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Coupling and doubling and timely decay
Isn’t what nature has meant us to play ?

[E. Kean: “Shakespeare’s flowers”, 1833]

A. Porretta Adjoint methods and coupling in time-decay estimates



Fokker-Planck equations: trend to equilibrium

A classical issue: analyse the convergence of solutions of FP equations in
Rd towards the unique stationary invariant measure{
∂tm + Lm − div (b(x)m) = 0

m(0) = m0 ,
∫
Rdm0 = 1

t→∞−→ m̄ :

{
L(m̄) = div (bm̄) ,∫

Rd m̄ = 1

where L is a diffusion process (local or nonlocal).

Related to ergodicity of the associated stochastic process Xt :

1

T
E
∫ T

0

ϕ(Xt)dt︸ ︷︷ ︸
= 1

T

∫ T
0

∫
Rd ϕdm(t,x)

T→∞→
∫
Rd

ϕ dm̄ ∀ϕ ∈ Cc(Rd)

Model example is the Ornstein-Ulhenbeck process in Rd .

dXt = −Xtdt +
√

2dBt → ∂tm −∆m − div (xm) = 0

 FP equations with confining drift
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Rate of convergence  time decay analysis

Rephrase the problem as time decay for zero average distributions:{
∂tµ+ Lµ− div (b(t, x)µ) = 0

µ(0) = µ0 ,
∫
Rd µ0 = 0

→ ‖µ(t)‖X
t→∞→ 0

Main focus: L can be a Levy operator

Lv = −tr(Q(x)D2v)−B ·Dv−
∫
Rd

{v(x+z)−v(x)−(Dv(x)·z)1|z|≤1}ν(dz)

Model case: the fractional Laplacian ν = dz
|z|d+α

Motivation: Long time behavior of Nash equilibria in Mean-field game
theory

In that context: b depends on the individual strategies
 b(t, x) = Hp(x ,Du), where u is the value function of the agents

Main point: b(t, x) is not very regular, it is time-dependent, it is not
well-known a priori, etc...
 need a very robust study of FP equation
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Typical results for

{
∂tm −∆m − div (b(x)m) = 0∫
m0 = 0

Rate is exponential if b(x) · x ≥ |x |2 for |x | → +∞
(es. Ornstein-Uhlenbeck semigroup)

‖m(t)‖X ≤ e−ωt‖m0‖X

Rate is slower if b(x) · x ≥ |x |γ for |x | → +∞, with γ ∈ (0, 2)
(slowly confining drifts  sub-geometrical rate)

Natural choice of X is a L1-weighted space:

es: X = L1(〈x〉κ) , 〈x〉 =
√

1 + |x |2

This implies decay in L1-norm for m(t) but requires some finite
moments on the initial data m0.
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A (very partial !) look at the (very huge !) literature  two major axes

1. Approach by energy/entropy methods
Typical target:

∂tm−∆m − div (∇V m)︸ ︷︷ ︸
Lm

= 0

Spectral gap in L2(eV )
[Gross ’75, Liggett ’91, Rockner-F.Y. Wang ’01...semigroup theory...

entropy dissipation

d

dt
H(m|e−V ) ≤ −γ H(m|e−V ) , H(m|e−V ) :=

∫
m(logm+V )dx

[Toscani, Villani, Markovich, Carrillo...]

Extensions to fractional Laplacian: [Biler-Karch ’03, Tristani ’15,

Gentil-Imbert ’09, ....]

Key tools are functional inequalities: Poincaré inequality (strong and
weak forms), log-Sobolev inequality... (Gross, Bakry-Emery, Villani..)
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weak forms), log-Sobolev inequality... (Gross, Bakry-Emery, Villani..)

A. Porretta Adjoint methods and coupling in time-decay estimates



1. Approach by probabilistic methods/ideas

[Meyn &Tweedie ’93, Douc-Fort-Guillin ’09, Hairer, Hairer-Mattingly ’11, ...]

Typical setting:
m(t) = etAm0

where A is a diffusion process.

∃ of a Lyapunov function + local strict positivity of the semigroup
 exponential decay. In rough terms:{
∃ϕ(x) : A∗ϕ ≥ γϕ− C 1K , K compact

m(t, x) ≥ ν > 0 ∀x ∈ K
⇒ ‖m(t)‖X ≤ C e−ωt‖m0‖X

where X is a L1-weighted space (depends on Lyapunov function ϕ).

Further works also used a mix of ingredients (Lyapunov + Poincaré,
decomposition methods... See e.g. [Bakry-Cattiaux-Guillin JFA ’08],

[Mischler, Mouhot-Mischler ’09, Kavian-Mischler-Ndao ’21],

[LaFleche’20],...
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We suggest a simplification/generalization of some of the previous ideas

By duality, the decay of FP equations is entirely deduced from
dissipation estimates of drift-diffusion equations

The core lies in new weighted oscillation estimates for{
∂tu + L∗u + b(t, x) · Du = 0

u(0) = u0 ,

We define the seminorm

[u]ϕ := sup
x,y∈R2d

|u(x)− u(y)|
ϕ(x) + ϕ(y)

where typically ϕ(x) is a Lyapunov function.
Special case: ϕ(x) is of power-type:

[u]〈x〉k = sup
x,y∈R2d

|u(x)− u(y)|
〈x〉k + 〈y〉k

, 〈x〉 =
√

1 + |x |2 .
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Sample result: fractional Laplacian + drift{
∂tu + (−∆)α/2u + b(t, x) · Du = 0 t > 0

u(0) = u0 ,

Theorem (A)

Assume that

b(t, x) · x ≥ λ |x |2 ∀(x , t) : |x | is large

Under either of the following conditions:

(i) α ∈ (1, 2] and (b(t, x)− b(t, y)) · (x − y) ≥ −c0|x − y |, for all t, x , y

(ii) α ∈ (0, 1] and
(b(t, x)− b(t, y)) · (x − y) ≥ −c0|x − y |(1 ∧ |x − y |1−α+δ),
for some δ > 0, c0 > 0,

then there exist K , ω:

[u(t)]〈x〉k ≤ K e−ωt [u0]〈x〉k
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Theorem (B)

Under the same conditions of Theorem (A), the solution of the FP
equation {

∂tm + (−∆)α/2m − div (b(t, x)m) = 0

µ(0) = m0 ,
∫
Rd m0 = 0

decays exponentially:

‖m(t)‖L1(〈x〉κ) ≤ K e−ωt ‖m0‖L1(〈x〉k )

Rmk: the conditions on the drift are b(t, x) · x ≥ |x |2 for |x | → ∞ and

(i) α ∈ (1, 2] and (b(t, x)− b(t, y)) · (x − y) ≥ −c0|x − y |,
(ii) α ∈ (0, 1] and, for some δ > 0,
(b(t, x)− b(t, y)) · (x − y) ≥ −c0|x − y |(1 ∧ |x − y |1−α+δ)

for α ∈ (1, 2] (elliptic case), minimal requirements on b(t, x):
“confining at infinity + locally bounded”.

for α ∈ (0, 1], some local Hölder regularity is required on the (non
dissipative part of) drift b(t, x).
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Proof of Thm (B) from Thm (A):

By duality we have∫
Rd

ξm(t)dx =

∫
Rd

m0 u(0)dx

∀ξ, u :

{
−∂tu + (−∆)α/2u + b(t, x) · Du = 0 in (0, t)

u(t) = ξ ,

Using m0 with zero average we have, ∀c ∈ R∫
Rd

ξm(t)dx =

∫
Rd

m0 u(0)dx =

∫
Rd

m0 (u(0) + c)dx

≤ ‖u(0) + c‖L∞(〈x〉−kdx)‖m0‖L1(〈x〉k )

(1)

We use equivalence of seminorms

inf
c∈R
‖u + c‖L∞(〈x〉−kdx) = sup

x,y∈R2d

|u(x)− u(y)|
〈x〉k + 〈y〉k

= [u]〈x〉k

We minimize on c in (1) and use Thm (A)∫
Rd

ξm(t)dx ≤ ‖m0‖L1(〈x〉k )[u(0)]〈x〉k ≤ ‖m0‖L1(〈x〉k ) Ke
−ωt‖ξ‖L∞(〈x〉−kdx)

A. Porretta Adjoint methods and coupling in time-decay estimates



Proof of Thm (B) from Thm (A):

By duality we have∫
Rd

ξm(t)dx =

∫
Rd

m0 u(0)dx

∀ξ, u :

{
−∂tu + (−∆)α/2u + b(t, x) · Du = 0 in (0, t)

u(t) = ξ ,

Using m0 with zero average we have, ∀c ∈ R∫
Rd

ξm(t)dx =

∫
Rd

m0 u(0)dx =

∫
Rd

m0 (u(0) + c)dx

≤ ‖u(0) + c‖L∞(〈x〉−kdx)‖m0‖L1(〈x〉k )

(1)

We use equivalence of seminorms

inf
c∈R
‖u + c‖L∞(〈x〉−kdx) = sup

x,y∈R2d

|u(x)− u(y)|
〈x〉k + 〈y〉k

= [u]〈x〉k

We minimize on c in (1) and use Thm (A)∫
Rd

ξm(t)dx ≤ ‖m0‖L1(〈x〉k )[u(0)]〈x〉k ≤ ‖m0‖L1(〈x〉k ) Ke
−ωt‖ξ‖L∞(〈x〉−kdx)

A. Porretta Adjoint methods and coupling in time-decay estimates



Proof of Thm (B) from Thm (A):

By duality we have∫
Rd

ξm(t)dx =

∫
Rd

m0 u(0)dx

∀ξ, u :

{
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We prove similar results for the slowly confining case:

b(t, x) · x ≥ c |x |γ ∀(x , t) : |x | is large (2)

whenever
γ ∈ (0, 2)

Theorem

Assume that b satisfies (2) with γ ∈ (2− α, 2) and b satisfies the
conditions of Theorem (A). Let m be the solution of the FP equation{

∂tm + (−∆)α/2m − div (b(t, x)m) = 0

µ(0) = m0 ,
∫
Rd m0 = 0 .

Then, for any k ∈ (2− γ, α) and k̄ > k, we have

‖m(t)‖L1(〈x〉k ) ≤ K (1 + t)−q ‖m0‖L1(〈x〉k̄ ) where q = k̄−k
2−γ .
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Main novelty of this approach: decay of FP equations ⇐⇒ decay in
weighted seminorms for drift-diffusion eqs{

∂tu + (−∆)α/2u + b(t, x) · Du = 0 t > 0

u(0) = u0 ,

 [u(t)]〈x〉k ≤ K e−ωt [u0]〈x〉k

Rephrasing:

∃ ω,K > 0 : u(t, x)− u(t, y) ≤ K e−ωt
(
〈x〉k + 〈y〉k

)
(3)

Main idea: (3) is OK if we prove

u(t, x)− u(t, y) ≤ e−ωt
{
K [〈x〉k + 〈y〉k ] + ψ(|x − y |)

}
(4)

for some bounded ψ(·).

ψ(|x − y |) takes care of small range interactions
Typically: ψ is a concave bounded function which is locally Hölder

long range interactions only happen at infinity
 dominated by the Lyapunov function
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Decay of weighted seminorms:

u(t, x)− u(t, y) ≤ e−ωt

K [〈x〉k + 〈y〉k ]︸ ︷︷ ︸
Lyapunov

+ ψ(|x − y |)︸ ︷︷ ︸
local ellipticity

 (5)

Estimate (5) is an evidence of ergodicity of the underlying process.

Similar results exist in the probabilistic literature in the form of
contraction estimates for transition probabilities in Wasserstein’s
metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...

Our proof is entirely analytic and quite elementary:
max. principle + doubling variables’ method

We upgrade (especially for nonlocal diffusions) the method developed in
[Ishii-Lions ’92] for viscosity solutions, extended to nonlocal operators in
[Barles-Chasseigne-Imbert ’11], [Barles-Chasseigne-Ciomaga-Imbert ’13]

(see also [Barles-Ley-Topp ’17], [Chasseigne-Ley-Nguyen]..)

Key-point: [P.-Priola ’12]:

PDE doubling variables methods ↔ probabilistic coupling methods

A. Porretta Adjoint methods and coupling in time-decay estimates



Decay of weighted seminorms:

u(t, x)− u(t, y) ≤ e−ωt

K [〈x〉k + 〈y〉k ]︸ ︷︷ ︸
Lyapunov

+ ψ(|x − y |)︸ ︷︷ ︸
local ellipticity

 (5)

Estimate (5) is an evidence of ergodicity of the underlying process.

Similar results exist in the probabilistic literature in the form of
contraction estimates for transition probabilities in Wasserstein’s
metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...

Our proof is entirely analytic and quite elementary:
max. principle + doubling variables’ method

We upgrade (especially for nonlocal diffusions) the method developed in
[Ishii-Lions ’92] for viscosity solutions, extended to nonlocal operators in
[Barles-Chasseigne-Imbert ’11], [Barles-Chasseigne-Ciomaga-Imbert ’13]

(see also [Barles-Ley-Topp ’17], [Chasseigne-Ley-Nguyen]..)

Key-point: [P.-Priola ’12]:

PDE doubling variables methods ↔ probabilistic coupling methods

A. Porretta Adjoint methods and coupling in time-decay estimates



Decay of weighted seminorms:

u(t, x)− u(t, y) ≤ e−ωt

K [〈x〉k + 〈y〉k ]︸ ︷︷ ︸
Lyapunov

+ ψ(|x − y |)︸ ︷︷ ︸
local ellipticity

 (5)

Estimate (5) is an evidence of ergodicity of the underlying process.

Similar results exist in the probabilistic literature in the form of
contraction estimates for transition probabilities in Wasserstein’s
metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...

Our proof is entirely analytic and quite elementary:
max. principle + doubling variables’ method

We upgrade (especially for nonlocal diffusions) the method developed in
[Ishii-Lions ’92] for viscosity solutions, extended to nonlocal operators in
[Barles-Chasseigne-Imbert ’11], [Barles-Chasseigne-Ciomaga-Imbert ’13]

(see also [Barles-Ley-Topp ’17], [Chasseigne-Ley-Nguyen]..)

Key-point: [P.-Priola ’12]:

PDE doubling variables methods ↔ probabilistic coupling methods

A. Porretta Adjoint methods and coupling in time-decay estimates



Decay of weighted seminorms:

u(t, x)− u(t, y) ≤ e−ωt

K [〈x〉k + 〈y〉k ]︸ ︷︷ ︸
Lyapunov

+ ψ(|x − y |)︸ ︷︷ ︸
local ellipticity

 (5)

Estimate (5) is an evidence of ergodicity of the underlying process.

Similar results exist in the probabilistic literature in the form of
contraction estimates for transition probabilities in Wasserstein’s
metrics [F.Y. Wang], [Eberle], [Schilling-J.Wang], [Majka]...

Our proof is entirely analytic and quite elementary:
max. principle + doubling variables’ method

We upgrade (especially for nonlocal diffusions) the method developed in
[Ishii-Lions ’92] for viscosity solutions, extended to nonlocal operators in
[Barles-Chasseigne-Imbert ’11], [Barles-Chasseigne-Ciomaga-Imbert ’13]

(see also [Barles-Ley-Topp ’17], [Chasseigne-Ley-Nguyen]..)

Key-point: [P.-Priola ’12]:

PDE doubling variables methods ↔ probabilistic coupling methods

A. Porretta Adjoint methods and coupling in time-decay estimates



Coupling method in probability
[Doeblin ’38], [Lindvall, Rogers ’86], [Chen-Li ’89], [F.Y. Wang ’11]...

Given a process Xt starting from x ∈ Rd , Yt starting from y ∈ Rd

 look for a new process Zt in the product space R2d :

(i) the marginal laws of Zt are the laws of Xt ,Yt respectively

(ii) Zt = (Xt ,Xt) after the first time Zt hits the diagonal ∆ := {x = y}.

Goal: optimize the estimate

u(t, x)− u(t, y) = EZt [u0(xt)− u0(yt)] ≤ 2‖u0‖∞P(t < Tc)

 the Lipschitz estimate is reduced to estimate the hitting time of the
diagonal Tc (best over all couplings !)

Ex (coupling by reflection) [from W. Kendall’ s course, Warwick ’17]
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[P-Priola ’12]  the analytical version:

u, v are sub/super sol. of ∂tu = tr
(
q(x)D2u

)
+ b(x)Du in Rd

⇒ z(x , y) := u(x)− v(y) is a subsolution in R2d of∂tz = Ac(z) in R2d

Ac = tr
(
q(x)D2

x + q(y)D2
y + 2c(x , y)D2

xy

)
− b(x)Dx − b(y)Dy

for every choice of the coupling diffusion c(x , y) such that Ac is elliptic

Roughly speaking, we have

u(t, x)− u(t, y) ≤ inf
Ac

{ψ(t, x , y), : ∂tψ −Ac(ψ) ≥ 0 }.

 find best choice of the coupling matrix c(x , y) and supersolution ψ.

Typical ex: (q(x) = I ) ψ = ψ(|x − y |), c(x , y) = Id − 2(x̂ − y ⊗ x̂ − y)

• The method is nonlinear: coupling methods are embedded into
doubling variables approach for viscosity solutions
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For jump processes, one can use a similar idea: double the variables and
prescribe the jumps for y to suitably ”adapt” to the jumps of x .

Rough sketch of the argument:

Look at the maximum points of

W (t, x , y) := u(t, x)−u(t, y)−Kt

[ϕ(x) + ϕ(y)]︸ ︷︷ ︸
Lyapunov

+ ψ(|x − y |)︸ ︷︷ ︸
concave increasing


Claim: no positive maximum can occur.

Let (t, x , y) be a max. point  W (t, x , y) ≥W (t, x + z , y + z)

 L[u](x)− L[u](y) ≥ Kt (L[ϕ](x) + L[ϕ](y))

But we also have

W (t, x , y) ≥W (t, x + z , y + Az) for any matrix A

Ex: A := Id − 2(x̂ − y ⊗ x̂ − y) (reflection of the jumps)

 exploits the concavity of ψ for small interactions.
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Key-estimate:

Lemma Suppose that

L[u](x) :=

∫
Rd

{u(x + z)− u(x)− (Du(x) · z)1|z|≤1}ν(dz)

where the Levy measure ν satisfies, in a neighborhood of the origin

∃λ > 0 :
λ

|z |d+α
≤ dν

dz
.

If (x , y) is a local maximum point of the function

u(x)− u(y)− ([ϕ(x) + ϕ(y)] + ψ(|x − y |))

then

L[u](x)− L[u](y) ≥ [L[ϕ](x) + L[ϕ](y)]

− 4λ

∫ 1

0

(1− s)

∫
B

ψ′′(r + 2s(x̂ − y · z))|z |2 dz

|z |d+σ
ds,

where B := {z ∈ Rd : |z | < (|x − y | ∧ 1)}.
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Comments:

Similar arguments also apply to get regularizing effects.
Ex (α > 1 + strong confinement)

‖Du(t)‖L∞(〈x〉−k ) ≤
K e−ωt

t
1
α

[u(0)]〈x〉k ∀t > 0 .

The choice of coupling by reflection is just one natural choice for
Levy measures ν & λ

|z|d+α .

Different choices provide extensions to inhomogeneous fractional
diffusions.

Key idea: doubling variables allows to embed the coupling ideas in
simple analytic version

More tricky perspective (future goal): how to export same approach
to degenerate Kolmogorov operators (Hormander types of diffusions,
kinetic models,...)
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Conclusions:

We suggest a new strategy for proving long time decay rates of
Fokker-Planck equations (both local and nonlocal diffusions).

Our method relies on refined estimates on the decay of weighted
seminorms for the adjoint problem.

With a unifying approach we recover (and extend) many results obtained
with several different methods, including e.g. [Toscani-Villani],
[Bakry-Cattiaux-Guillin], [Kavian-Mischler-Ndao] for local operators, or
[Tristani], [Gentil-Imbert], [LaFleche] for fractional Laplacians.

Our proof can be thought as a purely analytic version of the probabilistic
approach since [Meyn &Tweedie] and more recently [Douc-Fort-Guillin],
[Hairer-Mattingly].

It contains as a by-product a purely analytical proof of many results on
ergodicity or time-contraction rates of diffusion semigroups obtained in
the probabilistic literature through coupling methods.

We have succefully applied those results to analyse long-time convergence
of mean field games with Levy operators

[work in progress with O. Ersland & E. Jakobsen]
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Thanks for the attention !
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