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The question

ut + u − K ∗ u = f (u) (t > 0, x ∈ R)
u(0, x) = u0(x) ∈ [0, 1], suppu0 ⊂ [−R,R]]

f : C 2, f ′(u) ≤ f ′(0).

K (x): nonnegative, even, compactly supported,

∫
R
K = 1.

Cauchy-Lipschitz + maximum principle

=⇒ Smooth u(t, x) ∈ [0, 1] (derivatives may grow exponentially).

Behaviour t → +∞?
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The question

ut + u − K ∗ u = f (u) (t > 0, x ∈ R)
u(0, x) = u0(x) ∈ [0, 1], suppu0 ⊂ [−R,R]]

f : C 2, f ′(u) ≤ f ′(0).

K (x): nonnegative, even, compactly supported,

∫
R
K = 1.

Cauchy-Lipschitz + maximum principle

=⇒ Smooth u(t, x) ∈ [0, 1] (derivatives may grow exponentially).

Behaviour t → +∞?

Jean-Michel Roquejoffre Université Toulouse III-Paul Sabatier



Outline

— Main result.

— Occurrences of the model.

— Main steps of proofs of main results.
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The main result

General picture

u(x)−K ∗u(x) =

∫
R
K (x−y)

(
u(x)−u(y)

)
dy : Diffusion operator.

=⇒ Invasion of unstable state 0 by stable state 1.

X (t): furthest point x to the right s.t. u(t, x) = 1/2.

Theorem

There are c∗ > 0, λ∗ > 0 universal, and x∞ depending on u(0) s.t.

X (t) = c∗t −
3

2λ∗
ln t + x∞ + ot→+∞(1).
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Who are c∗ and λ∗?

— Heuristically, 0 ”most unstable value of u(t, x).

=⇒ dynamics driven by small values.

— Linearised equation: vt + v − K ∗ v = f ′(0)v

— Linear wave to the right:
a solution v(t, x) = e−λ(x−ct), λ > 0, c > 0.

2

∫
R
K (y)

(
cosh(λy)− 1

)
dy = cλ− f ′(0).

c∗: least c > 0 such that it is possible, λ∗: corresponding λ.
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Motivations, occurrences of model
— Connexion w. diffusion of order 2

— Branching random walks

— Spatial spread of epidemics
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Connexion w. second order diffusion

— K (x): approximation of identity K (x) =
1

ε
ρ(

x

ε
).

— τ = ε2t, f (u) := ε2g(u).

— Expand in ε, throw away higher powers of ε.

vτ − dvxx = g(v), d =
1

2

∫
R
x2ρ(x)dx .

The main results

Theorem 1. (Kolmogorov, Petrovskii, Piskunov, 1937).
X (τ) = c∗τ + oτ→+∞(τ), with c∗ = 2

√
dg ′(0).

Theorem 2. (Bramson, 1980-81). f (u) = u − u2.

X (τ) = c∗τ −
3

2λ∗
ln τ + oτ→+∞(1), with λ∗ =

√
d

g ′(0)
.
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— Logarithmic correction known as the Bramson delay.

— Bramson’s proof relies on the study of rightmost particle in
Branching Brownian motion.

— Deterministic proof provided by

– Hamel, Nolen, Ryzhik, R. (2013, location of X (t) up to O(1)
terms)

– Nolen, Ryzhik, R. (2017, full Bramson theorem).
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Branching random walks [ii]

On the real line R:

— A particle initially sits at x = 0. Then

– starts making jumps at random times.
– At some time, splits in two.
– Offsprings reproduce ancestor’s behaviour.

— Law of random events:

– Jumps and splitting times: Poisson distributions.
– Jumps length: Density K .

Y (t): position of rightmost particle at time t.

u(t, x): probability that Y (t) ≥ x .

ut + u − K ∗ u = u − u2, u(0, x) = 1− H(x).

(Mc Kean’s representation formula)
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Branching random walks [ii]

— If X (t) is rightmost point s.t. u(t, x) = 1/2,

Study of Y (t)+McKean formula

=⇒ X (t) = c∗t −
3

2λ∗
ln t + x∞ + ot→+∞(t).

(Äıdekon, 2013)

— Bramson’s random walk is Branching Brownian Motion.

Consequences

— Branching random walk approach solves the problem as soon
as it comes from a Mc Kean’s representation.

— Not all functions f , even concave ones, come from a McKean
representation.

Earlier PDE work: Graham (2021), X (t) = c∗t −
3

2λ∗
ln t + O(1).
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Models for spatial spread of epidemics: Homogeneous SI [i]

S(t): density of susceptibles at time t.

I (t): density of infectives at time t.

Ṡ = −βSI
İ = βSI − αI

S(0) = S0, I (0) = I0 (usually � 1)

(A very particular case of) a model devised by Kermack and
McKendrick (1927).
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Homogeneous SI [ii]

Cumulated density of individuals: u(t) =

∫ t

0
I (s)ds.

d

dt
lnS = −βI =⇒ u̇ = S0(1− e−βu)− αu + I0 := f (u) + I0.

Define R0 =
S0β

α
.

R0 ≤ 1: epidemic will go extinct, u(t)→ u∞(I0) small.

R0 > 1: epidemics will spread, u(t)→ u∞(I0) of size
independent of I0. Susceptibles go down by S0e

−βu∞(I0).
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Spatial effect: Nonlocal contaminations [i]

— Assumption: an infected is infectious within a certain range.

— One possibility: βSI → βS K ∗ I (Kendall, 1956).

∂tS = −βS K ∗ I , ∂t I = βS K ∗ I − αI
S(0, x) = S0, I (0, x) = I0(x) small, comp. supported.

— Cumulated density of infected: u(t, x) =

∫ t

0
I (s, x)ds.

ut = S0(1− e−βK∗u)− αu + I0.

— Nonlocal equation... but has a maximum principle!

(Monotone system).
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Spatial effect: Nonlocal contaminations [ii]

Theorem (Aronson, 1977). X (t): rightmost x s.t. u(t, x) = γ.
THEN: R0 > 1 =⇒ X (t) = c∗t + ot→+∞(t).

— c∗ computed from linearised equation
vt + S0β(v − K ∗ v) = α(R0 − 1)v .

— Important subsequent theory: more elaborate models, abstract
monotone systems theory...

— Sharp time asymptotics?

– Epidemiological relevance can be questionned, but mathematical

question in its own right.

— Our approach

– works for Kendall’s model.
– Gives information about I and S not available before.
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Proof of main result: Main steps

— Travelling waves

— The tail of the solution

— Adjusting a travelling wave to the solution
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Travelling waves

Travelling wave w. speed c: u(t, x) = ϕ(x − ct).

ϕ− K ∗ ϕ− cϕ′ = f (ϕ), ϕ(−∞) = 1, ϕ(+∞) = 0.

For every c ≥ c∗, there is a unique wave profile ϕc w. speed c.
(Diekman 1979,..., Coville 2003, Carr-Chmaj 2004)

1st attempt: KPP’s original idea for ut − uxx = u − u2:

— t 7→ ux(t, .) increases along a level curve of u.

— u(t, x) ∼t→+∞ ϕc∗

(
x − c∗t + o(t)

)
.

Inconvenients.

— Not clear that it will work in nonlocal setting.

— Unlikely to locate position of level sets.

Why? What you’re seeing and what you’re reading is not what’s
happening. (D. Trump, 2018)

Jean-Michel Roquejoffre Université Toulouse III-Paul Sabatier
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The tail of the solution

Run with speed c∗: x := x − c∗t. Set u(t, x) = e−λ∗xv(t, x):

vt + I∗v + e−λ∗xv2, I∗v = v − e−λ∗xK ∗ v − c∗∂xv .

Main statement: as t → +∞ and tδ ≤ x ≤ t1/2+δ we have
(δ > 0 small)

u(t, x) ∼ α∞x

t3/2
e−λ∗x−

x2

4d∗t

α∞ > 0 : depends on initial datum, d∗ =

∫
R
x2e−λ∗xK (x)dx .

Main issue: no regularising effect.

Hint why this may be true: we have

e−tI∗v0(x) = etd∗∂xx v0(x) + O(e−t
γ

).
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Where the logarithmic term comes from

Travelling wave at infinity:
ϕc∗(x) = (x + k∗)e

−λ∗x + O
(
e−(λ∗+γ)x

)
.

(shared feature with usual diffusion)

Translate ϕc∗ by σ(t) to match u at x = tδ:

α∞

t3/2
e−λ∗x−

x2

4d∗t = (x + σ(t) + k∗)e
−λ∗(x+σ(t)) at x = tδ

=⇒ σ(t) =
1

λ∗

( 3

2t
− ln α∞ + o(1)

)
Theorem. We have u(t, x) ∼t→+∞ ϕc∗

(
x + σ(t)

)
.

Proof. Write a BVP for for u(t, x)−ϕc∗

(
x + σ(t)

)
on (−∞, tδ),

use that it has to be controlled on a domain of size ∼ tδ.
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Ongoing work

— Discrete Fisher-KPP (w. C. Besse, G. Faye and M. Zhang).

— Fisher-KPP in periodic environments (w. A. Novikov and
L. Ryzhik, earlier work w. F. Hamel, J. Nolen and L. Ryzhik).

— Coupled diffusion/SI models on networks (w. G. Faye and
M. Zhang).
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Thank you for attention
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