Large time dynamics in nonlocal reaction-diffusion equations

Jean-Michel Roquejoffre
Université Toulouse III-Paul Sabatier

Mostly Maximum principle, Cortona, june 3, 2022

The question

$$
\begin{aligned}
u_{t}+u-K * u & =f(u) \quad(t>0, x \in \mathbb{R}) \\
u(0, x) & \left.=u_{0}(x) \in[0,1], \quad \operatorname{supp} u_{0} \subset[-R, R]\right]
\end{aligned}
$$

The question

$$
\begin{aligned}
u_{t}+u-K * u & =f(u) \quad(t>0, x \in \mathbb{R}) \\
u(0, x) & \left.=u_{0}(x) \in[0,1], \quad \operatorname{supp} u_{0} \subset[-R, R]\right]
\end{aligned}
$$

$$
f: C^{2}, f^{\prime}(u) \leq f^{\prime}(0)
$$

$K(x)$: nonnegative, even, compactly supported, $\int_{\mathbb{R}} K=1$.

$$
\begin{aligned}
u_{t}+u-K * u & =f(u)(t>0, x \in \mathbb{R}) \\
u(0, x) & \left.=u_{0}(x) \in[0,1], \quad \operatorname{supp} u_{0} \subset[-R, R]\right]
\end{aligned}
$$

$$
f: C^{2}, f^{\prime}(u) \leq f^{\prime}(0)
$$

$K(x)$: nonnegative, even, compactly supported, $\int_{\mathbb{R}} K=1$.
Cauchy-Lipschitz + maximum principle
\Longrightarrow Smooth $u(t, x) \in[0,1]$ (derivatives may grow exponentially). Behaviour $t \rightarrow+\infty$?

Outline

- Main result.
- Occurrences of the model.
- Main steps of proofs of main results.

The main result

The main result

General picture

$$
u(x)-K * u(x)=\int_{\mathbb{R}} K(x-y)(u(x)-u(y)) d y: \text { Diffusion operator. }
$$

\Longrightarrow Invasion of unstable state 0 by stable state 1 .

General picture

$$
u(x)-K * u(x)=\int_{\mathbb{R}} K(x-y)(u(x)-u(y)) d y \text { : Diffusion operator. }
$$

\Longrightarrow Invasion of unstable state 0 by stable state 1 . $X(t)$: furthest point x to the right s.t. $u(t, x)=1 / 2$.

Theorem

There are $c_{*}>0, \lambda_{*}>0$ universal, and x_{∞} depending on $u(0)$ s.t.

$$
X(t)=c_{*} t-\frac{3}{2 \lambda_{*}} \ln t+x_{\infty}+o_{t \rightarrow+\infty}(1)
$$

Who are c_{*} and λ_{*} ?

- Heuristically, 0 " most unstable value of $u(t, x)$.
\Longrightarrow dynamics driven by small values.
- Linearised equation: $v_{t}+v-K * v=f^{\prime}(0) v$
- Linear wave to the right:
a solution $v(t, x)=e^{-\lambda(x-c t)}, \lambda>0, c>0$.

$$
2 \int_{\mathbb{R}} K(y)(\cosh (\lambda y)-1) d y=c \lambda-f^{\prime}(0)
$$

Who are c_{*} and λ_{*} ?

- Heuristically, 0 " most unstable value of $u(t, x)$.
\Longrightarrow dynamics driven by small values.
- Linearised equation: $v_{t}+v-K * v=f^{\prime}(0) v$
- Linear wave to the right:
a solution $v(t, x)=e^{-\lambda(x-c t)}, \lambda>0, c>0$.

$$
2 \int_{\mathbb{R}} K(y)(\cosh (\lambda y)-1) d y=c \lambda-f^{\prime}(0)
$$

c_{*} : least $c>0$ such that it is possible, λ_{*} : corresponding λ.

Motivations, occurrences of model

- Connexion w. diffusion of order 2
- Branching random walks
- Spatial spread of epidemics

Connexion w. second order diffusion

- $K(x)$: approximation of identity $K(x)=\frac{1}{\varepsilon} \rho\left(\frac{x}{\varepsilon}\right)$.
$-\tau=\varepsilon^{2} t, f(u):=\varepsilon^{2} g(u)$.
- Expand in ε, throw away higher powers of ε.

$$
v_{\tau}-d v_{x x}=g(v), \quad d=\frac{1}{2} \int_{\mathbb{R}} x^{2} \rho(x) d x
$$

The main results

Connexion w. second order diffusion

- $K(x)$: approximation of identity $K(x)=\frac{1}{\varepsilon} \rho\left(\frac{x}{\varepsilon}\right)$.
$-\tau=\varepsilon^{2} t, f(u):=\varepsilon^{2} g(u)$.
- Expand in ε, throw away higher powers of ε.

$$
v_{\tau}-d v_{x x}=g(v), \quad d=\frac{1}{2} \int_{\mathbb{R}} x^{2} \rho(x) d x
$$

The main results

Theorem 1. (Kolmogorov, Petrovskii, Piskunov, 1937).

$$
X(\tau)=c_{*} \tau+o_{\tau \rightarrow+\infty}(\tau), \text { with } c_{*}=2 \sqrt{d g^{\prime}(0)}
$$

Theorem 2. (Bramson, 1980-81). $f(u)=u-u^{2}$.

$$
X(\tau)=c_{*} \tau-\frac{3}{2 \lambda_{*}} \ln \tau+o_{\tau \rightarrow+\infty}(1), \text { with } \lambda_{*}=\sqrt{\frac{d}{g^{\prime}(0)}}
$$

- Logarithmic correction known as the Bramson delay.
- Bramson's proof relies on the study of rightmost particle in Branching Brownian motion.
- Deterministic proof provided by
- Hamel, Nolen, Ryzhik, R. (2013, location of $X(t)$ up to $O(1)$ terms)
- Nolen, Ryzhik, R. (2017, full Bramson theorem).

Branching random walks [ii]

On the real line \mathbb{R} :

- A particle initially sits at $x=0$. Then
- starts making jumps at random times.
- At some time, splits in two.
- Offsprings reproduce ancestor's behaviour.
- Law of random events:
- Jumps and splitting times: Poisson distributions.
- Jumps length: Density K.

Branching random walks [ii]

On the real line \mathbb{R} :

- A particle initially sits at $x=0$. Then
- starts making jumps at random times.
- At some time, splits in two.
- Offsprings reproduce ancestor's behaviour.
- Law of random events:
- Jumps and splitting times: Poisson distributions.
- Jumps length: Density K.
$Y(t)$: position of rightmost particle at time t.

$$
\begin{gathered}
u(t, x): \text { probability that } Y(t) \geq x \\
u_{t}+u-K * u=u-u^{2}, \quad u(0, x)=1-H(x)
\end{gathered}
$$

(Mc Kean's representation formula)

Branching random walks [ii]

- If $X(t)$ is rightmost point s.t. $u(t, x)=1 / 2$,

$$
\begin{gathered}
\text { Study of } Y(t)+\text { McKean formula } \\
\Longrightarrow X(t)=c_{*} t-\frac{3}{2 \lambda_{*}} \ln t+x_{\infty}+o_{t \rightarrow+\infty}(t) .
\end{gathered}
$$

(Aïdekon, 2013)

- Bramson's random walk is Branching Brownian Motion.

Branching random walks [ii]

- If $X(t)$ is rightmost point s.t. $u(t, x)=1 / 2$,

$$
\begin{gathered}
\text { Study of } Y(t)+\text { McKean formula } \\
\Longrightarrow X(t)=c_{*} t-\frac{3}{2 \lambda_{*}} \ln t+x_{\infty}+o_{t \rightarrow+\infty}(t) .
\end{gathered}
$$

(Aïdekon, 2013)

- Bramson's random walk is Branching Brownian Motion.

Consequences

- Branching random walk approach solves the problem as soon as it comes from a Mc Kean's representation.
- Not all functions f, even concave ones, come from a McKean representation.
Earlier PDE work: Graham (2021), $X(t)=c_{*} t-\frac{3}{2 \lambda_{*}} \ln t+O(1)$.

Models for spatial spread of epidemics: Homogeneous SI [i]

- $S(t)$: density of susceptibles at time t.
- I(t : density of infectives at time t.

$$
\begin{aligned}
\dot{S} & =-\beta S I \\
\dot{I} & =\beta S I-\alpha I \\
S(0) & =S_{0}, I(0)=I_{0}(\text { usually } \ll 1)
\end{aligned}
$$

(A very particular case of) a model devised by Kermack and McKendrick (1927).

W. Kermack (1898-1970), A.G. McKendrick (1976-1943)

Homogeneous SI [ii]

Cumulated density of individuals: $u(t)=\int_{0}^{t} I(s) d s$.

$$
\begin{aligned}
& \frac{d}{d t} \ln S=-\beta I \Longrightarrow \dot{u}=S_{0}\left(1-e^{-\beta u}\right)-\alpha u+I_{0}:=f(u)+I_{0} \\
& f^{\prime}(0)=\alpha\left(\mathrm{R}_{0}-1\right)<0
\end{aligned}
$$

Define $R_{0}=\frac{S_{0} \beta}{\alpha}$.

Homogeneous SI [ii]

Cumulated density of individuals: $u(t)=\int_{0}^{t} I(s) d s$.

$$
\frac{d}{d t} \ln S=-\beta I \Longrightarrow \dot{u}=S_{0}\left(1-e^{-\beta u}\right)-\alpha u+I_{0}:=f(u)+I_{0} .
$$

$$
\mathrm{f}^{\prime}(0)=\alpha\left(\mathrm{R}_{0}-1\right)<0
$$

Define $R_{0}=\frac{S_{0} \beta}{\alpha}$.

- $R_{0} \leq 1$: epidemic will go extinct, $u(t) \rightarrow u_{\infty}\left(I_{0}\right)$ small.
- $R_{0}>1$: epidemics will spread, $u(t) \rightarrow u_{\infty}\left(I_{0}\right)$ of size independent of I_{0}. Susceptibles go down by $S_{0} e^{-\beta u_{\infty}\left(I_{0}\right)}$.

Spatial effect: Nonlocal contaminations [i]

- Assumption: an infected is infectious within a certain range.
- One possibility: $\beta S I \rightarrow \beta S K * I$ (Kendall, 1956).

$$
\begin{aligned}
\partial_{t} S=-\beta S K * I, \partial_{t} I & =\beta S K * I-\alpha I \\
S(0, x)=S_{0}, \quad I(0, x) & =I_{0}(x) \text { small, comp. supported. }
\end{aligned}
$$

Spatial effect: Nonlocal contaminations [i]

- Assumption: an infected is infectious within a certain range.
- One possibility: $\beta S I \rightarrow \beta S K * I$ (Kendall, 1956).

$$
\begin{aligned}
\partial_{t} S=-\beta S K * I, \partial_{t} I & =\beta S K * I-\alpha I \\
S(0, x)=S_{0}, \quad I(0, x) & =I I_{0}(x) \text { small, comp. supported. }
\end{aligned}
$$

- Cumulated density of infected: $u(t, x)=\int_{0}^{t} I(s, x) d s$.

$$
u_{t}=S_{0}\left(1-e^{-\beta K * u}\right)-\alpha u+I_{0} .
$$

- Nonlocal equation... but has a maximum principle!
(Monotone system).

Spatial effect: Nonlocal contaminations [ii]

Theorem (Aronson, 1977). $X(t)$: rightmost x s.t. $u(t, x)=\gamma$. THEN: $R_{0}>1 \Longrightarrow X(t)=c_{*} t+o_{t \rightarrow+\infty}(t)$.

Spatial effect: Nonlocal contaminations [ii]

Theorem (Aronson, 1977). $X(t)$: rightmost x s.t. $u(t, x)=\gamma$. THEN: $R_{0}>1 \Longrightarrow X(t)=c_{*} t+o_{t \rightarrow+\infty}(t)$.

- c_{*} computed from linearised equation

$$
v_{t}+S_{0} \beta(v-K * v)=\alpha\left(R_{0}-1\right) v .
$$

- Important subsequent theory: more elaborate models, abstract monotone systems theory...
- Sharp time asymptotics?
- Epidemiological relevance can be questionned, but mathematical question in its own right.
- Our approach
- works for Kendall's model.
- Gives information about I and S not available before.

Proof of main result: Main steps

\author{

- Travelling waves
}
- The tail of the solution
- Adjusting a travelling wave to the solution

Travelling wave w. speed $c: u(t, x)=\varphi(x-c t)$.

$$
\varphi-K * \varphi-c \varphi^{\prime}=f(\varphi), \quad \varphi(-\infty)=1, \varphi(+\infty)=0
$$

For every $c \geq c_{*}$, there is a unique wave profile $\varphi_{c} w$. speed c. (Diekman 1979,..., Coville 2003, Carr-Chmaj 2004)

Travelling wave w. speed $c: u(t, x)=\varphi(x-c t)$.

$$
\varphi-K * \varphi-c \varphi^{\prime}=f(\varphi), \quad \varphi(-\infty)=1, \varphi(+\infty)=0
$$

For every $c \geq c_{*}$, there is a unique wave profile $\varphi_{c} w$. speed c. (Diekman 1979,..., Coville 2003, Carr-Chmaj 2004)
1st attempt: KPP's original idea for $u_{t}-u_{x x}=u-u^{2}$:

- $t \mapsto u_{x}(t,$.$) increases along a level curve of u$.
$-u(t, x) \sim_{t \rightarrow+\infty} \varphi_{c_{*}}\left(x-c_{*} t+o(t)\right)$.

Travelling wave w. speed $c: u(t, x)=\varphi(x-c t)$.

$$
\varphi-K * \varphi-c \varphi^{\prime}=f(\varphi), \quad \varphi(-\infty)=1, \varphi(+\infty)=0
$$

For every $c \geq c_{*}$, there is a unique wave profile $\varphi_{c} w$. speed c.
(Diekman 1979,..., Coville 2003, Carr-Chmaj 2004)
1st attempt: KPP's original idea for $u_{t}-u_{x x}=u-u^{2}$:

- $t \mapsto u_{x}(t,$.$) increases along a level curve of u$.
$-u(t, x) \sim_{t \rightarrow+\infty} \varphi_{c_{*}}\left(x-c_{*} t+o(t)\right)$.

Inconvenients.

- Not clear that it will work in nonlocal setting.
- Unlikely to locate position of level sets.

Travelling wave w. speed $c: u(t, x)=\varphi(x-c t)$.

$$
\varphi-K * \varphi-c \varphi^{\prime}=f(\varphi), \quad \varphi(-\infty)=1, \varphi(+\infty)=0
$$

For every $c \geq c_{*}$, there is a unique wave profile $\varphi_{c} w$. speed c.
(Diekman 1979,..., Coville 2003, Carr-Chmaj 2004)
1st attempt: KPP's original idea for $u_{t}-u_{x x}=u-u^{2}$:

- $t \mapsto u_{x}(t,$.$) increases along a level curve of u$.
$-u(t, x) \sim_{t \rightarrow+\infty} \varphi_{c_{*}}\left(x-c_{*} t+o(t)\right)$.

Inconvenients.

- Not clear that it will work in nonlocal setting.
- Unlikely to locate position of level sets.

Why? What you're seeing and what you're reading is not what's happening. (D. Trump, 2018)

The tail of the solution

Run with speed $c_{*}: x:=x-c_{*} t$. Set $u(t, x)=e^{-\lambda_{*} x} v(t, x)$:

$$
v_{t}+\mathcal{I}_{*} v+e^{-\lambda_{*} x} v^{2}, \quad \mathcal{I}_{*} v=v-e^{-\lambda_{*} x} K * v-c_{*} \partial_{x} v .
$$

Run with speed $c_{*}: x:=x-c_{*} t$. Set $u(t, x)=e^{-\lambda_{*} x} v(t, x)$:

$$
v_{t}+\mathcal{I}_{*} v+e^{-\lambda_{*} x} v^{2}, \quad \mathcal{I}_{*} v=v-e^{-\lambda_{*} x} K * v-c_{*} \partial_{x} v
$$

Main statement: as $t \rightarrow+\infty$ and $t^{\delta} \leq x \leq t^{1 / 2+\delta}$ we have ($\delta>0$ small)

$$
u(t, x) \sim \frac{\alpha_{\infty} x}{t^{3 / 2}} e^{-\lambda_{*} x-\frac{x^{2}}{4 d_{*} t}}
$$

$\alpha_{\infty}>0$: depends on initial datum, $\quad d_{*}=\int_{\mathbb{R}} x^{2} e^{-\lambda_{*} x} K(x) d x$.
Main issue: no regularising effect.

Run with speed $c_{*}: x:=x-c_{*} t$. Set $u(t, x)=e^{-\lambda_{*} x} v(t, x)$:

$$
v_{t}+\mathcal{I}_{*} v+e^{-\lambda_{*} x} v^{2}, \quad \mathcal{I}_{*} v=v-e^{-\lambda_{*} x} K * v-c_{*} \partial_{x} v .
$$

Main statement: as $t \rightarrow+\infty$ and $t^{\delta} \leq x \leq t^{1 / 2+\delta}$ we have ($\delta>0$ small)

$$
u(t, x) \sim \frac{\alpha_{\infty} x}{t^{3 / 2}} e^{-\lambda_{*} x-\frac{x^{2}}{4 d_{*} t}}
$$

$\alpha_{\infty}>0$: depends on initial datum, $\quad d_{*}=\int_{\mathbb{R}} x^{2} e^{-\lambda_{*} x} K(x) d x$.
Main issue: no regularising effect.
Hint why this may be true: we have

$$
e^{-t \mathcal{I}_{*}} v_{0}(x)=e^{t d_{*} \partial_{x x}} v_{0}(x)+O\left(e^{-t^{\gamma}}\right)
$$

Where the logarithmic term comes from

Travelling wave at infinity:
$\varphi_{c_{*}}(x)=\left(x+k_{*}\right) e^{-\lambda_{*} x}+O\left(e^{-\left(\lambda_{*}+\gamma\right) x}\right)$.
(shared feature with usual diffusion)

Travelling wave at infinity:
$\varphi_{c_{*}}(x)=\left(x+k_{*}\right) e^{-\lambda_{*} x}+O\left(e^{-\left(\lambda_{*}+\gamma\right) x}\right)$.
(shared feature with usual diffusion)
Translate $\varphi_{c_{*}}$ by $\sigma(t)$ to match u at $x=t^{\delta}$:

$$
\begin{aligned}
\frac{\alpha_{\infty}}{t^{3 / 2}} e^{-\lambda_{*} x-\frac{x^{2}}{4 d_{*} t}} & =\left(x+\sigma(t)+k_{*}\right) e^{-\lambda_{*}(x+\sigma(t))} \text { at } x=t^{\delta} \\
& \Longrightarrow \sigma(t)=\frac{1}{\lambda}_{*}\left(\frac{3}{2 t}-\ln \alpha_{\infty}+o(1)\right)
\end{aligned}
$$

Travelling wave at infinity:

$$
\varphi_{c_{*}}(x)=\left(x+k_{*}\right) e^{-\lambda_{*} x}+O\left(e^{-\left(\lambda_{*}+\gamma\right) x}\right) .
$$

(shared feature with usual diffusion)
Translate $\varphi_{c_{*}}$ by $\sigma(t)$ to match u at $x=t^{\delta}$:

$$
\begin{aligned}
\frac{\alpha_{\infty}}{t^{3 / 2}} e^{-\lambda_{*} x-\frac{x^{2}}{4 d_{*} t}} & =\left(x+\sigma(t)+k_{*}\right) e^{-\lambda_{*}(x+\sigma(t))} \text { at } x=t^{\delta} \\
& \Longrightarrow \sigma(t)={\frac{1}{\lambda_{*}}}_{*}\left(\frac{3}{2 t}-\ln \alpha_{\infty}+o(1)\right)
\end{aligned}
$$

Theorem. We have $u(t, x) \sim_{t \rightarrow+\infty} \varphi_{c_{*}}(x+\sigma(t))$.
Proof. Write a BVP for for $u(t, x)-\varphi_{c_{*}}(x+\sigma(t))$ on $\left(-\infty, t^{\delta}\right)$, use that it has to be controlled on a domain of size $\sim t^{\delta}$.

Ongoing work

- Discrete Fisher-KPP (w. C. Besse, G. Faye and M. Zhang).
- Fisher-KPP in periodic environments (w. A. Novikov and L. Ryzhik, earlier work w. F. Hamel, J. Nolen and L. Ryzhik).
- Coupled diffusion/SI models on networks (w. G. Faye and M. Zhang).

Thank you for attention

