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Large solution for nonlocal Hamilton-Jacobi equation

We are interested in existence of large (unbounded) solutions of
(model problem)

u=0 1in°,

(+) { (—A)u+ |Duff + du=f inQ,

for0 <p<2s, feC()NL>®(Q),with

lim u(x) =400 or lim  u(x) = —o0,
x—00,x€N x—00,x€N

where

(=A)*u(x) = CyP.V. / ux) —ulz)

RN |x — z|Nt2s 77



Large solutions

Keller [CPAM’57], and Osserman [PJM’57] study large solutions
associated to reaction-diffusion problems with the form

—Au=f(u) inQ.

They proved the existence of large solutions if

0
/ ds <oo F =f,
0

For instance, if f(u) = u”, we have existence of large solutions iff
p>1.

Obs: Connection with probability (superdiffusions) in the regime
1 < p < 2,see Le Gall’s book "99



Lasry-Lions 1989: Existence of large solution

They studied the problem
—Au+ |Dulff + Au=f inQ,

for1 <p<2,A>0andf € C(). They prove that there exists a
unique solution u that behaves like

near the boundary, where
d(x) := dist(x, 0Q2).

and with logarithmic profile in the critical case p = 2.
The case p > 2 is also discuss in that work! (Bounded solution).



Lasry-Lions 1989

Connection with optimal control of a stochastic differential equation
(constrain a Brownian by controlling its drift):
® Admisible drift are so that the process never exit the domain (2,
® f is part of the running cost,

e ) discount factor.

Using the dynamic programming principle they prove that a value
function is the unique solution of the equation.

This value function is obtained by minimizing running cost (in the
class of admissible drift) involving f and “feedback” term depending
on p and the drift term.



Ergodic problem

The ergodic problem is the limit of solution uy — uy(x) — v as
A — 0 that is a large solution v of

—Av+ |DvP =f+¢ inQ,

where ¢ is the ergodic constants and v(x,) = 0.



Connection with parabolic problem

u— Au+ |Dulff = f inQ x (0,+00) (VHJ-B)
u=g ondf x (0,+00) (BC)
u(-,0) = up(+) in Q. (IC)

Barles-Porretta-Tchamba 2010.
They proved:

® Further properties of the ergodic problem (type of eigenvalue
problem and characterization of c).

® If ¢y < 0 then stationary problem has a solution and u(x,t)
converge to that solution.

e If the stationary problem has no solution then ergodic
constants satisfies ¢y > 0



Connection with parabolic problem

® Established thatif ¢ > 0and 3/2 < p < 2
u(x,t) +cot > v+p as t— oo

locally uniform in €2, for some constant .

® Other asymptotic results in the rest of the cases (¢g = 0 or/and
1< p<3/2).

® Tchamba 2010 studied the case p > 2.



Case of the parabolic problem in  R"

® Barles Meireles 2016 (uniqueness of Ergodic problem ) p > 2
+regularity of f. simplicity even for subsolution (generalize
uniqueness).

® Arapostathis, Biswas, Caffarelli (2019). (Uniqueness of Ergodic
problem) 1 < p < 2 for solution.

® Previous results by Ichihara 2012 -Barles Meireles 2016
(polynomial growth)



Case of the parabolic problem in R"

Barles-Q.-Rodriguez (2021)-Q. Rodriguez (2022)
Very general u; and f (arbitrary growth) and for any p > 1

u(xa t) + Cot — Vo + K,

for (cp, w) the ergodic par in R™.

Key ingredients:

Case p > 2. Unbounded super-solution that move (in time) the
boundary of explosion to have the first convergence: half relax limit
is a sub-solution of the ergodic problem.

Case 1 < p < 2 generalize simplicity even for sub-solution.



Some previous results on large solution in nonlocal setting

For equation of the type

(=A)u= f(ux)

in a bounded domain.

e Abatangelo (2015-2017) (Properties of Green function)

® Chen-Felmer-Q (2015) (Close the our approach: Perron type
method)



Main results (model case)

(=A)u+ [Dulf + Au=f in{,
(*) u=0 inQ°

We write p; = pi(s) fori=1,2as

1 s+1
=5t and =0 1)

A third exponent py = ;2 We notice that for s € (1/2,1), we have
p1 > 1land

pi(s) <pa(s) <25, p(17) =2, pi(1/27) = pp(1/27) =1,
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Figure: Exponents py, p1 and p, as a function of s. Notice that p, and p,

intersects at s* = —”171.



Main results (model case and A > 0)

Theorem: Let s € (1/2,1),0 < p < 2s, 2 C RN be a bounded
domain with C? boundary, f € L>(Q2) N C(2). When
1 < p < 2s, we denote

Bi=(2s—p)/(1-p)<o0.

1.- One parameter family of solutions (close to s-harmonic): If
0 < p < po, there exist a family of solutions {u; }ser 120 to (%),
such that for each ¢ we have

d"u(x) — t = 0(d"),

for some v > s — 1 depending on p. In particular, if ; < t,,
then
u, < u, inC

Moreover, if p additionally satisfies p < p,, then v > 0.



Main results (model case and A > 0)

2.- Positive scale solution: If p; < p < p,, then there exists a constant
T > 0 and a function u solving (*) such that

d(x)u(x) = T = 0(d(x)"),

for some v > 0.

3.- Negative scale solution: For p, < p < 2s, then there exist T > 0
and a solution u of () such that

d=P(x)u(x) + T = 0(d(x)),

for some v > 0.



Remarks

® Case 1 and Case 2 can occur simultaneously (non-uniqueness )
and we have u; < uin €.

® Condition p; < p is such that d” € L'(9) and the nonlocal
operator is well define.



Ideas of the proof (one dimensional case)

(—A)x] = —c(T)x[ %, x>0
here (-)4 denote positive part. where ¢(7) is convex function and
has the form.

In the local case:



Lemma

Let Q C RN be a bounded domain with C? boundary, s € (0,1).
Then, for each T € (—1, 2s), we have

(=A)d"(x) = —d"*(x)(c(7) + O(d(x)*)), close to de boundary

where

¢(t) =P.V. /R[(l +2)T —1]|2z| 70+ gz,

This constant (of the one dimensional case) and therefore
c(—1") = 400, ¢(257) = +00, ¢(s — 1) = ¢(s) =0, ¢(1) > 0 if
TE€(=1,s—1)U(s,2s) and c(1) < 0 forT € (s — 1,5).

Condition p; < p < ps is such that ¢(8) > 0 and is posible to
construct sub and super solution to the problem (Larsy-Lions type
solution) and applied a Perron type method.



Some extension

For a class of fully nonlinear nonlocal operator Z with kernels
comparable to the fraction Laplacian.

—Zu+ [Dulf +Xu =f inQ,

u = in Q°, ()
lim wu =+oo,
x€Q, x—00
and its blow-down version lim u = —o0.
x€Q, x—0N

here € LL(Q°), (w is so that 7 is well define); A > —\o(Z)
(splitting Z into the censored problem and the rest, with A\o(Z) > 0),
In the model case (—Z = (—A)*)

_ mf/]x —(N+25) g,



Thanks for the attention!



