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Introduction



Setting: the principal eigenvalue problem

Under suitable assumptions on F ∈ C(Ω× R× RN × SN ) there
exists (φ1, λ1) ∈ C+(Ω)× R solving{

F(x, φ1,Dφ1,D2φ1) = −λ1φ1, in Ω
φ1 = 0 on ∂Ω.

In particular, we focus on the principal eigenvalue λ1 = λ+
1 (F ,Ω),

characterized by

λ+
1 (F ,Ω) = sup{λ : ∃ φ > 0 in Ω, F(x, φ,Dφ,D2φ) ≤ −λφ in Ω},

and is unique and simple ([Quaas and Sirakov, 2008],
[Armstrong, 2009], following [Berestycki et al., 1994]).



Setting: periodic homogenization

We consider, for ε ∈ (0, 1), the eigenvalue problem

F(x, x/ε, u,Du,D2u) = −λεu in Ω, u = 0 on ∂Ω, (EVε)

• Our aim is the study of stability results for the principal
eigenvalue problem in the context of periodic homogenization:
• to characterize the limit of solutions uε as ε→ 0, and
• to obtain a rate of convergence to this limit state, i.e.,
‖uε − u‖∞ ≤ ω(ε), for some explicit modulus of continuity ω.
• We follow the viscosity solutions approach contained in the

classical works [Lions et al., 1986], [Evans, 1989], [Evans, 1992].
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Motivation: periodic homogenization and dynamics
Consider {

ẋ = b(x, x/ε, α), t > 0,
x(0) = x0 ∈ Ω,

where ε ∈ (0, 1), b : Ω× TN ×A → R, Ω ⊂ RN is a bounded,
smooth domain, TN the N -dimensional �at torus.

De�ning y = x/ε, we have

ẏ = ε−1ẋ = ε−1b(x, x/ε, α) = ε−1b(x, y, α).

Thus, 
ẋ = b(x, y, α), t > 0,
ẏ = ε−1b(x, y, α), t > 0,
x(0) = x0 ∈ Ω, y(0) = x0/ε ∈ RN .

Here we see two components of a system evolving at di�erent time
scales.

This translates to the PDE framework via the Dynamical
Programming Principle.
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Assumptions I

Let SN denote the set of N × N symmetric matrices.
Assume F ∈ C(Ω× TN × R× RN × SN ) satis�es the uniform
ellipticity condition

M−λ,Λ(Y)− C1(|q|+ |s|) (A1)

≤ F(x, y, r + s, p + q,X + Y)− F(x, y, r, p,X)

≤ M+
λ,Λ(Y) + C1(|q|+ |s|),

for some 0 < λ ≤ Λ < +∞ and C1 > 0, for all x ∈ Ω, y ∈ TN ,
r, s ∈ R, p, q ∈ RN and X , Y ∈ SN .



Assumptions II

We also assume that F is positively 1-homogeneous in its last three
variables,

F(x, y, αr, αp, αX) = αF(x, y, r, p,X). (A2)

From the previous assumptions on F , for each ε ∈ (0, 1), there exists
a principal eigenvalue for the operator F ε ∈ C(Ω× R× RN × SN )
de�ned by

F ε(x, r, p,X) = F(x, x/ε, r, p,X),

that is, the existence of a pair (uε, λε) ∈ C(Ω̄)× R with uε > 0 in Ω
solving (EVε) with λε satisfying the same extremal characterization.



Homogenization, the viscosity solutions approach

For each x, r, p,X , there exists a unique c ∈ R for which the cell
problem

F(x, y, r, p,D2
yyv(y) + X) = c in TN , (CP)

has a viscosity solution.

This can be obtained formally through the ansatz for (EVε):

uε(x) = u(x) + ε2v(x/ε).

De�ne F̄ : Ω× R× RN × SN → R as

F̄(x, r, p,X) = c,

where c = c(x, r, p,X) is the unique constant for which (CP) has a
solution, known as the e�ective Hamiltonian.



The e�ective problem

It can be shown that F̄ “inherits” the properties assumed for the
original F , therefore

F̄(x, u,Du,D2u) = −λu in Ω, u = 0 on ∂Ω, (EV)

is solvable as well.

We denote by λ(F̄) the principal eigenvalue associated to positive
eigenfunctions, which as before is unique and simple.

In short, the eigenvalue problem is “averaged”, or homogenized, by the
same operator as the stationary one.



Previous results, proper setting I

In the proper setting, i.e., when

u 7→ F(x, y, r, p,X)− µr is nonincreasing for some µ > 0

and we consider

F(x, x/ε, uε,Duε,D2uε) = 0 in Ω, u = 0 on ∂Ω,

and
F̄(x, u,Du,D2u) = 0 in Ω, u = 0 on ∂Ω.

In [Evans, 1992], it is shown that uε → u unif. over Ω;



Previous results, proper setting II

Regarding the rate of convergence,
• in [Camilli and Marchi, 2009], for

u(x) + F(x, x/ε,Duε,D2uε) = 0 in Ω, u = 0 on ∂Ω,

with F is convex/concave, ‖u − uε‖∞ ≤ Cεβ , for some β > 0
depending on the data.
• The assumpion of convexity/concavity is crucial in the use of
C2,α estimates for u and the associated (approximate) corrector.
• For F with simpler structure, we have improved rates:

if F = F(x/ε,D2uε), then ‖u − uε‖ ≤ Cε2;

if F = F(x/ε,Duε,D2uε), then ‖u − uε‖ ≤ Cε;



Previous results, proper setting III

• In [Capuzzo-Dolcetta and Ishii, 2001], analogous results are
obtained for

uε(x) + F(x, x/ε,Duε) = 0 in Ω, u = 0 on ∂Ω,

but instead of relying on regularity we have a careful doubling
of variables argument.

• In [Kim and Lee, 2016] we �nd higher order-order expansions
and rates of convergence for both linear and nonlinear
equations, assuming su�cient smoothness for F .



Previous results, eigenvalue problems

• In the setting of compact operators in Banach spaces, in
[Osborn, 1975] the author obtains di�erent bounds for the gap
between the subspaces generated by eigenfunctions and their
limit—in an application, this gives a quadratic rate of
convergence for the eigenvalues.
• Building on these ideas, in [Kesavan, 1979] the author obtains a

convergence result for the entire spectrum of oscillating
self-adjoint operators in divergence form.
• Rates of convergence are given in terms of an auxiliary problem

whose solution serves as a pivot between uε and u (or their
analogue).



Results



Convergence result (homogenization)

Theorem (Dávila–R.-P.–Topp, preprint)

Assume F satis�es (A1), (A2) and (uε, λε) is the principal solution pair
of (EVε). Then,

λε → λ(F̄) as ε→ 0.

If we consider appropriately normalized uε (e.g. ‖uε‖∞ = 1), then

uε → u as ε→ 0, uniformly on Ω̄

where u solves (EV) and ‖u‖∞ = 1.

• The proof follows the classical perturbed test function method of
[Evans, 1989], coupled with the tools of [Berestycki et al., 1994].
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Rate of convergence for the principal eigenvalue

Regarding the rate of convergence for the eigenvalues, we focus on{
F
(
x
ε ,D

2uε
)

= −λεuε in Ω,

uε = 0 on ∂Ω,
(nLinε)

and {
F̄(D2u) = −λ̄u in Ω,

ū = 0 on ∂Ω.
(nLin)

We can prove the following rate of convergence for {λε}ε under
additional assumptions on F .



Rate of convergence for the principal eigenvalue

Theorem (Dávila–R.-P.–Topp, preprint)

Assume F ∈ C4,1(TN × SN ) is convex in its second variable, and
satis�es (A1), (A2). Let λε, λ̄ denote the principal eigenvalues
associated to (nLinε) and (nLin), respectively. Then, there exists a
constant C depending only on F and Ω such that

|λε − λ̄| ≤ Cε.

• The proof relies on the construction of higher-order correctors
as in [Kim and Lee, 2016] and the variational formula for the
principal eigenvalue of [Donsker and Varadhan, 1976].
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Rates of convergence for the principal eigenfunction

Given a : TN → SN , b : TN → RN , and c : TN → R, we de�ne

Lεu(x) = a(x/ε)D2
xxu(x) + b(x/ε) · Dxu(x) + c(x/ε)u(x),

where aM = tr
(
aM
)

, and consider

Lεuε = −λεuε in Ω, uε = 0 on ∂Ω. (Linε)



Rates of convergence for the principal eigenfunction

By the homogenization result we have that the solution pair (uε, λε)
converges to the solution pair (u, λ(L̄)) of

L̄u = −λ(L̄)u in Ω, u = 0 on ∂Ω, (Lin)

where λ(L̄) ∈ R denotes the principal eigenvalue associated to

L̄u(x) = āD2
xxu + b̄ · Dxu + c̄u,

for some constant, uniquely de�ned ā ∈ SN , b̄ ∈ RN , and c̄ ∈ R.



Rates of convergence for the principal eigenfunction

Theorem (Dávila–R.-P.–Topp, preprint)

Assume a ∈ C6(TN ; SN ), b ∈ C6(TN ;RN ), and c ∈ C6(TN ) in (Linε).
Let u be a solution to (Lin) with u > 0 in Ω. Then, there exists C > 0
depending on the coe�cients a, b, c and Ω, such that, for all ε ∈ (0, 1),
there exists uε solving (Linε) with uε > 0 in Ω, satisfying

|λε − λ|+ ‖uε − u‖L∞(Ω) ≤ Cε.

• For the rate of the eigenfunction, the result can be obtaned as
an application of [Osborn, 1975]; we provide a proof exclusively
by PDE techniques, employing also the strategy of
[Kesavan, 1979].
• The rate depends on the “correct” normalization of solutions.
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Sketches of the proofs



General convergence result (homogenization)

• {λε} is uniformly bounded: from the characterization

λε = sup
{
λ | ∃u > 0, F ε(x, u,Du,D2u) ≥ −λu in Ω

}
and particular barrier functions, we can show
−C1 ≤ λε ≤ CR−2, where C,C1 are independent of ε and R is
such that BR ⊂ Ω (see [Berestycki et al., 1994]).
• {uε} is precompact: has uε, Cα estimates depending only on the
L∞ norm of the right-hand side of (Linε),

‖λεuε‖∞ = |λε|‖uε‖∞ = |λε|



General convergence result (homogenization)

• Let λ̄ = lim supε→0 λ
ε; assume λε → λ̄ (keeping ε for the

subsequence), and uε → ū for some ū ∈ C(Ω).
• Following [Evans, 1992], we can obtain that ū is a viscosity

solution of
F̄(x, ū,Dū,D2ū) ≥ −λ̄ū in Ω.

• By the SMP, ū > 0; hence, by the extremal characterization,
λ̄ ≤ λ(F̄).
• By similar arguments, λ(F̄) ≤ λ = lim infε→0 λ

ε, hence
λ(F̄) = λ̄ = λ, and thus we have the convergence of the
eigenvalues.
• Each cluster point of {uε}ε is a positive eigenfunction

corresponding to λ(F̄), and by the simplicity of λ(F̄), we
conclude.



Rates of convergence, higher-order correctors I

• A key element of the proof is the construction of higher-order
correctors, as in [Kim and Lee, 2016].
• We address the case of (Linε) for simplicity, in which we use a

third-order expansion:

vε(x) = εw1(x) + ε2(w2(x, x/ε) + zε2(x)) + ε3(w3(x, x/ε) + zε3(x)),

where the wk , k = 1, 2, 3, are interior correctors and the zεk
correct the behavior of wk at the boundary, i.e.,

Lεzεk = 0 in Ω; zεk(x) = −wk(x, x/ε) on Ω.

• In particular,

w2(x, x/ε) = v(x/ε; x, u(x),Du(x),D2u(x)),

the standard (second-order) corrector.



Rates of convergence, higher-order correctors II
• Given k, l = 1, . . . ,N , we consider

a(y)D2
yyχ(y) + akl(y) = γ, y ∈ TN ,

where (χ, γ) is an ergodic pair. It is easy to show that γ = ākl ,
the corresponding entry of the di�usion matrix in (Lin), and we
write χ = χkl .
• Ignoring lower order-terms (for simplicity), we de�ne our

second-order corrector as

w2(x, y) = χkl(y)∂2
klu(x), (1)

• Given k, l,m = 1, . . . ,N , we denote by (χ = χklm, āklm) the
unique pair solving

a(y)D2
yyχ(y) + 2a∗m(y) · Dyχ

kl(y) = āklm in TN , (2)

where a∗m denotes the m-th column of a.



Rates of convergence, higher-order correctors III
• We then de�ne w1(x, x/ε) = ψ1(x) as the unique solution to{

L̄ψ1 = −āklm∂3
klmu(x) in Ω,

ψ1 = 0 on ∂Ω,
(3)

• In turn, we de�ne the third-order corrector as

w3(x, y) =χklm(y)∂3
klmu(x) + χkl(y)∂2

klψ1(x)

In the end, we obtain
• A recursive equation:

a(y)D2
xxψ1(x) + 2a(y)D2

yxw2 + a(y)D2
yyw3 = 0, y ∈ TN .

• wk, zk are uniformly bounded in terms of ε;
• in particular, ‖vε‖∞ ≤ Cε for some C > 0;
• wk is at least C2,α in both x and y, uniformly in ε.



Rates of convergence, higher-order correctors IV

We can repeat the process for each lower-order term:
• Given k = 1, . . .N , b̄k and c̄ in (Lin) we solve the ergodic

problems

a(y)D2
yyη(y) + bk(y) = b̄k, y ∈ TN ,

whose solution is denoted by ηk , and

a(y)D2
yyν(y) + c(y) = c̄, y ∈ TN ,

whose solution is denoted simply by ν.
• We can normalize so that ηk ≡ 0 if b ≡ 0 and ν ≡ 0 if c ≡ 0.



Rates of convergence, higher-order correctors V

For nonlinear F , the second-order term is obtained as before,

w2(x, y) := w(y;D2
xxu(x)), x ∈ Ω, y ∈ TN ,

and we proceed by linearizing F at w2(y;D2
xxu(x)) . . .



Rates of convergence for the eigenvalues

• (One half of) the estimate follows from substituting an
expansion of uε based on vε (denoted ṽε) into the classical
minimax formula of [Donsker and Varadhan, 1976]: for some
probability measure on Ω, dµε = dµε(x),

λ− λε = λ+ inf
φ>0

∫
Ω

Lεφ(x)

φ(x)
dµε ≤ λ+

∫
Ω

Lεṽε(x)

ṽε(x)
dµε

=

∫
Ω

(Lε + λ)ṽε(x)

ṽε(x)
dµε ≤ . . . ≤ Cε



Rates of convergence for the eigenfunctions I

Key idea is to consider, for u the solution to (Lin), ‖u‖∞ = 1,
ε ∈ (0, 1), {

Lεwε = −λu in Ω
wε = 0 in ∂Ω,

(Pε)

Replacing λε and λ with λε + C1 + 1, λ+ C1 + 1, resp., we can
assume Lε and L̄ are both proper.

Also notice that L̄ is “still” the e�ective Hamiltonian associated to
(Pε).

By the results in [Kim and Lee, 2016], ‖wε − u‖∞ ≤ Cε, for some
C > 0 independent of ε.



Rates of convergence for the eigenfunctions II

We de�ne zε = uε − wε + tεuε, choosing tε ∈ R such that
(zε, uε) = 0;
zε solves {

Lεzε + λεzε = −λεwε + λu in Ω,
zε = 0 on ∂Ω.

(4)

from which we can show (via a blow-up argument) that

‖zε‖∞ ≤ C0ε, (5)

but this is
‖(1 + tε)uε − wε‖∞ ≤ C0ε,

i.e., the precise normalization to obtain the rate.
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