-Du=0 t>0
u(0) = up,

Theorem (A)

Assume that

b(t,x)-x > X|x|>  Y(x,t) :|x| is large

Under either of the following conditions:
(i) a € (1,2] and (b(t,x) — b(t,y)) - (x —y) > —co|lx — y
(i) o € (0,1] and

(b(t,X) - b(tvy)) . (X _y) 2 _CO‘X — y‘(l A |X _y|1—a+5)’
for some 6 >0, ¢g > 0,

, forall t,x,y

then there exist K,w:

[u(t)] oy < K e [uo] (xyk
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Theorem (B)

Under the same conditions of Theorem (A), the solution of the FP
equation

dem + (=A)*2m — div (b(t,x)m) =0
,U,(O) = mo,fRd mgo = 0

decays exponentially:

M)l x ey < K e [lmol 2 gxy)
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Theorem (B)

Under the same conditions of Theorem (A), the solution of the FP
equation

orm + (—A)*2m — div (b(t,x)m) =0

M(O) = mO?f]Rd mgo = 0

decays exponentially:

M)l x ey < K e [lmol 2 gxy)

Rmk: the conditions on the drift are b(t, x) - x > |x|? for |x| — oo and
(i) o € (1,2] and (b(t,x) — b(t.)) - (x — ¥) = —colx — v,

(ii) a € (0,1] and, for some 6 > 0,

(b(t,x) = b(t,y)) - (x —y) = —colx = y[(1 A |x — y['=**?)

e for a € (1, 2] (elliptic case), minimal requirements on b(t, x):
“confining at infinity + locally bounded”.
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Theorem (B)

Under the same conditions of Theorem (A), the solution of the FP
equation

orm + (—A)*2m — div (b(t,x)m) =0
p(0) = mo, [pu mo =0

decays exponentially:

M)l x ey < K e [lmol 2 gxy)

Rmk: the conditions on the drift are b(t, x) - x > |x|? for |x| — oo and
(i) o € (1,2] and (b(t,x) — b(t.)) - (x — ¥) = —colx — v,

(ii) a € (0,1] and, for some 6 > 0,

(b(t,x) = b(t,y)) - (x —y) = —colx = y[(1 A |x — y['=**?)

e for a € (1, 2] (elliptic case), minimal requirements on b(t, x):
“confining at infinity + locally bounded”.

e for a € (0,1], some local Hélder regularity is required on the (non
dissipative part of) drift b(t, x).
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Proof of Thm (B) from Thm (A):
o By duality we have
Em(t)dx = / mg u(0)dx
R9 R9

[ =0eu+ (=A)*2u+ b(t,x) - Du=0 in(0,t)
e {U(t)—ﬁ,
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Proof of Thm (B) from Thm (A):
o By duality we have
Em(t)dx = / mg u(0)dx
R9 R9

[ =0eu+ (=A)*2u+ b(t,x) - Du=0 in(0,t)
e {U(t)—ﬁ,

@ Using mg with zero average we have, Vc € R
Em(t)dx = / mg u(0)dx = / mg (u(0) + ¢)dx
Rd Rd Rd

< [[u(0) + ¢l Lo ((x)—*ds) 1Mol L1 ()

(1)
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Proof of Thm (B) from Thm (A):
o By duality we have
Em(t)dx = / mg u(0)dx
R9 R9

[ =0eu+ (=A)*2u+ b(t,x) - Du=0 in(0,t)
e {U(t)—ﬁ,

@ Using mg with zero average we have, Vc € R
Em(t)dx = / mg u(0)dx = / mg (u(0) + ¢)dx
Rd Rd Rd

< [[u(0) + ¢l Lo ((x)—*ds) 1Mol L1 ()

(1)

@ We use equivalence of seminorms

A ulx)—uly
inf el rag = sup ) UU)

= [U](x\k
oy R XYk (y)k []()

e We minimize on ¢ in (1) and use Thm (A)

/Rdfm(t)dx < lmoll iy [(O)] e < Nmol 2y Ke ™ 1] Lo () ~kax)

A. Porretta Adjoint methods and coupling in time-decay estimates



We prove similar results for the slowly confining case:
b(t,x) x> c|x| V(x,t) :|x| is large (2)

whenever
v €(0,2)

Theorem

Assume that b satisfies (2) with v € (2 — «,2) and b satisfies the
conditions of Theorem (A). Let m be the solution of the FP equation

dem + (=A)*2m — div (b(t,x)m) =0
1(0) = mg, [z mo =0.

Then, for any k € (2 —~,a) and k > k, we have

Im(E)|2qeyey < K (14 t)77 ||m0||L1(<x>F) where q = 5:

P

5
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Main novelty of this approach: decay of FP equations <= decay in
weighted seminorms for drift-diffusion eqs

Ou-+ (—A)2u+ b(t,x) Du=0  t>0
U(O) = uo,
o [u(®)]pgr < K e [uo]
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Main novelty of this approach: decay of FP equations <= decay in
weighted seminorms for drift-diffusion eqs

Ou-+ (—A)2u+ b(t,x) Du=0  t>0
U(O) = uo,
o [u(®)]pgr < K e [uo]

Rephrasing:

Jw,K>0:u(t,x)—u(t,y) < Ke ™! (<X>k + <Y>k> (3)
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Main novelty of this approach: decay of FP equations <= decay in
weighted seminorms for drift-diffusion eqs

Ou-+ (—A)2u+ b(t,x) Du=0  t>0
U(O) = uo,
o [u(®)]pgr < K e [uo]

Rephrasing:
Tw, K> 0t )~ u(ty) S Ke ™ (0 + ()9 (3)
Main idea: (3) is OK if we prove
u(t,x) — u(t,y) < e {K[O) + () T+ e(x -y} (4)

for some bounded ().
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Main novelty of this approach: decay of FP equations <= decay in
weighted seminorms for drift-diffusion eqs

Oru+ (—A)*2u+ b(t,x)-Du=0 t>0
u(0) = up,
o [u(®)] pgr < K em @ [uo]

Rephrasing:

Jw, K >0 :u(t,x)—u(t,y) < Ke ™t ((x)*+ (y)¥) (3)
Main idea: (3) is OK if we prove

u(t,x) = u(t,y) < e T K[ + () T+ o(x =y} (4)
for some bounded ().

@ t(|x — y|) takes care of small range interactions
Typically: 9 is a concave bounded function which is locally Holder

@ long range interactions only happen at infinity
~~ dominated by the Lyapunov function
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Decay of weighted seminorms:

u(t,x) = u(t,y) < e SR+ () T+ v(lx —yl) (3)
—— —_———
Lyapunov local ellipticity

e Estimate (5) is an evidence of ergodicity of the underlying process.

Similar results exist in the probabilistic literature in the form of
contraction estimates for transition probabilities in Wasserstein's
metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...
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—— —_———
Lyapunov local ellipticity

e Estimate (5) is an evidence of ergodicity of the underlying process.

Similar results exist in the probabilistic literature in the form of
contraction estimates for transition probabilities in Wasserstein's
metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...

@ Our proof is entirely analytic and quite elementary:
max. principle 4+ doubling variables' method
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Decay of weighted seminorms:

u(t,x) = u(t,y) < e SR+ () T+ v(lx —yl) (3)
—— —_———
Lyapunov local ellipticity

e Estimate (5) is an evidence of ergodicity of the underlying process.

Similar results exist in the probabilistic literature in the form of
contraction estimates for transition probabilities in Wasserstein's
metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...

@ Our proof is entirely analytic and quite elementary:
max. principle + doubling variables’ method
We upgrade (especially for nonlocal diffusions) the method developed in
[Ishii-Lions '92] for viscosity solutions, extended to nonlocal operators in
[Barles-Chasseigne-Imbert '11], [Barles-Chasseigne-Ciomaga-Imbert '13]
(see also [Barles-Ley-Topp '17], [Chasseigne-Ley-Nguyen]..)
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Decay of weighted seminorms:

u(t,x) = u(t,y) < e SR+ () T+ v(lx —yl) (3)
—— —_———
Lyapunov local ellipticity

e Estimate (5) is an evidence of ergodicity of the underlying process.

Similar results exist in the probabilistic literature in the form of
contraction estimates for transition probabilities in Wasserstein's
metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...

@ Our proof is entirely analytic and quite elementary:
max. principle + doubling variables’ method
We upgrade (especially for nonlocal diffusions) the method developed in
[Ishii-Lions '92] for viscosity solutions, extended to nonlocal operators in
[Barles-Chasseigne-Imbert '11], [Barles-Chasseigne-Ciomaga-Imbert "13]
(see also [Barles-Ley-Topp '17], [Chasseigne-Ley-Nguyen]..)
Key-point: [P.-Priola '12]:

PDE doubling variables methods <> probabilistic coupling methods
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Coupling method in probability
[Doeblin '38], [Lindvall, Rogers '86], [Chen-Li '89], [F.Y. Wang '11]...
Given a process X; starting from x € RY, Y, starting from y € RY
~ look for a new process Z; in the product space R?:
(i) the marginal laws of Z; are the laws of X;, Y; respectively
(ii) Zr = (X, X¢) after the first time Z; hits the diagonal A := {x = y}.
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Coupling method in probability
[Doeblin '38], [Lindvall, Rogers '86], [Chen-Li '89], [F.Y. Wang '11]...
Given a process X; starting from x € RY, Y, starting from y € RY
~ look for a new process Z; in the product space R?:
(i) the marginal laws of Z; are the laws of X;, Y; respectively
(ii) Zr = (X, X¢) after the first time Z; hits the diagonal A := {x = y}.
Goal: optimize the estimate

u(t,x) = u(t,y) = Ez, [uo(x) — uo(ye)] < 2[[uollP(t < Te)

~> the Lipschitz estimate is reduced to estimate the hitting time of the
diagonal T, (best over all couplings !)
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Coupling method in probability
[Doeblin '38], [Lindvall, Rogers '86], [Chen-Li '89], [F.Y. Wang '11]...
Given a process X; starting from x € RY, Y, starting from y € RY
~ look for a new process Z; in the product space R?:
(i) the marginal laws of Z; are the laws of X;, Y; respectively
(ii) Zr = (X, X¢) after the first time Z; hits the diagonal A := {x = y}.

Goal: optimize the estimate

u(t,x) = u(t,y) = Ez, [uo(x) — uo(ye)] < 2[[uollP(t < Te)

~> the Lipschitz estimate is reduced to estimate the hitting time of the
diagonal T, (best over all couplings !)

Ex (coupling by reflection) [from W. Kendall" s course, Warwick '17]

A,
fed \» A
Y w s

s A N P
P in )N

mha “-\‘ Y ¥ "
x = w\,-ﬂ"“”\wwi\f’w’ \\

n..
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[P-Priola "12] ~~ the analytical version:
u, v are sub/super sol. of  9;u = tr (q(x)D?u) + b(x) Du in R
= z(x,y) = u(x) — v(y) is a subsolution in R?? of
0z = Ac(2) in R2d
Ac = tr (q(x)DF + q(y)Dj +2¢(x, y) D) — b(x) Dx — b(y) D,

for every choice of the coupling diffusion c(x, y) such that A, is elliptic
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[P-Priola "12] ~~ the analytical version:
u, v are sub/super sol. of  9;u = tr (q(x)D?u) + b(x) Du in R
= z(x,y) = u(x) — v(y) is a subsolution in R?? of
0z = Ac(2) in R2d
Ac = tr (q(x)DF + q(y) D} + 2¢(x, y) D5,) — b(x) D« — b(y) D,
for every choice of the coupling diffusion c(x, y) such that A, is elliptic
Roughly speaking, we have

U(t,X) - u(t7Y) S iﬂf{z/f(tyX,}’)a : 8t¢ - Ac(w) Z 0 }

~- find best choice of the coupling matrix ¢(x, y) and supersolution .
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[P-Priola "12] ~~ the analytical version:
u, v are sub/super sol. of  9;u = tr (q(x)D?u) + b(x) Du in R
= z(x,y) = u(x) — v(y) is a subsolution in R?? of
0z = Ac(2) in R2d
Ac = tr (q(x)DZ + q(y) D} + 2¢(x, y)D§,) = b(x) D« — b(y) Dy
for every choice of the coupling diffusion c(x, y) such that A, is elliptic
Roughly speaking, we have

U(t,X) - U(t,y) S iﬂf{?/f(t,X,}’)a : 8t¢ - Ac(w) Z 0 }

~- find best choice of the coupling matrix ¢(x, y) and supersolution .

Typical ex: (q(x) = 1) 1 = (|x — y|), c(x,y) = Id —2(x —y @ x — y)
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[P-Priola "12] ~~ the analytical version:
u, v are sub/super sol. of  9;u = tr (q(x)D?u) + b(x) Du in R
= z(x,y) = u(x) — v(y) is a subsolution in R?? of
0z = Ac(2) in R2d
Ac = tr (q(x)DF + q(y)Dj +2¢(x, y) D) — b(x) Dx — b(y) D,
for every choice of the coupling diffusion c(x, y) such that A, is elliptic

Roughly speaking, we have
U(t,X) - U(t,y) S i‘Rf{w(t,X,y), : 8t¢ - Ac(w) Z 0 }

~- find best choice of the coupling matrix ¢(x, y) and supersolution .
Typical ex: (q(x) = 1) 1 = (|x — y|), c(x,y) = Id —2(x —y @ x — y)

e The method is nonlinear: coupling methods are embedded into
doubling variables approach for viscosity solutions
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For jump processes, one can use a similar idea: double the variables and
prescribe the jumps for y to suitably "adapt” to the jumps of x.
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For jump processes, one can use a similar idea: double the variables and
prescribe the jumps for y to suitably "adapt” to the jumps of x.

Rough sketch of the argument:
@ Look at the maximum points of

W(t, x,y) == u(t,x)—u(t,y)—K: S [o(x) + o)+ (x —yl)
—— —

Lyapunov concave increasing

Claim: no positive maximum can occur.
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For jump processes, one can use a similar idea: double the variables and
prescribe the jumps for y to suitably "adapt” to the jumps of x.

Rough sketch of the argument:
@ Look at the maximum points of

W(t, x,y) == u(t,x)—u(t,y)—K: S [o(x) + o)+ (x —yl)
—— —

Lyapunov concave increasing
Claim: no positive maximum can occur.
o Let (t,x,y) be a max. point ~ W(t,x,y) > W(t,x+ z,y + 2)
v Lul(x) = Llul(y) = Ke (Lle](x) + L[A(y))
But we also have
W(t,x,y) > W(t,x+ z,y + Az) for any matrix A

Ex: A:=ld —2(x — y @ x — y) (reflection of the jumps)

~ exploits the concavity of ¥ for small interactions.
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Key-estimate:

Lemma Suppose that
Llu](x) := /Rd{U(X +2) — u(x) = (Du(x) - 2)1jz<1}v(dz)

where the Levy measure v satisfies, in a neighborhood of the origin

JA>0 :

If (x,y) is a local maximum point of the function

u(x) = u(y) = ([p(x) + o] + &(Ix = ¥1)

then
L[u](x) = L[u](y) = [£le](x) + L[e](y)]
dz

,4)\/ (1-5) /1/)”r+2s( —y-2))|z | Z |d+ads’

where B:={z € R : |z| < (]x —y| A1)}
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Comments:

e Similar arguments also apply to get regularizing effects.
Ex (o > 1 4 strong confinement)

Ke vt
[Du(t)| oo ((ry—r) < I [u(0)]pye  VE>0.
@ The choice of coupling by reflection is just one natural choice for

A
Levy measures v 2, EGCE
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Comments:
e Similar arguments also apply to get regularizing effects.
Ex (o > 1 4 strong confinement)

Ke vt
[Du(t)| oo ((ry—r) < I [u(0)]pye  VE>0.

@ The choice of coupling by reflection is just one natural choice for
Levy measures v 2,

A
[z]d+e

Different choices provide extensions to inhomogeneous fractional
diffusions.
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Comments:
e Similar arguments also apply to get regularizing effects.
Ex (o > 1 4 strong confinement)

Ke vt
[Du(t)| oo ((ry—r) < I [u(0)]pye  VE>0.

@ The choice of coupling by reflection is just one natural choice for
Levy measures v 2,

A

‘z‘d«#u .

Different choices provide extensions to inhomogeneous fractional
diffusions.

Key idea: doubling variables allows to embed the coupling ideas in
simple analytic version
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Comments:
e Similar arguments also apply to get regularizing effects.
Ex (o > 1 4 strong confinement)

Ke vt
[Du(t)| oo ((ry—r) < I [u(0)]pye  VE>0.

@ The choice of coupling by reflection is just one natural choice for
Levy measures v 2,

A
[z]d+e

Different choices provide extensions to inhomogeneous fractional
diffusions.

Key idea: doubling variables allows to embed the coupling ideas in
simple analytic version

More tricky perspective (future goal): how to export same approach
to degenerate Kolmogorov operators (Hormander types of diffusions,
kinetic models,...)
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Conclusions:
@ We suggest a new strategy for proving long time decay rates of
Fokker-Planck equations (both local and nonlocal diffusions).

Our method relies on refined estimates on the decay of weighted
seminorms for the adjoint problem.
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Conclusions:

@ We suggest a new strategy for proving long time decay rates of
Fokker-Planck equations (both local and nonlocal diffusions).

Our method relies on refined estimates on the decay of weighted
seminorms for the adjoint problem.

@ With a unifying approach we recover (and extend) many results obtained
with several different methods, including e.g. [Toscani-Villani],
[Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or
[Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.
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Conclusions:

@ We suggest a new strategy for proving long time decay rates of
Fokker-Planck equations (both local and nonlocal diffusions).
Our method relies on refined estimates on the decay of weighted
seminorms for the adjoint problem.

@ With a unifying approach we recover (and extend) many results obtained
with several different methods, including e.g. [Toscani-Villani],
[Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or
[Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.

@ Our proof can be thought as a purely analytic version of the probabilistic
approach since [Meyn & Tweedie] and more recently [Douc-Fort-Guillin],
[Hairer-Mattingly].

A. Porretta Adjoint methods and coupling in time-decay estimates



Conclusions:

@ We suggest a new strategy for proving long time decay rates of
Fokker-Planck equations (both local and nonlocal diffusions).
Our method relies on refined estimates on the decay of weighted
seminorms for the adjoint problem.

@ With a unifying approach we recover (and extend) many results obtained
with several different methods, including e.g. [Toscani-Villani],
[Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or
[Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.

@ Our proof can be thought as a purely analytic version of the probabilistic
approach since [Meyn & Tweedie] and more recently [Douc-Fort-Guillin],
[Hairer-Mattingly].

It contains as a by-product a purely analytical proof of many results on
ergodicity or time-contraction rates of diffusion semigroups obtained in
the probabilistic literature through coupling methods.

A. Porretta Adjoint methods and coupling in time-decay estimates



Conclusions:

@ We suggest a new strategy for proving long time decay rates of
Fokker-Planck equations (both local and nonlocal diffusions).
Our method relies on refined estimates on the decay of weighted
seminorms for the adjoint problem.

@ With a unifying approach we recover (and extend) many results obtained
with several different methods, including e.g. [Toscani-Villani],
[Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or
[Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.

@ Our proof can be thought as a purely analytic version of the probabilistic
approach since [Meyn & Tweedie] and more recently [Douc-Fort-Guillin],
[Hairer-Mattingly].

It contains as a by-product a purely analytical proof of many results on
ergodicity or time-contraction rates of diffusion semigroups obtained in
the probabilistic literature through coupling methods.

@ We have succefully applied those results to analyse long-time convergence
of mean field games with Levy operators

[work in progress with O. Ersland & E. Jakobsen]
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Thanks for the attention !
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