On large solutions for fractional Hamilton-Jacobi equations

A. Quaas

Departamento de Matemática UTFSM

G. Dávila UTFSM, and E. Topp, USACH.

Cortona 2 June 2022 Mostly MP

Large solution for nonlocal Hamilton-Jacobi equation

We are interested in existence of large (unbounded) solutions of (model problem)

(*)
$$\begin{cases} (-\Delta)^s u + |Du|^p + \lambda u = f & \text{in } \Omega, \\ u = 0 & \text{in } \Omega^c, \end{cases}$$

for 0 < p < 2s, $\ f \in \mathit{C}(\Omega) \cap \mathit{L}^\infty(\Omega),$ with

$$\lim_{x \to \partial \Omega, x \in \Omega} u(x) = +\infty \quad \text{or} \quad \lim_{x \to \partial \Omega, x \in \Omega} u(x) = -\infty,$$

where

$$(-\Delta)^s u(x) = C_{N,s} \mathrm{P.V.} \int_{\mathbb{R}^N} \frac{u(x) - u(z)}{|x - z|^{N+2s}} dz,$$

Large solutions

Keller [CPAM'57], and Osserman [PJM'57] study large solutions associated to reaction-diffusion problems with the form

$$-\Delta u = f(u)$$
 in Ω .

They proved the existence of large solutions if

$$\int_0^\delta \frac{ds}{\sqrt{F(s)}} < \infty \quad F' = f,$$

For instance, if $f(u) = u^p$, we have existence of large solutions iff p > 1.

Obs: Connection with probability (superdiffusions) in the regime 1 , see Le Gall's book '99

Lasry-Lions 1989: Existence of large solution

They studied the problem

$$-\Delta u + |Du|^p + \lambda u = f \quad \text{in } \Omega,$$

for 1 0 and $f \in C(\Omega)$. They prove that there exists a unique solution u that behaves like

$$d(x)^{-\frac{p-2}{p-1}}$$

near the boundary, where

$$d(x) := \operatorname{dist}(x, \partial \Omega).$$

and with logarithmic profile in the critical case p = 2. The case p > 2 is also discuss in that work! (Bounded solution).

Lasry-Lions 1989

Connection with optimal control of a stochastic differential equation (constrain a Brownian by controlling its drift):

- Admisible drift are so that the process never exit the domain Ω,
- *f* is part of the running cost,
- λ discount factor.

Using the dynamic programming principle they prove that a value function is the unique solution of the equation.

This value function is obtained by minimizing running cost (in the class of admissible drift) involving f and "feedback" term depending on p and the drift term.

The ergodic problem is the limit of solution $u_{\lambda} - u_{\lambda}(x_0) \rightarrow v$ as $\lambda \rightarrow 0$ that is a large solution v of

$$-\Delta v + |Dv|^p = f + c_0 \quad \text{in } \Omega,$$

where c_0 is the ergodic constants and $v(x_0) = 0$.

Connection with parabolic problem

$$u_t - \Delta u + |Du|^p = f \quad \text{in } \Omega \times (0, +\infty) \tag{VHJ-B}$$

$$u = g \quad \text{on } \partial\Omega \times (0, +\infty)$$
 (BC)

$$u(\cdot,0) = u_0(\cdot)$$
 in $\overline{\Omega}$. (IC)

Barles-Porretta-Tchamba 2010.

They proved:

- Further properties of the ergodic problem (type of eigenvalue problem and characterization of c_0).
- If $c_0 < 0$ then stationary problem has a solution and u(x,t) converge to that solution.
- If the stationary problem has no solution then ergodic constants satisfies $c_0 \ge 0$

Connection with parabolic problem

• Established that if $c_0 > 0$ and 3/2

$$u(x,t) + c_0 t \rightarrow v_0 + \mu$$
 as $t \rightarrow \infty$

locally uniform in Ω , for some constant μ .

• Other asymptotic results in the rest of the cases ($c_0 = 0$ or/and 1).

• Tchamba 2010 studied the case p > 2.

Case of the parabolic problem in \mathbb{R}^n

- Barles Meireles 2016 (uniqueness of Ergodic problem) p > 2 +regularity of f. simplicity even for subsolution (generalize uniqueness).
- Arapostathis, Biswas, Caffarelli (2019). (Uniqueness of Ergodic problem) 1 < $p \le 2$ for solution.
- Previous results by Ichihara 2012 -Barles Meireles 2016 (polynomial growth)

Case of the parabolic problem in \mathbb{R}^n

Barles-Q.-Rodríguez (2021)-Q. Rodríguez (2022) Very general u_0 and f (arbitrary growth) and for any p > 1

$$u(x,t)+c_0t\to v_0+\mu,$$

for (c_0, v_0) the ergodic par in \mathbb{R}^n .

Key ingredients:

Case p > 2. Unbounded super-solution that move (in time) the boundary of explosion to have the first convergence: half relax limit is a sub-solution of the ergodic problem.

Case 1 generalize simplicity even for sub-solution.

Some previous results on large solution in nonlocal setting

For equation of the type

$$(-\Delta)^s u = f(u, x)$$

in a bounded domain.

• Abatangelo (2015-2017) (Properties of Green function)

• Chen-Felmer-Q (2015) (Close the our approach: Perron type method)

Main results (model case)

(*)
$$\begin{cases} (-\Delta)^s u + |Du|^p + \lambda u = f & \text{in } \Omega, \\ u = 0 & \text{in } \Omega^c, \end{cases}$$

We write $p_i = p_i(s)$ for i = 1, 2 as

$$p_1 = s + \frac{1}{2}$$
 and $p_2 = \frac{s+1}{2-s}$, (1)

A third exponent $p_0 = \frac{2s}{2-s}$ We notice that for $s \in (1/2, 1)$, we have $p_1 > 1$ and

$$p_1(s) < p_2(s) < 2s, \quad p_2(1^-) = 2, \quad p_1(1/2^+) = p_2(1/2^+) = 1,$$

Figure: Exponents p_0 , p_1 and p_2 as a function of s. Notice that p_0 and p_1 intersects at $s^* = \frac{\sqrt{17}-1}{4}$.

Main results (model case and $\lambda \ge 0$ *)*

Theorem: Let $s \in (1/2, 1)$, $0 , <math>\Omega \subset \mathbb{R}^N$ be a bounded domain with C^2 boundary, $f \in L^{\infty}(\Omega) \cap C(\Omega)$. When 1 , we denote

$$\beta := (2s - p)/(1 - p) < 0.$$

1.- One parameter family of solutions (close to s-harmonic): If $0 , there exist a family of solutions <math>\{u_t\}_{t \in \mathbb{R}, t \neq 0}$ to (*), such that for each *t* we have

$$d^{1-s}u_t(x)-t=O(d^{\gamma}),$$

for some $\gamma > s - 1$ depending on p. In particular, if $t_1 < t_2$, then

$$u_{t_1} < u_{t_2}$$
 in Ω .

Moreover, if *p* additionally satisfies $p < p_0$, then $\gamma > 0$.

Main results (model case and $\lambda \geq 0$ *)*

2.- Positive scale solution: If $p_1 , then there exists a constant <math>T > 0$ and a function u solving (*) such that

$$d(x)^{-\beta}u(x) - T = O(d(x)^{\gamma}),$$

for some $\gamma > 0$.

3.- Negative scale solution: For $p_2 , then there exist <math>T > 0$ and a solution u of (*) such that

$$d^{-\beta}(x)u(x) + T = O(d(x)^{\gamma}),$$

for some $\gamma > 0$.

Remarks

- Case 1 and Case 2 can occur simultaneously (non-uniqueness) and we have $u_t < u \text{ in } \Omega$.
- Condition p₁ β</sup> ∈ L¹(Ω) and the nonlocal operator is well define.

Ideas of the proof (one dimensional case)

$$(-\Delta)^{s}x_{+}^{\tau} = -c(\tau)x_{+}^{\tau-2s}, \quad x > 0$$

here $(\cdot)_+$ denote positive part. where $c(\tau)$ is convex function and has the form.

Figure: $c(\tau)$

In the local case:

$$(-\Delta)x_{+}^{\tau} = -(\tau(\tau-1))x_{+}^{\tau-2},$$

Lemma

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with C^2 boundary, $s \in (0, 1)$. Then, for each $\tau \in (-1, 2s)$, we have

 $(-\Delta)^{s}d^{\tau}(x) = -d^{\tau-2s}(x)(c(\tau) + O(d(x)^{s})), \quad close \ to \ de \ boundary$

where

$$c(au) = ext{P.V.} \int_{\mathbb{R}} [(1+z)_+^{ au} - 1] |z|^{-(1+2s)} dz.$$

This constant (of the one dimensional case) and therefore $c(-1^+) = +\infty$, $c(2s^-) = +\infty$, c(s-1) = c(s) = 0, $c(\tau) > 0$ if $\tau \in (-1, s - 1) \cup (s, 2s)$ and $c(\tau) < 0$ for $\tau \in (s - 1, s)$.

Condition $p_1 is such that <math>c(\beta) > 0$ and is possible to construct sub and super solution to the problem (Larsy-Lions type solution) and applied a Perron type method.

Some extension

For a class of fully nonlinear nonlocal operator ${\cal I}$ with kernels comparable to the fraction Laplacian.

$$\begin{cases} -\mathcal{I}u + |Du|^p + \lambda u = f & \text{in } \Omega, \\ u = \varphi & \text{in } \Omega^c, \\ \lim_{x \in \Omega, \ x \to \partial \Omega} u = +\infty, \end{cases}$$
(2)

and its blow-down version $\lim_{x \in \Omega, \ x \to \partial \Omega} u = -\infty$. here $\varphi \in L^1_{\omega}(\bar{\Omega}^c)$, (ω is so that \mathcal{I} is well define); $\lambda > -\lambda_0(\mathcal{I})$ (splitting \mathcal{I} into the censored problem and the rest, with $\lambda_0(\mathcal{I}) > 0$), In the model case $(-\mathcal{I} = (-\Delta)^s)$

$$\lambda_0 = \inf_{x\in\Omega}\int\limits_{\Omega^c} |x-z|^{-(N+2s)} dz.$$

Thanks for the attention!