# On large solutions for fractional Hamilton-facobi equations 

A. Quaas

Departamento de Matemática UTFSM

G. Dávila UTFSM, and E. Topp, USACH.

Cortona 2 June 2022 Mostly MP

## Large solution for nonlocal Hamilton-facobi equation

We are interested in existence of large (unbounded) solutions of (model problem)
for $0<p<2 s, \quad f \in C(\Omega) \cap L^{\infty}(\Omega)$, with

$$
\lim _{x \rightarrow \partial \Omega, x \in \Omega} u(x)=+\infty \quad \text { or } \quad \lim _{x \rightarrow \partial \Omega, x \in \Omega} u(x)=-\infty,
$$

where

$$
(-\Delta)^{s} u(x)=C_{N, s} \text { P.V. } \int_{\mathbb{R}^{N}} \frac{u(x)-u(z)}{|x-z|^{N+2 s}} d z
$$

## Large solutions

Keller [CPAM'57], and Osserman [PJM'57] study large solutions associated to reaction-diffusion problems with the form

$$
-\Delta u=f(u) \quad \text { in } \Omega
$$

They proved the existence of large solutions if

$$
\int_{0}^{\delta} \frac{d s}{\sqrt{F(s)}}<\infty \quad F^{\prime}=f
$$

For instance, if $f(u)=u^{p}$, we have existence of large solutions iff $p>1$.

Obs: Connection with probability (superdiffusions) in the regime $1<p \leq 2$, see Le Gall's book '99

## Lasry-Lions 1989: Existence of large solution

They studied the problem

$$
-\Delta u+|D u|^{p}+\lambda u=f \quad \text { in } \Omega,
$$

for $1<p \leq 2, \lambda>0$ and $f \in C(\Omega)$. They prove that there exists a unique solution $u$ that behaves like

$$
d(x)^{-\frac{p-2}{p-1}}
$$

near the boundary, where

$$
d(x):=\operatorname{dist}(x, \partial \Omega)
$$

and with logarithmic profile in the critical case $p=2$.
The case $p>2$ is also discuss in that work! (Bounded solution).

## Lasry-Lions 1989

Connection with optimal control of a stochastic differential equation (constrain a Brownian by controlling its drift):

- Admisible drift are so that the process never exit the domain $\Omega$,
- $f$ is part of the running cost,
- $\lambda$ discount factor.

Using the dynamic programming principle they prove that a value function is the unique solution of the equation.
This value function is obtained by minimizing running cost (in the class of admissible drift) involving $f$ and "feedback" term depending on $p$ and the drift term.

## Ergodic problem

The ergodic problem is the limit of solution $u_{\lambda}-u_{\lambda}\left(x_{0}\right) \rightarrow v$ as $\lambda \rightarrow 0$ that is a large solution $v$ of

$$
-\Delta v+|D v|^{p}=f+c_{0} \quad \text { in } \Omega
$$

where $c_{0}$ is the ergodic constants and $v\left(x_{0}\right)=0$.

## Connection with parabolic problem

$$
\begin{align*}
u_{t}-\Delta u+|D u|^{p}=f & \text { in } \Omega \times(0,+\infty)  \tag{VHJ-B}\\
u=g & \text { on } \partial \Omega \times(0,+\infty)  \tag{BC}\\
u(\cdot, 0)=u_{0}(\cdot) & \text { in } \bar{\Omega} \tag{IC}
\end{align*}
$$

Barles-Porretta-Tchamba 2010.
They proved:

- Further properties of the ergodic problem (type of eigenvalue problem and characterization of $c_{0}$ ).
- If $c_{0}<0$ then stationary problem has a solution and $u(x, t)$ converge to that solution.
- If the stationary problem has no solution then ergodic constants satisfies $c_{0} \geq 0$


## Connection with parabolic problem

- Established that if $c_{0}>0$ and $3 / 2<p \leq 2$

$$
u(x, t)+c_{0} t \rightarrow v_{0}+\mu \quad \text { as } \quad t \rightarrow \infty
$$

locally uniform in $\Omega$, for some constant $\mu$.

- Other asymptotic results in the rest of the cases ( $c_{0}=0$ or/and $1<p<3 / 2)$.
- Tchamba 2010 studied the case $p>2$.


## Case of the parabolic problem in $\mathbb{R}^{n}$

- Barles Meireles 2016 (uniqueness of Ergodic problem ) $p>2$ +regularity of $f$. simplicity even for subsolution (generalize uniqueness).
- Arapostathis, Biswas, Caffarelli (2019). (Uniqueness of Ergodic problem) $1<p \leq 2$ for solution.
- Previous results by Ichihara 2012 -Barles Meireles 2016 (polynomial growth)

Case of the parabolic problem in $\mathbb{R}^{n}$

Barles-Q.-Rodríguez (2021)-Q. Rodríguez (2022)
Very general $u_{0}$ and $f$ (arbitrary growth) and for any $p>1$

$$
u(x, t)+c_{0} t \rightarrow v_{0}+\mu
$$

for $\left(c_{0}, v_{0}\right)$ the ergodic par in $\mathbb{R}^{n}$.
Key ingredients:
Case $p>2$. Unbounded super-solution that move (in time) the boundary of explosion to have the first convergence: half relax limit is a sub-solution of the ergodic problem.
Case $1<p \leq 2$ generalize simplicity even for sub-solution.

## Some previous results on large solution in nonlocal setting

For equation of the type

$$
(-\Delta)^{s} u=f(u, x)
$$

in a bounded domain.

- Abatangelo (2015-2017) (Properties of Green function)
- Chen-Felmer-Q (2015) (Close the our approach: Perron type method)


## Main results (model case)

We write $p_{i}=p_{i}(s)$ for $i=1,2$ as

$$
\begin{equation*}
p_{1}=s+\frac{1}{2} \quad \text { and } \quad p_{2}=\frac{s+1}{2-s}, \tag{1}
\end{equation*}
$$

A third exponent $p_{0}=\frac{2 s}{2-s}$ We notice that for $s \in(1 / 2,1)$, we have $p_{1}>1$ and

$$
p_{1}(s)<p_{2}(s)<2 s, \quad p_{2}\left(1^{-}\right)=2, \quad p_{1}\left(1 / 2^{+}\right)=p_{2}\left(1 / 2^{+}\right)=1,
$$



Figure: Exponents $p_{0}, p_{1}$ and $p_{2}$ as a function of s. Notice that $p_{0}$ and $p_{1}$ intersects at $s^{*}=\frac{\sqrt{17}-1}{4}$.

## Main results (model case and $\lambda \geq 0$ )

Theorem: Let $s \in(1 / 2,1), 0<p<2 s, \Omega \subset \mathbb{R}^{N}$ be a bounded domain with $C^{2}$ boundary, $f \in L^{\infty}(\Omega) \cap C(\Omega)$. When $1<p<2 s$, we denote

$$
\beta:=(2 s-p) /(1-p)<0 .
$$

1.- One parameter family of solutions (close to $s$-harmonic): If $0<p<p_{2}$, there exist a family of solutions $\left\{u_{t}\right\}_{t \in \mathbb{R}, t \neq 0}$ to (*), such that for each $t$ we have

$$
d^{1-s} u_{t}(x)-t=O\left(d^{\gamma}\right),
$$

for some $\gamma>s-1$ depending on $p$. In particular, if $t_{1}<t_{2}$, then

$$
u_{t_{1}}<u_{t_{2}} \quad \text { in } \Omega .
$$

Moreover, if $p$ additionally satisfies $p<p_{0}$, then $\gamma>0$.

## Main results (model case and $\lambda \geq 0$ )

2.- Positive scale solution: If $p_{1}<p<p_{2}$, then there exists a constant $T>0$ and a function $u$ solving ( $*$ ) such that

$$
d(x)^{-\beta} u(x)-T=O\left(d(x)^{\gamma}\right)
$$

for some $\gamma>0$.
3.- Negative scale solution: For $p_{2}<p<2 s$, then there exist $T>0$ and a solution $u$ of $(*)$ such that

$$
d^{-\beta}(x) u(x)+T=O\left(d(x)^{\gamma}\right)
$$

for some $\gamma>0$.

## Remarks

- Case 1 and Case 2 can occur simultaneously (non-uniqueness ) and we have $u_{t}<u$ in $\Omega$.
- Condition $p_{1}<p$ is such that $d^{\beta} \in L^{1}(\Omega)$ and the nonlocal operator is well define.


## Ideas of the proof (one dimensional case)

$$
(-\Delta)^{s} x_{+}^{\tau}=-c(\tau) x_{+}^{\tau-2 s}, \quad x>0
$$

here $(\cdot)_{+}$denote positive part. where $c(\tau)$ is convex function and has the form.


Figure: $c(\tau)$
In the local case:

$$
(-\Delta) x_{+}^{\tau}=-(\tau(\tau-1)) x_{+}^{\tau-2}
$$

## Lemma

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with $C^{2}$ boundary, $s \in(0,1)$. Then, for each $\tau \in(-1,2 s)$, we have
$(-\Delta)^{s} d^{\tau}(x)=-d^{\tau-2 s}(x)\left(c(\tau)+O\left(d(x)^{s}\right)\right), \quad$ close to de boundary
where

$$
c(\tau)=\text { P.V. } \int_{\mathbb{R}}\left[(1+z)_{+}^{\tau}-1\right]|z|^{-(1+2 s)} d z
$$

This constant (of the one dimensional case) and therefore $c\left(-1^{+}\right)=+\infty, c\left(2 s^{-}\right)=+\infty, c(s-1)=c(s)=0, c(\tau)>0$ if $\tau \in(-1, s-1) \cup(s, 2 s)$ and $c(\tau)<0$ for $\tau \in(s-1, s)$.

Condition $p_{1}<p<p_{2}$ is such that $c(\beta)>0$ and is posible to construct sub and super solution to the problem (Larsy-Lions type solution) and applied a Perron type method.

## Some extension

For a class of fully nonlinear nonlocal operator $\mathcal{I}$ with kernels comparable to the fraction Laplacian.

$$
\left\{\begin{align*}
-\mathcal{I} u+|D u|^{p}+\lambda u & =f & & \text { in } \Omega,  \tag{2}\\
u & =\varphi & & \text { in } \Omega^{c}, \\
\lim _{x \in \Omega, x \rightarrow \partial \Omega} u & =+\infty, & &
\end{align*}\right.
$$

and its blow-down version $\lim _{x \in \Omega, x \rightarrow \partial \Omega} u=-\infty$.
here $\varphi \in L_{\omega}^{1}\left(\bar{\Omega}^{c}\right),(\omega$ is so that $\mathcal{I}$ is well define $) ; ~ \lambda>-\lambda_{0}(\mathcal{I})$
(splitting $\mathcal{I}$ into the censored problem and the rest, with $\lambda_{0}(\mathcal{I})>0$ ), In the model case $\left(-\mathcal{I}=(-\Delta)^{s}\right)$

$$
\lambda_{0}=\inf _{x \in \Omega} \int_{\Omega^{c}}|x-z|^{-(N+2 s)} d z
$$

## Thanks for the attention!

