A mixed eigenvalue problem on domains tending to infinity in several directions

Prosenjit Roy¹ Itai Shafrir²

¹I.I.T. Kanpur ²Technion - I.I.T., Haifa

Mostly Maximum Principle 4th edition, Cortona 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

"' $\ell \to \infty$ "-type problems

ふしゃ ふゆき ふかす ふか ふしゃ

" $\ell \to \infty$ "-type problems

Let ω be a bounded open set in \mathbb{R}^{p} . For every $\ell > 0$ set $\Omega_{\ell} = (-\ell, \ell) \times \omega$ ($x \in \Omega_{\ell} \Rightarrow x = (x_{1}, \xi)$), $x_{1} \in \mathbb{R}, \xi \in \mathbb{R}^{p}$.

" $\ell \to \infty$ "-type problems

Let ω be a bounded open set in \mathbb{R}^{p} . For every $\ell > 0$ set $\Omega_{\ell} = (-\ell, \ell) \times \omega$ ($x \in \Omega_{\ell} \Rightarrow x = (x_{1}, \xi)$), $x_{1} \in \mathbb{R}, \xi \in \mathbb{R}^{p}$.

" $\ell ightarrow \infty$ "-type problems

Let ω be a bounded open set in \mathbb{R}^{p} . For every $\ell > 0$ set $\Omega_{\ell} = (-\ell, \ell) \times \omega$ ($x \in \Omega_{\ell} \Rightarrow x = (x_{1}, \xi)$), $x_{1} \in \mathbb{R}, \xi \in \mathbb{R}^{p}$.

"Typically": sol. on Ω_{ℓ} tends, as $\ell \to \infty$, to the solution on the section ω .

" $\ell ightarrow \infty$ "-type problems

Let ω be a bounded open set in \mathbb{R}^{p} . For every $\ell > 0$ set $\Omega_{\ell} = (-\ell, \ell) \times \omega$ ($x \in \Omega_{\ell} \Rightarrow x = (x_{1}, \xi)$), $x_{1} \in \mathbb{R}, \xi \in \mathbb{R}^{p}$.

"Typically": sol. on Ω_{ℓ} tends, as $\ell \to \infty$, to the solution on the section ω .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ∽��?

Assume the (p+1) imes (p+1) matrices,

$$A(\xi) = \begin{pmatrix} a_{11}(\xi) & A_{12}(\xi) \\ A_{12}^t(\xi) & A_{22}(\xi) \end{pmatrix}$$

are uniformly elliptic and uniformly bounded on ω .

Assume the $(p+1) \times (p+1)$ matrices,

$$A(\xi) = \begin{pmatrix} a_{11}(\xi) & A_{12}(\xi) \\ A_{12}^{t}(\xi) & A_{22}(\xi) \end{pmatrix}$$

are uniformly elliptic and uniformly bounded on ω .

Example: $A = \begin{pmatrix} 1 & \delta \\ \delta & 1 \end{pmatrix}$

Assume the $(p + 1) \times (p + 1)$ matrices,

$$A(\xi) = \begin{pmatrix} a_{11}(\xi) & A_{12}(\xi) \\ A_{12}^{t}(\xi) & A_{22}(\xi) \end{pmatrix}$$

are uniformly elliptic and uniformly bounded on ω .

Example: $A = \begin{pmatrix} 1 & \delta \\ \delta & 1 \end{pmatrix}$

Let μ^k and σ^k_ℓ denote, respectively, the k 'st eigenvalues for the Dirichlet problems

$$\begin{cases} -\operatorname{div}(A_{22}(\xi)\nabla v) = \mu v & \text{in } \omega, \\ v = 0 & \text{on } \partial \omega, \end{cases}$$

and

$$\begin{cases} -\operatorname{div}(A(\xi)\nabla u) = \sigma u & \text{ in } \Omega_{\ell}, \\ u = 0 & \text{ on } \partial \Omega_{\ell}. \end{cases}$$

Assume the $(p+1) \times (p+1)$ matrices,

$$A(\xi) = \begin{pmatrix} a_{11}(\xi) & A_{12}(\xi) \\ A_{12}^{t}(\xi) & A_{22}(\xi) \end{pmatrix}$$

are uniformly elliptic and uniformly bounded on ω .

Example: $A = \begin{pmatrix} 1 & \delta \\ \delta & 1 \end{pmatrix}$

Let μ^k and σ_ℓ^k denote, respectively, the k 'st eigenvalues for the Dirichlet problems

$$\begin{cases} -\operatorname{div}(A_{22}(\xi)\nabla v) = \mu v & \text{in } \omega, \\ v = 0 & \text{on } \partial \omega, \end{cases}$$

and

$$\begin{cases} -\operatorname{div}(A(\xi)\nabla u) = \sigma u & \text{ in } \Omega_{\ell}, \\ u = 0 & \text{ on } \partial \Omega_{\ell}. \end{cases}$$

Theorem [Chipot-Rougirel 08]. $\mu^1 \leq \sigma_\ell^k \leq \mu^1 + \frac{C_k}{\ell^2}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ◆○◆

Write $\partial \Omega_{\ell} = \Gamma_{\ell} \cup \gamma_{\ell}$, $\Gamma_{\ell} = \{-\ell, \ell\} \times \omega, \gamma_{\ell} = (-\ell, \ell) \times \partial \omega$.

Write $\partial \Omega_{\ell} = \Gamma_{\ell} \cup \gamma_{\ell}$, $\Gamma_{\ell} = \{-\ell, \ell\} \times \omega, \gamma_{\ell} = (-\ell, \ell) \times \partial \omega$. Let λ_{ℓ}^{k} be the *k*th eigenvalue for the mixed problem

$$\begin{cases} -\operatorname{div}(A(\xi)\nabla u) = \sigma u & \text{in } \Omega_{\ell} \\ u = 0 & \text{on } \gamma_{\ell}, \\ (A(\xi)\nabla u).\nu = 0 & \text{on } \Gamma_{\ell}. \end{cases}$$

Write $\partial \Omega_{\ell} = \Gamma_{\ell} \cup \gamma_{\ell}$, $\Gamma_{\ell} = \{-\ell, \ell\} \times \omega, \gamma_{\ell} = (-\ell, \ell) \times \partial \omega$. Let λ_{ℓ}^{k} be the *k*th eigenvalue for the mixed problem

$$\begin{cases} -\operatorname{div}(A(\xi)\nabla u) = \sigma u & \text{in } \Omega_{\ell} \\ u = 0 & \text{on } \gamma_{\ell}, \\ (A(\xi)\nabla u).\nu = 0 & \text{on } \Gamma_{\ell}. \end{cases}$$

<u>Problem:</u> Find $\lim_{\ell \to \infty} \lambda_{\ell}^1$ and $\lim_{\ell \to \infty} u_{\ell}$, with u_{ℓ} realizing $\lambda_{\ell}^1 = \min\{\int_{\Omega_{\ell}} (A\nabla u) . \nabla u : \int_{\Omega_{\ell}} u^2 = 1, u = 0 \text{ on } \gamma_{\ell}\}.$

Write $\partial \Omega_{\ell} = \Gamma_{\ell} \cup \gamma_{\ell}$, $\Gamma_{\ell} = \{-\ell, \ell\} \times \omega, \gamma_{\ell} = (-\ell, \ell) \times \partial \omega$. Let λ_{ℓ}^{k} be the *k*th eigenvalue for the mixed problem

$$\begin{cases} -\operatorname{div}(A(\xi)\nabla u) = \sigma u & \text{in } \Omega_{\ell} \\ u = 0 & \text{on } \gamma_{\ell}, \\ (A(\xi)\nabla u).\nu = 0 & \text{on } \Gamma_{\ell}. \end{cases}$$

Problem: Find $\lim_{\ell \to \infty} \lambda_{\ell}^{1}$ and $\lim_{\ell \to \infty} u_{\ell}$, with u_{ℓ} realizing $\lambda_{\ell}^{1} = \min\{\int_{\Omega_{\ell}} (A\nabla u) \cdot \nabla u : \int_{\Omega_{\ell}} u^{2} = 1, u = 0 \text{ on } \gamma_{\ell}\}.$ In particular, can we have $\lim_{\ell \to \infty} \lambda_{\ell}^{1} < \mu^{1}$?

- 少々の 一郎 - 《田》 《田》 《田》 ▲日》

▲□▶ ▲□▶ ▲≣▶ ▲≣▶ 三 の�?

Theorem.

$$\lim_{\ell \to 0} \lambda_{\ell}^{1} = \Lambda^{1} = \inf_{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2} = 1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v - \frac{|A_{12}(\xi) \cdot \nabla v|^{2}}{a_{11}(\xi)}.$$

Theorem.

$$\lim_{\ell \to 0} \lambda_{\ell}^{1} = \Lambda^{1} = \inf_{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2} = 1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v - \frac{|A_{12}(\xi) \cdot \nabla v|^{2}}{a_{11}(\xi)}.$$

Idea of proof(Linear Algebra).

Theorem.

$$\lim_{\ell \to 0} \lambda_{\ell}^{1} = \Lambda^{1} = \inf_{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2} = 1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v - \frac{|A_{12}(\xi) \cdot \nabla v|^{2}}{a_{11}(\xi)}.$$

Idea of proof(Linear Algebra).

• <u>Claim</u>: Let $B = \begin{pmatrix} b_{11} & B_{12} \\ B_{12}^t & B_{22} \end{pmatrix}$ be a pos. def. $n \times n$ matrix.

Theorem.

$$\lim_{\ell \to 0} \lambda_{\ell}^{1} = \Lambda^{1} = \inf_{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2} = 1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v - \frac{|A_{12}(\xi) \cdot \nabla v|^{2}}{a_{11}(\xi)}.$$

Idea of proof(Linear Algebra).

• <u>Claim</u>: Let $B = \begin{pmatrix} b_{11} & B_{12} \\ B_{12}^t & B_{22} \end{pmatrix}$ be a pos. def. $n \times n$ matrix. Write $\mathbf{z} \in \mathbb{R}^n$ as $\mathbf{z} = (z_1, Z_2)$ with $Z_2 \in \mathbb{R}^{n-1}$. Then, for any fixed $Z_2 \in \mathbb{R}^{n-1}$ we have

$$\min_{z_1 \in \mathbb{R}} (B\mathbf{z}).\mathbf{z} = (B_{22}Z_2).Z_2 - \frac{|B_{12}.Z_2|^2}{b_{11}}.$$

 Theorem.

$$\lim_{\ell \to 0} \lambda_{\ell}^{1} = \Lambda^{1} = \inf_{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2} = 1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v - \frac{|A_{12}(\xi) \cdot \nabla v|^{2}}{a_{11}(\xi)}.$$

Idea of proof(Linear Algebra).

• <u>Claim</u>: Let $B = \begin{pmatrix} b_{11} & B_{12} \\ B_{12}^t & B_{22} \end{pmatrix}$ be a pos. def. $n \times n$ matrix. Write $\mathbf{z} \in \mathbb{R}^n$ as $\mathbf{z} = (z_1, Z_2)$ with $Z_2 \in \mathbb{R}^{n-1}$. Then, for any fixed $Z_2 \in \mathbb{R}^{n-1}$ we have

$$\min_{z_1 \in \mathbb{R}} (B\mathbf{z}).\mathbf{z} = (B_{22}Z_2).Z_2 - \frac{|B_{12}.Z_2|^2}{b_{11}}.$$

• "Optimizing over u_{x_1} " allows us to construct a good test function for λ_{ℓ}^1 (when $\ell \sim 0$).

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

Let W_1 denote the positive normalized eigenfunction of $-\operatorname{div}(A_{22}\nabla u)$ associated with μ^1 .

Let W_1 denote the positive normalized eigenfunction of $-\operatorname{div}(A_{22}\nabla u)$ associated with μ^1 . **Theorem.** If

 $A_{12}.\nabla W_1 \neq 0 \text{ a.e. on } \omega$ (NZ)

then $\limsup_{\ell \to \infty} \lambda_{\ell}^1 < \mu^1$.

Let W_1 denote the positive normalized eigenfunction of $-\operatorname{div}(A_{22}\nabla u)$ associated with μ^1 . **Theorem.** If

 $A_{12}.\nabla W_1 \neq 0$ a.e. on ω (NZ)

then $\limsup_{\ell\to\infty} \lambda_{\ell}^1 < \mu^1$. Otherwise, $\lambda_{\ell}^1 = \mu^1$ for all $\ell > 0$.

Let W_1 denote the positive normalized eigenfunction of $-\operatorname{div}(A_{22}\nabla u)$ associated with μ^1 . **Theorem.** If

 $A_{12}.\nabla W_1 \neq 0$ a.e. on ω (NZ)

then $\limsup_{\ell \to \infty} \lambda_{\ell}^1 < \mu^1$. Otherwise, $\lambda_{\ell}^1 = \mu^1$ for all $\ell > 0$.

Set $\Omega_{\infty}^+ = (0,\infty) \times \omega$ and $\Omega_{\infty}^- = (-\infty,0) \times \omega$.

Set $\Omega_{\infty}^{+} = (0, \infty) \times \omega$ and $\Omega_{-}^{-} = (-\infty, 0) \times \omega$. Let $V(\Omega_{\infty}^{\pm}) := \{ u \in H^{1}(\Omega_{\infty}^{\pm}) : u = 0 \text{ on } \gamma_{\infty}^{\pm} \}$ and set

$$\nu_{\infty}^{\pm} = \inf_{0 \neq u \in V(\Omega_{\infty}^{\pm})} \frac{\int_{\Omega_{\infty}^{\pm}} A \nabla u \cdot \nabla u}{\int_{\Omega_{\infty}^{\pm}} u^2}$$

Set $\Omega_{\infty}^+ = (0, \infty) \times \omega$ and $\Omega_{\infty}^- = (-\infty, 0) \times \omega$. Let $V(\Omega_{\infty}^{\pm}) := \{ u \in H^1(\Omega_{\infty}^{\pm}) : u = 0 \text{ on } \gamma_{\infty}^{\pm} \}$ and set

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Set $\Omega_{\infty}^+ = (0, \infty) \times \omega$ and $\Omega_{\infty}^- = (-\infty, 0) \times \omega$. Let $V(\Omega_{\infty}^{\pm}) := \{ u \in H^1(\Omega_{\infty}^{\pm}) : u = 0 \text{ on } \gamma_{\infty}^{\pm} \}$ and set

Theorem. $\lim_{\ell \to \infty} \lambda_{\ell}^{1} = \min(\nu_{\infty}^{+}, \nu_{\infty}^{-}).$

For $p \ge 1$ and $m \ge 2$, let $V \subset \mathbb{R}^m, \omega \subset \mathbb{R}^p$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ● ��や

For $p \ge 1$ and $m \ge 2$, let $V \subset \mathbb{R}^m, \omega \subset \mathbb{R}^p$. For $\ell > 0$ consider $\Omega_\ell = (\ell V) \times \omega \subset \mathbb{R}^{m+p}$.

For $p \ge 1$ and $m \ge 2$, let $V \subset \mathbb{R}^m, \omega \subset \mathbb{R}^p$. For $\ell > 0$ consider $\Omega_\ell = (\ell V) \times \omega \subset \mathbb{R}^{m+p}$. Assume the $(m+p) \times (m+p)$ matrices,

$$A(\xi) = \begin{pmatrix} a_{11}(\xi) & A_{12}(\xi) \\ A_{12}^t(\xi) & A_{22}(\xi) \end{pmatrix} (\xi \in \omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

8/14

are uniformly elliptic and uniformly bounded on ω .

For $p \ge 1$ and $m \ge 2$, let $V \subset \mathbb{R}^m, \omega \subset \mathbb{R}^p$. For $\ell > 0$ consider $\Omega_\ell = (\ell V) \times \omega \subset \mathbb{R}^{m+p}$. Assume the $(m+p) \times (m+p)$ matrices,

$$A(\xi) = \begin{pmatrix} a_{11}(\xi) & A_{12}(\xi) \\ A_{12}^t(\xi) & A_{22}(\xi) \end{pmatrix} (\xi \in \omega)$$

are uniformly elliptic and uniformly bounded on ω . The previous case corresponds to V = (-1, 1).

<ロト < 母 > < 臣 > < 臣 > 三 の < で

For $p \ge 1$ and $m \ge 2$, let $V \subset \mathbb{R}^m, \omega \subset \mathbb{R}^p$. For $\ell > 0$ consider $\Omega_\ell = (\ell V) \times \omega \subset \mathbb{R}^{m+p}$. Assume the $(m+p) \times (m+p)$ matrices,

$$A(\xi) = \begin{pmatrix} a_{11}(\xi) & A_{12}(\xi) \\ A_{12}^t(\xi) & A_{22}(\xi) \end{pmatrix} (\xi \in \omega)$$

are uniformly elliptic and uniformly bounded on ω . The previous case corresponds to V = (-1, 1).

M=2 p=1

As before denote by μ^k and λ_{ℓ}^k , respectively, the *k*th eigenvalues for the **Dirichlet problem** on the section ω .

$$egin{pmatrix} -\operatorname{div}(\mathcal{A}_{22}(\xi)
abla v) &= \mu v \quad ext{ in } \omega, \ v &= 0 \quad ext{ on } \partial \omega, \end{split}$$

As before denote by μ^k and λ_{ℓ}^k , respectively, the *k*th eigenvalues for the **Dirichlet problem** on the section ω .

$$\begin{cases} -\operatorname{div}(A_{22}(\xi)\nabla v) = \mu v & \text{in } \omega, \\ v = 0 & \text{on } \partial \omega, \end{cases}$$

and the **mixed problem** on Ω_ℓ

$$\begin{cases} -\operatorname{div}(A(\xi)\nabla u) = \sigma u & \text{in } \Omega_{\ell}, \\ u = 0 & \text{on } (\ell V) \times \partial \omega, \\ (A(\xi)\nabla u).\nu = 0 & \text{on } \partial(\ell V) \times \omega. \end{cases}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 のへで

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-} = (-\infty, 0) \times \partial \omega$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 うんの

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-} = (-\infty, 0) \times \partial \omega$. For each $\nu \in S^{m-1}$ let $A_{\nu} = A_{\nu}(\xi)$ denote the $(p+1) \times (p+1)$ matrix

$$A_{\nu} = \begin{pmatrix} (A_{11}\nu) \cdot \nu & \nu^{T}A_{12} \\ (\nu^{T}A_{12})^{T} & A_{22} \end{pmatrix}$$

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-} = (-\infty, 0) \times \partial \omega$. For each $\nu \in S^{m-1}$ let $A_{\nu} = A_{\nu}(\xi)$ denote the $(p+1) \times (p+1)$ matrix

$$A_{\nu} = \begin{pmatrix} (A_{11}\nu) \cdot \nu & \nu^{T}A_{12} \\ (\nu^{T}A_{12})^{T} & A_{22} \end{pmatrix}$$

 $Z^{\nu} = \inf_{\left\{ 0 \neq u \in H^1(\Omega_{\infty}^-) \mid u=0 \text{ on } \gamma_{\infty}^- \right\}} \frac{\int_{\Omega_{\infty}^-} (A_{\nu} \nabla u) \cdot \nabla u}{\int_{\Omega_{\infty}^-} u^2} \,.$

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 ∽��?

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-} = (-\infty, 0) \times \partial \omega$. For each $\nu \in S^{m-1}$ let $A_{\nu} = A_{\nu}(\xi)$ denote the $(p+1) \times (p+1)$ matrix

$$A_{\nu} = \begin{pmatrix} (A_{11}\nu) \cdot \nu & \nu^{\mathsf{T}}A_{12} \\ (\nu^{\mathsf{T}}A_{12})^{\mathsf{T}} & A_{22} \end{pmatrix}$$

Set

$$Z^{\nu} = \inf_{\left\{ 0 \neq u \in H^1(\Omega_{\infty}^-) \mid u=0 \text{ on } \gamma_{\infty}^- \right\}} \frac{\int_{\Omega_{\infty}^-} (A_{\nu} \nabla u) \cdot \nabla u}{\int_{\Omega_{\infty}^-} u^2} \,.$$

Theorem. We have $\lim_{\ell \to \infty} \lambda_{\ell} = \inf_{\nu \in S^{m-1}} Z^{\nu}$. If

 $A_{12}.\nabla W_1 \not\equiv 0$ a.e. on ω (NZ)

then $\lim_{\ell \to \infty} \lambda_{\ell}^1 < \mu^1$.

□ ▶ < 큔 ▶ < 토 ▶ < 토 ▶ < 토 < 0 < ○
 10/14

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-} = (-\infty, 0) \times \partial \omega$. For each $\nu \in S^{m-1}$ let $A_{\nu} = A_{\nu}(\xi)$ denote the $(p+1) \times (p+1)$ matrix

$$A_{\nu} = \begin{pmatrix} (A_{11}\nu) \cdot \nu & \nu^{\mathsf{T}}A_{12} \\ (\nu^{\mathsf{T}}A_{12})^{\mathsf{T}} & A_{22} \end{pmatrix}$$

Set

$$Z^{\nu} = \inf_{\left\{ 0 \neq u \in H^1(\Omega_{\infty}^-) \mid u=0 \text{ on } \gamma_{\infty}^- \right\}} \frac{\int_{\Omega_{\infty}^-} (A_{\nu} \nabla u) \cdot \nabla u}{\int_{\Omega_{\infty}^-} u^2} \,.$$

Theorem. We have $\lim_{\ell \to \infty} \lambda_{\ell} = \inf_{\nu \in S^{m-1}} Z^{\nu}$. If

 $A_{12}.\nabla W_1 \not\equiv 0$ a.e. on ω (NZ)

then $\lim_{\ell\to\infty} \lambda_{\ell}^1 < \mu^1$. Otherwise, $\lambda_{\ell}^1 = \mu^1$ for all $\ell > 0$.

□ ▶ < 큔 ▶ < 토 ▶ < 토 ▶ < 토 < ○ < ○
 10/14

・ロト ・ 母 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の ・

・ロト ・四ト ・川下・ ・川下・ ・日・

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K = \ell^{\beta}$ near the boundary point with normal ν .

・ロト ・ 日 ・ ・ 王 ・ 王 ・ シ 王 ・ つ へ (や 11/14

m=2 p=1

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K = \ell^{\beta}$ near the boundary point with normal ν . Let $v_{\ell} = \tilde{u}_{K}(x_{1},\xi)\Phi(x_{2},\ldots,x_{m})$ with \tilde{u}_{K} an approximated minimizer for the problem on a semi-infinite cylinder for the problem with A_{ν} .

□ ▶ < 큔 ▶ < 토 ▶ < 토 ▶ < 토 < ⊃ < ○
 11/14

m=2 p=1

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K = \ell^{\beta}$ near the boundary point with normal ν . Let $v_{\ell} = \tilde{u}_{K}(x_{1},\xi)\Phi(x_{2},\ldots,x_{m})$ with \tilde{u}_{K} an approximated minimizer for the problem on a semi-infinite cylinder for the problem with A_{ν} . **Lower bound:** Decay of u_{ℓ} in the bulk always holds when

Lower bound: Decay of u_{ℓ} in the bulk always holds when $\limsup \lambda_{\ell} < \mu^1$.

m=2 p=1

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K = \ell^{\beta}$ near the boundary point with normal ν . Let $v_{\ell} = \tilde{u}_{K}(x_{1},\xi)\Phi(x_{2},\ldots,x_{m})$ with \tilde{u}_{K} an approximated minimizer for the problem on a semi-infinite cylinder for the problem with A_{ν} .

Lower bound: Decay of u_{ℓ} in the bulk always holds when $\limsup \lambda_{\ell} < \mu^1$. Arguing by contradiction leads to decay also near the boundary.

m=2 p=1

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K = \ell^{\beta}$ near the boundary point with normal ν . Let $v_{\ell} = \tilde{u}_{K}(x_{1},\xi)\Phi(x_{2},\ldots,x_{m})$ with \tilde{u}_{K} an approximated minimizer for the problem on a semi-infinite cylinder for the problem with A_{ν} .

Lower bound: Decay of u_{ℓ} in the bulk always holds when $\limsup \lambda_{\ell} < \mu^1$. Arguing by contradiction leads to decay also near the boundary.But $\int_{\Omega_{\ell}} u_{\ell}^2 = 1$. Impossible!

ロ ト 4 団 ト 4 国 ト 4 国 ト 9 9 9 9

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ふよる

Theorem. For all $k \ge 1$ we have $\lim_{\ell \to \infty} \lambda_{\ell}^k = \inf_{\nu \in S^{m-1}} Z^{\nu}$.

Theorem. For all $k \ge 1$ we have $\lim_{\ell \to \infty} \lambda_{\ell}^k = \inf_{\nu \in S^{m-1}} Z^{\nu}$.

Idea of the proof: Only the proof of the upper bound is required.

Theorem. For all $k \ge 1$ we have $\lim_{\ell \to \infty} \lambda_{\ell}^k = \inf_{\nu \in S^{m-1}} Z^{\nu}$.

Idea of the proof: Only the proof of the upper bound is required.

• Fix a vector
$$\nu \in S^{m-1}$$
.

Theorem. For all $k \ge 1$ we have $\lim_{\ell \to \infty} \lambda_{\ell}^k = \inf_{\nu \in S^{m-1}} Z^{\nu}$.

Idea of the proof: Only the proof of the upper bound is required.

• Fix a vector $\nu \in S^{m-1}$.

• We look for a test function w orthogonal to $u_{\ell}^1, \ldots, u_{\ell}^{k-1}$ with Rayleigh quotient less then $Z^{\nu} + \varepsilon$.

Theorem. For all $k \ge 1$ we have $\lim_{\ell \to \infty} \lambda_{\ell}^k = \inf_{\nu \in S^{m-1}} Z^{\nu}$.

Idea of the proof: Only the proof of the upper bound is required.

- Fix a vector $\nu \in S^{m-1}$.
- We look for a test function w orthogonal to $u_{\ell}^1, \ldots, u_{\ell}^{k-1}$ with Rayleigh quotient less then $Z^{\nu} + \varepsilon$.
- Take $\{v_{\ell}^{j}\}_{j=1}^{k}$ as above, supported in k disjoint "boxes", corresponding to normal vectors $\{\nu^{j}\}_{i=1}^{k}$, all close to ν .

(日) (日) (日) (日) (日) (日) (日)

Theorem. For all $k \ge 1$ we have $\lim_{\ell \to \infty} \lambda_{\ell}^k = \inf_{\nu \in S^{m-1}} Z^{\nu}$.

Idea of the proof: Only the proof of the upper bound is required.

- Fix a vector $\nu \in S^{m-1}$.
- We look for a test function w orthogonal to $u_{\ell}^1, \ldots, u_{\ell}^{k-1}$ with Rayleigh quotient less then $Z^{\nu} + \varepsilon$.
- Take $\{v_{\ell}^{j}\}_{j=1}^{k}$ as above, supported in k disjoint "boxes", corresponding to normal vectors $\{\nu^{j}\}_{i=1}^{k}$, all close to ν .
- Use $w = \sum_{j=1}^{k} \alpha_j v_{\ell}^j$ with $\{\alpha_j\}_{j=1}^k$ chosen so that $w \perp u_{\ell}^j$, $j = 1, \dots, k-1$ (and $\sum_{j=1}^k \alpha_j^2 = 1$).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem. For all $k \ge 1$ we have $\lim_{\ell \to \infty} \lambda_{\ell}^k = \inf_{\nu \in S^{m-1}} Z^{\nu}$.

Idea of the proof: Only the proof of the upper bound is required.

- Fix a vector $\nu \in S^{m-1}$.
- We look for a test function w orthogonal to $u_{\ell}^1, \ldots, u_{\ell}^{k-1}$ with Rayleigh quotient less then $Z^{\nu} + \varepsilon$.
- Take $\{v_{\ell}^{j}\}_{j=1}^{k}$ as above, supported in k disjoint "boxes", corresponding to normal vectors $\{\nu^{j}\}_{i=1}^{k}$, all close to ν .
- Use $w = \sum_{j=1}^{k} \alpha_j v_{\ell}^j$ with $\{\alpha_j\}_{j=1}^k$ chosen so that $w \perp u_{\ell}^j$, $j = 1, \dots, k-1$ (and $\sum_{j=1}^k \alpha_j^2 = 1$).
- This is possible since we have k 1 linear equations in k unknowns.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

◆□▶ ◆母▶ ★ヨ≯ ★ヨ ◆○◇

◆□▶ ◆母▶ ★ヨ≯ ★ヨ ◆○◇

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで