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Example: A = <5 1>

Let 1% and aé‘ denote, respectively, the k'st eigenvalues for the
Dirichlet problems

—div(A2()Vv) =pv  inw,
v=0 on dw,

and
—div(A(§)Vu) =ou  in Qy,
u=0 on 0.
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Write 9Qp =Ty Uy, Ty ={—0, 0} x w,vp = (-4, {) X Jw.
Let )\f be the kth eigenvalue for the mixed problem
—div(A(§)Vu) =ou  in Qy,
u=0 on y,
(A(€)Vu).r =0 on Ty,

Problem: Find limy_, )‘Z and Iimg_>C>O ug, with up realizing
Ay =min{ fo (AVY).Vu : [ v* =1, ufOon’yg}

In particular, can we have I|mg_>OO )\g < pt?
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veH (w), [, v3=1
Idea of proof(Linear Algebra).

. bi1 B
e Claim: Let B =
<5fz Ba»

Write z € R" as z = (z1, Z) with Zo € R"~1. Then, for any fixed
Z> € R"1 we have

) be a pos. def. n x n matrix.

. |B12.25|?
Bz).z = (ByyZy).Z, — ———— .
ZTG'%( z).z = (Bxn22).2 bis

e "“Optimizing over u,,” allows us to construct a good test
function for A} (when ¢ ~ 0).
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Let Wi denote the positive normalized eigenfunction of
—div(A»Vu) associated with !,
Theorem. If

Ap. VW) #£0ae onw (N2)

then limsup,_,., A} < ul. Otherwise, A} = u! for all £ > 0.
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Relation with problems on semi-infinite cylinders

Set Qf = (0,00) x w and Q = (—00,0) X w.
Let V(QL) :={ue H(QL): u=00n+%} and set

+ AVu.Vu
vE = inf —fro

ozuev(eL)  Jox u?

. 1 . _
Theorem. limy_,, A\; = min(vL, vy).

7/14



Domains tending to infinity in several dimensions (Roy-Sh)

8/14



Domains tending to infinity in several dimensions (Roy-Sh)

Forp>land m>2let VCR™ wCRP.

8/14



Domains tending to infinity in several dimensions (Roy-Sh)

Forp>land m>2let VCR™ wCRP.
For ¢ > 0 consider Q; = (£V) x w C R™*P.

8/14



Domains tending to infinity in several dimensions (Roy-Sh)

Forp>land m>2let VCR™ wCRP.
For ¢ > 0 consider Q; = (£V) x w C R™*P.
Assume the (m + p) x (m + p) matrices,

_ (a(§) An(é)
A= <A§2(5) A22(§)> (£ ew)

are uniformly elliptic and uniformly bounded on w.

8/14



Domains tending to infinity in several dimensions (Roy-Sh)

Forp>land m>2let VCR™ wCRP.
For ¢ > 0 consider Q; = (£V) x w C R™*P.
Assume the (m + p) x (m + p) matrices,

_ (a(§) An(é)
A= <A§2(5) A22(§)> (£ ew)

are uniformly elliptic and uniformly bounded on w.
The previous case corresponds to V = (—1,1).

8/14



Domains tending to infinity in several dimensions (Roy-Sh)

Forp>land m>2let VCR™ wCRP.
For ¢ > 0 consider Q; = (£V) x w C R™*P.
Assume the (m + p) x (m + p) matrices,

_ (a(§) An(é)
A= <A§2(5) A22(§)> (£ ew)

are uniformly elliptic and uniformly bounded on w.

The previous case corresponds to V = (—1,1).

k=0 ol
Tt

bs Newmann Coudk,

m=9  p=4
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for the Dirichlet problem on the section w.

—div(A2(&)Vv) = pv  in w,
v=0 on dw,

and the mixed problem on
—div(A(§)Vu) =ou in Qy,
u=0 on (V)X Jw,
(A(§)Vu).w =0 on d(lV) X w.
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Theorem. We have |lim A\, = inf Z". If
f—00 ves§m-1
A . VWi #£0ae onw (N2)

then limy_, )\% < pt. Otherwise, )\% = ut forall £ > 0.
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M=% P=1

Upper bound: Take a test function v, supported in a "box” of
size K = P near the boundary point with normal v.
Let vy = bk (x1,£)P(x2,. .., xm) With ik an approximated
minimizer for the problem on a semi-infinite cylinder for the
problem with A,.
Lower bound: Decay of uy in the bulk always holds when
limsup Ay < pt. Arguing by contradiction leads to decay also near
the boundary.But er uf = 1. Impossible!
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e Fix a vector v € S™1.

e We look for a test function w orthogonal to u}, ey ué‘_l with

Rayleigh quotient less then Z¥ + ¢.
e Take {Vé}f:1 as above, supported. in k disjoint “boxes”,
corresponding to normal vectors {VJ}J/-‘ZI, all close to v.

o Use w = ij 1ajvé with {aj}k 1 chosen so that w L ué,
j=1,... k- (andZJ a =1).

e This is p055|b|e since we have k — 1 linear equations in k
unknowns.

12/14



Neuiahn, CNJ\)

13/14



Neuiahn, CNJ\)

13/14



Thank you for your attention!
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