A mixed eigenvalue problem on domains tending to infinity in several directions

Prosenjit Roy ${ }^{1}$ Itai Shafrir ${ }^{2}$

${ }^{1}$ I.I.T. Kanpur
${ }^{2}$ Technion - I.I.T., Haifa

Mostly Maximum Principle 4th edition, Cortona 2022

$" ~ \ell \rightarrow \infty$ "-type problems

" $\ell \rightarrow \infty$ "-type problems

Let ω be a bounded open set in \mathbb{R}^{p}. For every $\ell>0$ set $\Omega_{\ell}=(-\ell, \ell) \times \omega\left(x \in \Omega_{\ell} \Rightarrow x=\left(x_{1}, \xi\right)\right), x_{1} \in \mathbb{R}, \xi \in \mathbb{R}^{p}$.

" $\ell \rightarrow \infty$ "-type problems

Let ω be a bounded open set in \mathbb{R}^{p}. For every $\ell>0$ set $\Omega_{\ell}=(-\ell, \ell) \times \omega\left(x \in \Omega_{\ell} \Rightarrow x=\left(x_{1}, \xi\right)\right), x_{1} \in \mathbb{R}, \xi \in \mathbb{R}^{p}$.

" $\ell \rightarrow \infty$ "-type problems

Let ω be a bounded open set in \mathbb{R}^{p}. For every $\ell>0$ set $\Omega_{\ell}=(-\ell, \ell) \times \omega\left(x \in \Omega_{\ell} \Rightarrow x=\left(x_{1}, \xi\right)\right), x_{1} \in \mathbb{R}, \xi \in \mathbb{R}^{p}$.

"Typically": sol. on Ω_{ℓ} tends, as $\ell \rightarrow \infty$, to the solution on the section ω.

" $\ell \rightarrow \infty$ "-type problems

Let ω be a bounded open set in \mathbb{R}^{p}. For every $\ell>0$ set $\Omega_{\ell}=(-\ell, \ell) \times \omega\left(x \in \Omega_{\ell} \Rightarrow x=\left(x_{1}, \xi\right)\right), x_{1} \in \mathbb{R}, \xi \in \mathbb{R}^{p}$.

"Typically": sol. on Ω_{ℓ} tends, as $\ell \rightarrow \infty$, to the solution on the section ω.

Example: an eigenvalue problem with Dirichlet b.c.

Assume the $(p+1) \times(p+1)$ matrices,

$$
A(\xi)=\left(\begin{array}{cc}
a_{11}(\xi) & A_{12}(\xi) \\
A_{12}^{t}(\xi) & A_{22}(\xi)
\end{array}\right)
$$

are uniformly elliptic and uniformly bounded on ω.

Assume the $(p+1) \times(p+1)$ matrices,

$$
A(\xi)=\left(\begin{array}{cc}
a_{11}(\xi) & A_{12}(\xi) \\
A_{12}^{t}(\xi) & A_{22}(\xi)
\end{array}\right)
$$

are uniformly elliptic and uniformly bounded on ω.
Example: $A=\left(\begin{array}{ll}1 & \delta \\ \delta & 1\end{array}\right)$

Assume the $(p+1) \times(p+1)$ matrices,

$$
A(\xi)=\left(\begin{array}{cc}
a_{11}(\xi) & A_{12}(\xi) \\
A_{12}^{t}(\xi) & A_{22}(\xi)
\end{array}\right)
$$

are uniformly elliptic and uniformly bounded on ω.
Example: $A=\left(\begin{array}{ll}1 & \delta \\ \delta & 1\end{array}\right)$
Let μ^{k} and σ_{ℓ}^{k} denote, respectively, the k 'st eigenvalues for the Dirichlet problems

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(A_{22}(\xi) \nabla v\right)=\mu v \quad \text { in } \omega \\
\quad v=0 \quad \text { on } \partial \omega
\end{array}\right.
$$

and

$$
\left\{\begin{array}{c}
-\operatorname{div}(A(\xi) \nabla u)=\sigma u \quad \text { in } \Omega_{\ell} \\
u=0 \quad \text { on } \partial \Omega_{\ell}
\end{array}\right.
$$

Assume the $(p+1) \times(p+1)$ matrices,

$$
A(\xi)=\left(\begin{array}{cc}
a_{11}(\xi) & A_{12}(\xi) \\
A_{12}^{t}(\xi) & A_{22}(\xi)
\end{array}\right)
$$

are uniformly elliptic and uniformly bounded on ω.
Example: $A=\left(\begin{array}{ll}1 & \delta \\ \delta & 1\end{array}\right)$
Let μ^{k} and σ_{ℓ}^{k} denote, respectively, the k 'st eigenvalues for the Dirichlet problems

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(A_{22}(\xi) \nabla v\right)=\mu v \quad \text { in } \omega \\
\quad v=0 \quad \text { on } \partial \omega
\end{array}\right.
$$

and

$$
\left\{\begin{array}{c}
-\operatorname{div}(A(\xi) \nabla u)=\sigma u \quad \text { in } \Omega_{\ell}, \\
u=0 \quad \text { on } \partial \Omega_{\ell} .
\end{array}\right.
$$

Theorem [Chipot-Rougirel 08]. $\mu^{1} \leq \sigma_{\ell}^{k} \leq \mu^{1}+\frac{C_{k}}{\ell^{2}}$.

The eigenvalue problem with mixed b.c. (Chipot-Roy-Sh 2013)

The eigenvalue problem with mixed b.c. (Chipot-Roy-Sh 2013)

Write $\partial \Omega_{\ell}=\Gamma_{\ell} \cup \gamma_{\ell}, \Gamma_{\ell}=\{-\ell, \ell\} \times \omega, \gamma_{\ell}=(-\ell, \ell) \times \partial \omega$.

The eigenvalue problem with mixed b.c. (Chipot-Roy-Sh 2013)

Write $\partial \Omega_{\ell}=\Gamma_{\ell} \cup \gamma_{\ell}, \Gamma_{\ell}=\{-\ell, \ell\} \times \omega, \gamma_{\ell}=(-\ell, \ell) \times \partial \omega$.
Let λ_{ℓ}^{k} be the k th eigenvalue for the mixed problem

$$
\left\{\begin{array}{l}
-\operatorname{div}(A(\xi) \nabla u)=\sigma u \quad \text { in } \Omega_{\ell}, \\
u=0 \quad \text { on } \gamma_{\ell}, \\
(A(\xi) \nabla u) \cdot \nu=0 \quad \text { on } \Gamma_{\ell} .
\end{array}\right.
$$

The eigenvalue problem with mixed b.c. (Chipot-Roy-Sh 2013)

Write $\partial \Omega_{\ell}=\Gamma_{\ell} \cup \gamma_{\ell}, \Gamma_{\ell}=\{-\ell, \ell\} \times \omega, \gamma_{\ell}=(-\ell, \ell) \times \partial \omega$.
Let λ_{ℓ}^{k} be the k th eigenvalue for the mixed problem

$$
\left\{\begin{array}{l}
-\operatorname{div}(A(\xi) \nabla u)=\sigma u \quad \text { in } \Omega_{\ell}, \\
u=0 \quad \text { on } \gamma_{\ell}, \\
(A(\xi) \nabla u) \cdot \nu=0 \quad \text { on } \Gamma_{\ell} .
\end{array}\right.
$$

Problem: Find $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{1}$ and $\lim _{\ell \rightarrow \infty} u_{\ell}$, with u_{ℓ} realizing $\lambda_{\ell}^{1}=\min \left\{\int_{\Omega_{\ell}}(A \nabla u) \cdot \nabla u: \int_{\Omega_{\ell}} u^{2}=1, u=0\right.$ on $\left.\gamma_{\ell}\right\}$.

The eigenvalue problem with mixed b.c. (Chipot-Roy-Sh 2013)

Write $\partial \Omega_{\ell}=\Gamma_{\ell} \cup \gamma_{\ell}, \Gamma_{\ell}=\{-\ell, \ell\} \times \omega, \gamma_{\ell}=(-\ell, \ell) \times \partial \omega$.
Let λ_{ℓ}^{k} be the k th eigenvalue for the mixed problem

$$
\left\{\begin{array}{l}
-\operatorname{div}(A(\xi) \nabla u)=\sigma u \quad \text { in } \Omega_{\ell}, \\
u=0 \quad \text { on } \gamma_{\ell}, \\
(A(\xi) \nabla u) \cdot \nu=0 \quad \text { on } \Gamma_{\ell} .
\end{array}\right.
$$

Problem: Find $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{1}$ and $\lim _{\ell \rightarrow \infty} u_{\ell}$, with u_{ℓ} realizing $\lambda_{\ell}^{1}=\min \left\{\int_{\Omega_{\ell}}(A \nabla u) . \nabla u: \int_{\Omega_{\ell}} u^{2}=1, u=0\right.$ on $\left.\gamma_{\ell}\right\}$.
In particular, can we have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{1}<\mu^{1}$?

Dimension reduction: ℓ goes to 0

Dimension reduction: ℓ goes to 0

Theorem.

$$
\lim _{\ell \rightarrow 0} \lambda_{\ell}^{1}=\Lambda^{1}=\inf _{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2}=1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v-\frac{\left|A_{12}(\xi) \cdot \nabla v\right|^{2}}{a_{11}(\xi)} .
$$

Dimension reduction: ℓ goes to 0

Theorem.

$$
\lim _{\ell \rightarrow 0} \lambda_{\ell}^{1}=\Lambda^{1}=\inf _{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2}=1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v-\frac{\left|A_{12}(\xi) \cdot \nabla v\right|^{2}}{a_{11}(\xi)} .
$$

Idea of proof(Linear Algebra).

Dimension reduction: ℓ goes to 0

Theorem.

$$
\lim _{\ell \rightarrow 0} \lambda_{\ell}^{1}=\Lambda^{1}=\inf _{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2}=1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v-\frac{\left|A_{12}(\xi) \cdot \nabla v\right|^{2}}{a_{11}(\xi)} .
$$

Idea of proof(Linear Algebra).

- Claim: Let $B=\left(\begin{array}{ll}b_{11} & B_{12} \\ B_{12}^{t} & B_{22}\end{array}\right)$ be a pos. def. $n \times n$ matrix.

Dimension reduction: ℓ goes to 0

Theorem.

$$
\lim _{\ell \rightarrow 0} \lambda_{\ell}^{1}=\Lambda^{1}=\inf _{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2}=1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v-\frac{\left|A_{12}(\xi) \cdot \nabla v\right|^{2}}{a_{11}(\xi)} .
$$

Idea of proof(Linear Algebra).

- Claim: Let $B=\left(\begin{array}{ll}b_{11} & B_{12} \\ B_{12}^{t} & B_{22}\end{array}\right)$ be a pos. def. $n \times n$ matrix.

Write $\mathbf{z} \in \mathbb{R}^{n}$ as $\mathbf{z}=\left(z_{1}, Z_{2}\right)$ with $Z_{2} \in \mathbb{R}^{n-1}$. Then, for any fixed $Z_{2} \in \mathbb{R}^{n-1}$ we have

$$
\min _{z_{1} \in \mathbb{R}}(B \mathbf{z}) \cdot \mathbf{z}=\left(B_{22} Z_{2}\right) \cdot Z_{2}-\frac{\left|B_{12} \cdot Z_{2}\right|^{2}}{b_{11}}
$$

Dimension reduction: ℓ goes to 0

Theorem.

$$
\lim _{\ell \rightarrow 0} \lambda_{\ell}^{1}=\Lambda^{1}=\inf _{v \in H_{0}^{1}(\omega), \int_{\omega} v^{2}=1} \int_{\omega} A_{22}(\xi) \nabla v \cdot \nabla v-\frac{\left|A_{12}(\xi) \cdot \nabla v\right|^{2}}{a_{11}(\xi)} .
$$

Idea of proof(Linear Algebra).

- Claim: Let $B=\left(\begin{array}{ll}b_{11} & B_{12} \\ B_{12}^{t} & B_{22}\end{array}\right)$ be a pos. def. $n \times n$ matrix.

Write $\mathbf{z} \in \mathbb{R}^{n}$ as $\mathbf{z}=\left(z_{1}, Z_{2}\right)$ with $Z_{2} \in \mathbb{R}^{n-1}$. Then, for any fixed $Z_{2} \in \mathbb{R}^{n-1}$ we have

$$
\min _{z_{1} \in \mathbb{R}}(B \mathbf{z}) \cdot \mathbf{z}=\left(B_{22} Z_{2}\right) \cdot Z_{2}-\frac{\left|B_{12} \cdot Z_{2}\right|^{2}}{b_{11}}
$$

- "Optimizing over $u_{x_{1}}$ " allows us to construct a good test function for λ_{ℓ}^{1} (when $\ell \sim 0$).

The gap between λ_{ℓ}^{1} and μ^{1}

The gap between λ_{ℓ}^{1} and μ^{1}
Let W_{1} denote the positive normalized eigenfunction of $-\operatorname{div}\left(A_{22} \nabla u\right)$ associated with μ^{1}.

The gap between λ_{ℓ}^{1} and μ^{1}

Let W_{1} denote the positive normalized eigenfunction of $-\operatorname{div}\left(A_{22} \nabla u\right)$ associated with μ^{1}.
Theorem. If

$$
\begin{equation*}
A_{12} . \nabla W_{1} \not \equiv 0 \text { a.e. on } \omega \tag{NZ}
\end{equation*}
$$

then $\lim \sup _{\ell \rightarrow \infty} \lambda_{\ell}^{1}<\mu^{1}$.

The gap between λ_{ℓ}^{1} and μ^{1}

Let W_{1} denote the positive normalized eigenfunction of $-\operatorname{div}\left(A_{22} \nabla u\right)$ associated with μ^{1}.
Theorem. If

$$
\begin{equation*}
A_{12} \cdot \nabla W_{1} \not \equiv 0 \text { a.e. on } \omega \tag{NZ}
\end{equation*}
$$

then $\lim \sup _{\ell \rightarrow \infty} \lambda_{\ell}^{1}<\mu^{1}$. Otherwise, $\lambda_{\ell}^{1}=\mu^{1}$ for all $\ell>0$.

The gap between λ_{ℓ}^{1} and μ^{1}
Let W_{1} denote the positive normalized eigenfunction of $-\operatorname{div}\left(A_{22} \nabla u\right)$ associated with μ^{1}.
Theorem. If

$$
\begin{equation*}
A_{12} \cdot \nabla W_{1} \not \equiv 0 \text { a.e. on } \omega \tag{NZ}
\end{equation*}
$$

then $\lim \sup _{\ell \rightarrow \infty} \lambda_{\ell}^{1}<\mu^{1}$. Otherwise, $\lambda_{\ell}^{1}=\mu^{1}$ for all $\ell>0$.

Relation with problems on semi-infinite cylinders

Set $\Omega_{\infty}^{+}=(0, \infty) \times \omega$ and $\Omega_{\infty}^{-}=(-\infty, 0) \times \omega$.

Relation with problems on semi-infinite cylinders

Set $\Omega_{\infty}^{+}=(0, \infty) \times \omega$ and $\Omega_{\infty}^{-}=(-\infty, 0) \times \omega$.
Let $V\left(\Omega_{\infty}^{ \pm}\right):=\left\{u \in H^{1}\left(\Omega_{\infty}^{ \pm}\right): u=0\right.$ on $\left.\gamma_{\infty}^{ \pm}\right\}$and set

$$
\nu_{\infty}^{ \pm}=\inf _{0 \neq u \in V\left(\Omega_{\infty}^{ \pm}\right)} \frac{\int_{\Omega_{\infty}^{ \pm}} A \nabla u \cdot \nabla u}{\int_{\Omega_{\infty}^{ \pm}} u^{2}} .
$$

Relation with problems on semi-infinite cylinders

Set $\Omega_{\infty}^{+}=(0, \infty) \times \omega$ and $\Omega_{\infty}^{-}=(-\infty, 0) \times \omega$. Let $V\left(\Omega_{\infty}^{ \pm}\right):=\left\{u \in H^{1}\left(\Omega_{\infty}^{ \pm}\right): u=0\right.$ on $\left.\gamma_{\infty}^{ \pm}\right\}$and set

$$
\nu_{\infty}^{ \pm}=\inf _{0 \neq u \in V\left(\Omega_{\infty}^{ \pm}\right)} \frac{\int_{\Omega_{\infty}^{ \pm}} A \nabla u \cdot \nabla u}{\int_{\Omega_{\infty}^{ \pm}} u^{2}} .
$$

Relation with problems on semi-infinite cylinders

Set $\Omega_{\infty}^{+}=(0, \infty) \times \omega$ and $\Omega_{\infty}^{-}=(-\infty, 0) \times \omega$. Let $V\left(\Omega_{\infty}^{ \pm}\right):=\left\{u \in H^{1}\left(\Omega_{\infty}^{ \pm}\right): u=0\right.$ on $\left.\gamma_{\infty}^{ \pm}\right\}$and set

$$
\nu_{\infty}^{ \pm}=\inf _{0 \neq u \in V\left(\Omega_{\infty}^{ \pm}\right)} \frac{\int_{\Omega_{\infty}^{ \pm}} A \nabla u \cdot \nabla u}{\int_{\Omega_{\infty}^{ \pm}} u^{2}} .
$$

Theorem. $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{1}=\min \left(\nu_{\infty}^{+}, \nu_{\infty}^{-}\right)$.

Domains tending to infinity in several dimensions (Roy-Sh)

Domains tending to infinity in several dimensions (Roy-Sh)

For $p \geq 1$ and $m \geq 2$, let $V \subset \mathbb{R}^{m}, \omega \subset \mathbb{R}^{p}$.

Domains tending to infinity in several dimensions (Roy-Sh)

For $p \geq 1$ and $m \geq 2$, let $V \subset \mathbb{R}^{m}, \omega \subset \mathbb{R}^{p}$.
For $\ell>0$ consider $\Omega_{\ell}=(\ell V) \times \omega \subset \mathbb{R}^{m+p}$.

Domains tending to infinity in several dimensions (Roy-Sh)

For $p \geq 1$ and $m \geq 2$, let $V \subset \mathbb{R}^{m}, \omega \subset \mathbb{R}^{p}$.
For $\ell>0$ consider $\Omega_{\ell}=(\ell V) \times \omega \subset \mathbb{R}^{m+p}$.
Assume the $(m+p) \times(m+p)$ matrices,

$$
A(\xi)=\left(\begin{array}{cc}
a_{11}(\xi) & A_{12}(\xi) \\
A_{12}^{t}(\xi) & A_{22}(\xi)
\end{array}\right)(\xi \in \omega)
$$

are uniformly elliptic and uniformly bounded on ω.

Domains tending to infinity in several dimensions (Roy-Sh)

For $p \geq 1$ and $m \geq 2$, let $V \subset \mathbb{R}^{m}, \omega \subset \mathbb{R}^{p}$.
For $\ell>0$ consider $\Omega_{\ell}=(\ell V) \times \omega \subset \mathbb{R}^{m+p}$.
Assume the $(m+p) \times(m+p)$ matrices,

$$
A(\xi)=\left(\begin{array}{cc}
a_{11}(\xi) & A_{12}(\xi) \\
A_{12}^{t}(\xi) & A_{22}(\xi)
\end{array}\right)(\xi \in \omega)
$$

are uniformly elliptic and uniformly bounded on ω.
The previous case corresponds to $V=(-1,1)$.

Domains tending to infinity in several dimensions (Roy-Sh)

For $p \geq 1$ and $m \geq 2$, let $V \subset \mathbb{R}^{m}, \omega \subset \mathbb{R}^{p}$.
For $\ell>0$ consider $\Omega_{\ell}=(\ell V) \times \omega \subset \mathbb{R}^{m+p}$.
Assume the $(m+p) \times(m+p)$ matrices,

$$
A(\xi)=\left(\begin{array}{cc}
a_{11}(\xi) & A_{12}(\xi) \\
A_{12}^{t}(\xi) & A_{22}(\xi)
\end{array}\right)(\xi \in \omega)
$$

are uniformly elliptic and uniformly bounded on ω.
The previous case corresponds to $V=(-1,1)$.

As before denote by μ^{k} and λ_{ℓ}^{k}, respectively, the k th eigenvalues for the Dirichlet problem on the section ω.

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(A_{22}(\xi) \nabla v\right)=\mu v \quad \text { in } \omega \\
v=0 \text { on } \partial \omega
\end{array}\right.
$$

As before denote by μ^{k} and λ_{ℓ}^{k}, respectively, the k th eigenvalues for the Dirichlet problem on the section ω.

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(A_{22}(\xi) \nabla v\right)=\mu v \quad \text { in } \omega \\
\quad v=0 \text { on } \partial \omega
\end{array}\right.
$$

and the mixed problem on Ω_{ℓ}

$$
\left\{\begin{array}{l}
-\operatorname{div}(A(\xi) \nabla u)=\sigma u \quad \text { in } \Omega_{\ell}, \\
u=0 \quad \text { on }(\ell V) \times \partial \omega \\
(A(\xi) \nabla u) \cdot \nu=0 \quad \text { on } \partial(\ell V) \times \omega
\end{array}\right.
$$

The main result

The main result

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-}=(-\infty, 0) \times \partial \omega$.

The main result

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-}=(-\infty, 0) \times \partial \omega$.For each $\nu \in S^{m-1}$ let $A_{\nu}=A_{\nu}(\xi)$ denote the $(p+1) \times(p+1)$ matrix

$$
A_{\nu}=\left(\begin{array}{cc}
\left(A_{11} \nu\right) \cdot \nu & \nu^{T} A_{12} \\
\left(\nu^{T} A_{12}\right)^{T} & A_{22}
\end{array}\right)
$$

The main result

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-}=(-\infty, 0) \times \partial \omega$.For each $\nu \in S^{m-1}$ let $A_{\nu}=A_{\nu}(\xi)$ denote the $(p+1) \times(p+1)$ matrix

$$
A_{\nu}=\left(\begin{array}{cc}
\left(A_{11} \nu\right) \cdot \nu & \nu^{T} A_{12} \\
\left(\nu^{T} A_{12}\right)^{T} & A_{22}
\end{array}\right)
$$

Set

$$
Z^{\nu}=\inf _{\left\{0 \neq u \in H^{1}\left(\Omega_{\infty}^{-}\right) \mid u=0 \text { on } \gamma_{\infty}^{-}\right\}} \frac{\int_{\Omega_{\infty}^{-}}\left(A_{\nu} \nabla u\right) \cdot \nabla u}{\int_{\Omega_{\infty}^{-}} u^{2}} .
$$

The main result

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-}=(-\infty, 0) \times \partial \omega$.For each $\nu \in S^{m-1}$ let $A_{\nu}=A_{\nu}(\xi)$ denote the $(p+1) \times(p+1)$ matrix

$$
A_{\nu}=\left(\begin{array}{cc}
\left(A_{11} \nu\right) \cdot \nu & \nu^{T} A_{12} \\
\left(\nu^{T} A_{12}\right)^{T} & A_{22}
\end{array}\right)
$$

Set

$$
Z^{\nu}=\inf _{\left\{0 \neq u \in H^{1}\left(\Omega_{\infty}^{-}\right) \mid u=0 \text { on } \gamma_{\infty}^{-}\right\}} \frac{\int_{\Omega_{\infty}^{-}}\left(A_{\nu} \nabla u\right) \cdot \nabla u}{\int_{\Omega_{\infty}^{-}} u^{2}} .
$$

Theorem. We have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}=\inf _{\nu \in S^{m-1}} Z^{\nu}$. If

$$
\begin{equation*}
A_{12} . \nabla W_{1} \not \equiv 0 \text { a.e. on } \omega \tag{NZ}
\end{equation*}
$$

then $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{1}<\mu^{1}$.

The main result

Recall the semi-infinite cylinder $\Omega_{\infty}^{-} \subset \mathbb{R}^{p+1}$, and $\gamma_{\infty}^{-}=(-\infty, 0) \times \partial \omega$.For each $\nu \in S^{m-1}$ let $A_{\nu}=A_{\nu}(\xi)$ denote the $(p+1) \times(p+1)$ matrix

$$
A_{\nu}=\left(\begin{array}{cc}
\left(A_{11} \nu\right) \cdot \nu & \nu^{T} A_{12} \\
\left(\nu^{T} A_{12}\right)^{T} & A_{22}
\end{array}\right)
$$

Set

$$
Z^{\nu}=\inf _{\left\{0 \neq u \in H^{1}\left(\Omega_{\infty}^{-}\right) \mid u=0 \text { on } \gamma_{\infty}^{-}\right\}} \frac{\int_{\Omega_{\infty}^{-}}\left(A_{\nu} \nabla u\right) \cdot \nabla u}{\int_{\Omega_{\infty}^{-}} u^{2}} .
$$

Theorem. We have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}=\inf _{\nu \in S^{m-1}} Z^{\nu}$. If

$$
\begin{equation*}
A_{12} . \nabla W_{1} \not \equiv 0 \text { a.e. on } \omega \tag{NZ}
\end{equation*}
$$

then $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{1}<\mu^{1}$. Otherwise, $\lambda_{\ell}^{1}=\mu^{1}$ for all $\ell>0$.

Idea of the proof

Idea of the proof

Idea of the proof

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K=\ell^{\beta}$ near the boundary point with normal ν.

Idea of the proof

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K=\ell^{\beta}$ near the boundary point with normal ν. Let $v_{\ell}=\tilde{u}_{K}\left(x_{1}, \xi\right) \Phi\left(x_{2}, \ldots, x_{m}\right)$ with \tilde{u}_{K} an approximated minimizer for the problem on a semi-infinite cylinder for the problem with A_{ν}.

Idea of the proof

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K=\ell^{\beta}$ near the boundary point with normal ν. Let $v_{\ell}=\tilde{u}_{K}\left(x_{1}, \xi\right) \Phi\left(x_{2}, \ldots, x_{m}\right)$ with \tilde{u}_{K} an approximated minimizer for the problem on a semi-infinite cylinder for the problem with A_{ν}.
Lower bound: Decay of u_{ℓ} in the bulk always holds when $\limsup \lambda_{\ell}<\mu^{1}$.

Idea of the proof

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K=\ell^{\beta}$ near the boundary point with normal ν. Let $v_{\ell}=\tilde{u}_{K}\left(x_{1}, \xi\right) \Phi\left(x_{2}, \ldots, x_{m}\right)$ with \tilde{u}_{K} an approximated minimizer for the problem on a semi-infinite cylinder for the problem with A_{ν}.
Lower bound: Decay of u_{ℓ} in the bulk always holds when $\lim \sup \lambda_{\ell}<\mu^{1}$. Arguing by contradiction leads to decay also near the boundary.

Idea of the proof

Upper bound: Take a test function v_{ℓ} supported in a "box" of size $K=\ell^{\beta}$ near the boundary point with normal ν. Let $v_{\ell}=\tilde{u}_{K}\left(x_{1}, \xi\right) \Phi\left(x_{2}, \ldots, x_{m}\right)$ with \tilde{u}_{K} an approximated minimizer for the problem on a semi-infinite cylinder for the problem with A_{ν}.
Lower bound: Decay of u_{ℓ} in the bulk always holds when $\lim \sup \lambda_{\ell}<\mu^{1}$. Arguing by contradiction leads to decay also near the boundary. But $\int_{\Omega_{\ell}} u_{\ell}^{2}=1$. Impossible!

Asymptotics of the higher eigenvalues

Asymptotics of the higher eigenvalues

Theorem. For all $k \geq 1$ we have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{k}=\inf _{\nu \in S^{m-1}} Z^{\nu}$.

Asymptotics of the higher eigenvalues

Theorem. For all $k \geq 1$ we have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{k}=\inf _{\nu \in S^{m-1}} Z^{\nu}$.
Idea of the proof: Only the proof of the upper bound is required.

Asymptotics of the higher eigenvalues

Theorem. For all $k \geq 1$ we have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{k}=\inf _{\nu \in S^{m-1}} Z^{\nu}$.
Idea of the proof: Only the proof of the upper bound is required.

- Fix a vector $\nu \in S^{m-1}$.

Asymptotics of the higher eigenvalues

Theorem. For all $k \geq 1$ we have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{k}=\inf _{\nu \in S^{m-1}} Z^{\nu}$.
Idea of the proof: Only the proof of the upper bound is required.

- Fix a vector $\nu \in S^{m-1}$.
- We look for a test function w orthogonal to $u_{\ell}^{1}, \ldots, u_{\ell}^{k-1}$ with Rayleigh quotient less then $Z^{\nu}+\varepsilon$.

Asymptotics of the higher eigenvalues

Theorem. For all $k \geq 1$ we have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{k}=\inf _{\nu \in S^{m-1}} Z^{\nu}$.
Idea of the proof: Only the proof of the upper bound is required.

- Fix a vector $\nu \in S^{m-1}$.
- We look for a test function w orthogonal to $u_{\ell}^{1}, \ldots, u_{\ell}^{k-1}$ with Rayleigh quotient less then $Z^{\nu}+\varepsilon$.
- Take $\left\{v_{\ell}^{j}\right\}_{j=1}^{k}$ as above, supported in k disjoint "boxes", corresponding to normal vectors $\left\{\nu^{j}\right\}_{j=1}^{k}$, all close to ν.

Asymptotics of the higher eigenvalues

Theorem. For all $k \geq 1$ we have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{k}=\inf _{\nu \in S^{m-1}} Z^{\nu}$.
Idea of the proof: Only the proof of the upper bound is required.

- Fix a vector $\nu \in S^{m-1}$.
- We look for a test function w orthogonal to $u_{\ell}^{1}, \ldots, u_{\ell}^{k-1}$ with Rayleigh quotient less then $Z^{\nu}+\varepsilon$.
- Take $\left\{v_{\ell}^{j}\right\}_{j=1}^{k}$ as above, supported in k disjoint "boxes", corresponding to normal vectors $\left\{\nu^{j}\right\}_{j=1}^{k}$, all close to ν.
- Use $w=\sum_{j=1}^{k} \alpha_{j} v_{\ell}^{j}$ with $\left\{\alpha_{j}\right\}_{j=1}^{k}$ chosen so that $w \perp u_{\ell}^{j}$, $j=1, \ldots, k-1$ (and $\sum_{j=1}^{k} \alpha_{j}^{2}=1$).

Asymptotics of the higher eigenvalues

Theorem. For all $k \geq 1$ we have $\lim _{\ell \rightarrow \infty} \lambda_{\ell}^{k}=\inf _{\nu \in S^{m-1}} Z^{\nu}$.
Idea of the proof: Only the proof of the upper bound is required.

- Fix a vector $\nu \in S^{m-1}$.
- We look for a test function w orthogonal to $u_{\ell}^{1}, \ldots, u_{\ell}^{k-1}$ with Rayleigh quotient less then $Z^{\nu}+\varepsilon$.
- Take $\left\{v_{\ell}^{j}\right\}_{j=1}^{k}$ as above, supported in k disjoint "boxes", corresponding to normal vectors $\left\{\nu^{j}\right\}_{j=1}^{k}$, all close to ν.
- Use $w=\sum_{j=1}^{k} \alpha_{j} v_{\ell}^{j}$ with $\left\{\alpha_{j}\right\}_{j=1}^{k}$ chosen so that $w \perp u_{\ell}^{j}$, $j=1, \ldots, k-1$ (and $\sum_{j=1}^{k} \alpha_{j}^{2}=1$).
- This is possible since we have $k-1$ linear equations in k unknowns.

Thank you for your attention!

