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“`→∞”-type problems

Let ω be a bounded open set in Rp. For every ` > 0 set
Ω` = (−`, `)× ω (x ∈ Ω` ⇒ x = (x1, ξ)), x1 ∈ R, ξ ∈ Rp.

x1

ω

“Typically”: sol. on Ω` tends, as `→∞, to the solution on the
section ω.
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Example: an eigenvalue problem with Dirichlet b.c.

Assume the (p + 1)× (p + 1) matrices,

A(ξ) =

(
a11(ξ) A12(ξ)
At

12(ξ) A22(ξ)

)
are uniformly elliptic and uniformly bounded on ω.

Example: A =

(
1 δ
δ 1

)
Let µk and σk` denote, respectively, the k ’st eigenvalues for the
Dirichlet problems{

− div(A22(ξ)∇v) = µv in ω,

v = 0 on ∂ω,

and {
− div(A(ξ)∇u) = σu in Ω`,

u = 0 on ∂Ω`.

Theorem [Chipot-Rougirel 08]. µ1 ≤ σk` ≤ µ1 + Ck
`2 .
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The eigenvalue problem with mixed b.c. (Chipot-Roy-Sh
2013)

Write ∂Ω` = Γ` ∪ γ`, Γ` = {−`, `} × ω, γ` = (−`, `)× ∂ω.
Let λk` be the kth eigenvalue for the mixed problem

− div(A(ξ)∇u) = σu in Ω`,

u = 0 on γ`,

(A(ξ)∇u).ν = 0 on Γ`.

x1

NeumannNeumann

x2

Problem: Find lim`→∞ λ
1
` and lim`→∞ u`, with u` realizing

λ1
` = min{

∫
Ω`

(A∇u).∇u :
∫

Ω`
u2 = 1, u = 0 on γ`}.

In particular, can we have lim`→∞ λ
1
` < µ1?
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Dimension reduction: ` goes to 0

Theorem.

lim
`→0

λ1
` = Λ1 = inf

v∈H1
0 (ω),

∫
ω v2=1

∫
ω
A22(ξ)∇v .∇v − |A12(ξ).∇v |2

a11(ξ)
.

Idea of proof(Linear Algebra).

• Claim: Let B =

(
b11 B12

Bt
12 B22

)
be a pos. def. n × n matrix.

Write z ∈ Rn as z = (z1,Z2) with Z2 ∈ Rn−1. Then, for any fixed
Z2 ∈ Rn−1 we have

min
z1∈R

(Bz).z = (B22Z2).Z2 −
|B12.Z2|2

b11
.

• “Optimizing over ux1” allows us to construct a good test
function for λ1

` (when ` ∼ 0).
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The gap between λ1
` and µ1

Let W1 denote the positive normalized eigenfunction of
− div(A22∇u) associated with µ1.
Theorem. If

A12.∇W1 6≡ 0 a.e. on ω (NZ)

then lim sup`→∞ λ
1
` < µ1. Otherwise, λ1

` = µ1 for all ` > 0.

0
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Relation with problems on semi-infinite cylinders

Set Ω+
∞ = (0,∞)× ω and Ω−∞ = (−∞, 0)× ω.

Let V (Ω±∞) := {u ∈ H1(Ω±∞) : u = 0 on γ±∞} and set

ν±∞ = inf
06=u∈V (Ω±∞)

∫
Ω±∞

A∇u.∇u∫
Ω±∞

u2
.

ΩΩ 8

8

−

0 0

γ γ

8 8

+

+ −

γ +

8

γ

8

−

NeumannNeumann

NeumannNeumann

Theorem. lim`→∞ λ
1
` = min(ν+

∞, ν
−
∞).
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Domains tending to infinity in several dimensions (Roy-Sh)

For p ≥ 1 and m ≥ 2, let V ⊂ Rm, ω ⊂ Rp.
For ` > 0 consider Ω` = (`V )× ω ⊂ Rm+p.
Assume the (m + p)× (m + p) matrices,

A(ξ) =

(
a11(ξ) A12(ξ)
At

12(ξ) A22(ξ)

)
(ξ ∈ ω)

are uniformly elliptic and uniformly bounded on ω.
The previous case corresponds to V = (−1, 1).
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As before denote by µk and λk` , respectively, the kth eigenvalues
for the Dirichlet problem on the section ω.{

− div(A22(ξ)∇v) = µv in ω,

v = 0 on ∂ω,

and the mixed problem on Ω`
− div(A(ξ)∇u) = σu in Ω`,

u = 0 on (`V )× ∂ω,
(A(ξ)∇u).ν = 0 on ∂(`V )× ω.
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The main result

Recall the semi-infinite cylinder Ω−∞ ⊂ Rp+1, and
γ−∞ = (−∞, 0)× ∂ω.For each ν ∈ Sm−1 let Aν = Aν(ξ) denote
the (p + 1)× (p + 1) matrix

Aν =

(
(A11ν) · ν νTA12

(νTA12)T A22

)
Set

Z ν = inf
{06=u∈H1(Ω−∞) | u=0 on γ−∞}

∫
Ω−∞

(Aν∇u) · ∇u∫
Ω−∞

u2
.

Theorem. We have lim
`→∞

λ` = inf
ν∈Sm−1

Z ν . If

A12.∇W1 6≡ 0 a.e. on ω (NZ)

then lim`→∞ λ
1
` < µ1. Otherwise, λ1

` = µ1 for all ` > 0.
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Idea of the proof
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Upper bound: Take a test function v` supported in a “box” of
size K = `β near the boundary point with normal ν.
Let v` = ũK (x1, ξ)Φ(x2, . . . , xm) with ũK an approximated
minimizer for the problem on a semi-infinite cylinder for the
problem with Aν .
Lower bound: Decay of u` in the bulk always holds when
lim supλ` < µ1. Arguing by contradiction leads to decay also near
the boundary.But

∫
Ω`

u2
` = 1. Impossible!
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Let v` = ũK (x1, ξ)Φ(x2, . . . , xm) with ũK an approximated
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Asymptotics of the higher eigenvalues

Theorem. For all k ≥ 1 we have lim
`→∞

λk` = inf
ν∈Sm−1

Z ν .

Idea of the proof: Only the proof of the upper bound is required.

• Fix a vector ν ∈ Sm−1.

• We look for a test function w orthogonal to u1
` , . . . , u

k−1
` with

Rayleigh quotient less then Z ν + ε.

• Take {v j`}
k
j=1 as above, supported in k disjoint “boxes”,

corresponding to normal vectors {ν j}kj=1, all close to ν.

• Use w =
∑k

j=1 αjv
j
` with {αj}kj=1 chosen so that w ⊥ uj`,

j = 1, . . . , k − 1 (and
∑k

j=1 α
2
j = 1).

• This is possible since we have k − 1 linear equations in k
unknowns.
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Thank you for your attention!
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