Mostly Maximum Principle

Overdetermined elliptic problems in the sphere

Pieralberto Sicbaldi
Joint work with D. Ruiz and J. Wu

Cortona

May/June 2022

Overdetermined elliptic problems

Overdetermined elliptic problems

The problem. To understand the geometry of domains Ω that support a solution of the over-determined system

$$
\left\{\begin{array}{rlrl}
\Delta u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & \text { on } \partial \Omega
\end{array}\right.
$$

where f is a locally Lipschitz function.

Overdetermined elliptic problems

The problem. To understand the geometry of domains Ω that support a solution of the over-determined system

$$
\left\{\begin{array}{rlrl}
\Delta u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & \text { on } \partial \Omega
\end{array}\right.
$$

where f is a locally Lipschitz function.
The most basic case is when Ω is a regular bounded domain of \mathbb{R}^{n}.

Serrin's theorem, 1971, ARMA.

If f is Lipschitz and Ω is a C^{2} bounded domain where there exists a solution u to the problem

$$
\left\{\begin{array}{rlrl}
\Delta u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & \text { on } \partial \Omega
\end{array}\right.
$$

then Ω is a ball.

Serrin's theorem, 1971, ARMA.

If f is Lipschitz and Ω is a C^{2} bounded domain where there exists a solution u to the problem

$$
\left\{\begin{array}{rlrl}
\Delta u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & \text { on } \partial \Omega
\end{array}\right.
$$

then Ω is a ball.

Moving plane method - Analogy with CMC surfaces

Moving plane method - Analogy with CMC surfaces

Moving plane method - Analogy with CMC surfaces

The proof of Serrin's moving plane method comes from the Alexandrof moving plane method, used to prove that the only compact embedded CMC surfaces are the spheres.

Natural generalization of the Serrin's theorem

Natural generalization of the Serrin's theorem

The most natural manifolds where we can try to generalize the Serrin theorem are the constant curvature manifolds.

Natural generalization of the Serrin's theorem

The most natural manifolds where we can try to generalize the Serrin theorem are the constant curvature manifolds.

This means the spheres (positive constant curvature) and the hyperbolic spaces (constant negative curvature).

Natural generalization of the Serrin's theorem

The most natural manifolds where we can try to generalize the Serrin theorem are the constant curvature manifolds.

This means the spheres (positive constant curvature) and the hyperbolic spaces (constant negative curvature).

Prototype manifolds: \mathbb{S}^{n} and \mathbb{H}^{n} (curvatures 1 and -1).

Natural generalization of the Serrin's theorem

The most natural manifolds where we can try to generalize the Serrin theorem are the constant curvature manifolds.

This means the spheres (positive constant curvature) and the hyperbolic spaces (constant negative curvature).

Prototype manifolds: \mathbb{S}^{n} and \mathbb{H}^{n} (curvatures 1 and -1).
The overdetermined problem now depends on the metric g :

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu_{g}} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Kumaresan and Prajapat's theorems, 1998, Duke (1)

Kumaresan and Prajapat's theorems, 1998, Duke (1)

Let Ω be a bounded domain of \mathbb{H}^{n} such that there exists a solution to

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu_{g}} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where f is a locally Lipschitz function.

Kumaresan and Prajapat's theorems, 1998, Duke (1)

Let Ω be a bounded domain of \mathbb{H}^{n} such that there exists a solution to

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu_{g}} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where f is a locally Lipschitz function.
Then Ω is a geodesic ball.

Kumaresan and Prajapat's theorems, 1998, Duke (1)

Let Ω be a bounded domain of \mathbb{H}^{n} such that there exists a solution to

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu_{g}} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where f is a locally Lipschitz function.
Then Ω is a geodesic ball.
Proof: They generalize the moving plane method by replacing the Euclidean planes by totally geodesic surfaces of \mathbb{H}^{n}.

Kumaresan and Prajapat's theorems, 1998, Duke (1)

Let Ω be a bounded domain of \mathbb{H}^{n} such that there exists a solution to

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu_{g}} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where f is a locally Lipschitz function.
Then Ω is a geodesic ball.
Proof: They generalize the moving plane method by replacing the Euclidean planes by totally geodesic surfaces of \mathbb{H}^{n}.

Kumaresan and Prajapat's theorems, 1998, Duke (2)

Kumaresan and Prajapat's theorems, 1998, Duke (2)

Let Ω be a bounded domain of \mathbb{S}^{n} such that there exists a solution to

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu_{g}} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where f is a locally Lipschitz function.

Kumaresan and Prajapat's theorems, 1998, Duke (2)

Let Ω be a bounded domain of \mathbb{S}^{n} such that there exists a solution to

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu_{g}} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where f is a locally Lipschitz function.
If Ω is contained in a hemi-sphere

Kumaresan and Prajapat's theorems, 1998, Duke (2)

Let Ω be a bounded domain of \mathbb{S}^{n} such that there exists a solution to

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu_{g}} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where f is a locally Lipschitz function.
If Ω is contained in a hemi-sphere then Ω is a geodesic ball.

Kumaresan and Prajapat's theorems, 1998, Duke (2)

Let Ω be a bounded domain of \mathbb{S}^{n} such that there exists a solution to

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu_{g}} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where f is a locally Lipschitz function.
If Ω is contained in a hemi-sphere then Ω is a geodesic ball.
Proof: again the "moving plane method", done by replacing the Euclidean planes by totally geodesic surfaces of \mathbb{S}^{n}.

The natural question on the sphere

The natural question on the sphere

(1) What happen for domains that are not contained in any hemi-sphere?

The natural question on the sphere

(1) What happen for domains that are not contained in any hemi-sphere?
(2) Can we obtain the Serrin's theorem in the sphere?

The natural question on the sphere

(1) What happen for domains that are not contained in any hemi-sphere?
(2) Can we obtain the Serrin's theorem in the sphere?

NO: in symmetric neighborhoods of any equator you can solve an overdetermined elliptic problem, obviously.

The natural question on the sphere

(1) What happen for domains that are not contained in any hemi-sphere?
(2) Can we obtain the Serrin's theorem in the sphere?

NO: in symmetric neighborhoods of any equator you can solve an overdetermined elliptic problem, obviously.
(3) Which is the natural topological class of domains where we could hope to obtain a Serrin's result?

The natural question on the sphere

(1) What happen for domains that are not contained in any hemi-sphere?
(2) Can we obtain the Serrin's theorem in the sphere?

NO: in symmetric neighborhoods of any equator you can solve an overdetermined elliptic problem, obviously.
(3) Which is the natural topological class of domains where we could hope to obtain a Serrin's result?

Simply connected domains.

The natural question on the sphere

(1) What happen for domains that are not contained in any hemi-sphere?
(2) Can we obtain the Serrin's theorem in the sphere?

NO: in symmetric neighborhoods of any equator you can solve an overdetermined elliptic problem, obviously.
(3) Which is the natural topological class of domains where we could hope to obtain a Serrin's result?

Simply connected domains.
(4) Is it possible to obtain a Serrin's result for simply connected domains of the sphere?

Espinar-Mazet, 2019, JDE - Analogy with CMC

Espinar-Mazet, 2019, JDE - Analogy with CMC

Let $\Omega \subset \mathbb{S}^{2}$ simply connected. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ verifying:

$$
f \in C^{1} \quad, \quad f(t)>0 \quad, \quad f(t) \geq t f^{\prime}(t)
$$

Espinar-Mazet, 2019, JDE - Analogy with CMC

Let $\Omega \subset \mathbb{S}^{2}$ simply connected. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ verifying:

$$
f \in C^{1} \quad, \quad f(t)>0 \quad, \quad f(t) \geq t f^{\prime}(t)
$$

Then, if

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Ω must be a geodesic ball.

Espinar-Mazet, 2019, JDE - Analogy with CMC

Let $\Omega \subset \mathbb{S}^{2}$ simply connected. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ verifying:

$$
f \in C^{1} \quad, \quad f(t)>0 \quad, \quad f(t) \geq t f^{\prime}(t)
$$

Then, if

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Ω must be a geodesic ball.
Proof: They generalize the method used by Hopf to prove that the only immersed genus 0 CMC surfaces in \mathbb{R}^{n} are the spheres.

Espinar-Mazet, 2019, JDE - Analogy with CMC

Let $\Omega \subset \mathbb{S}^{2}$ simply connected. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ verifying:

$$
f \in C^{1} \quad, \quad f(t)>0 \quad, \quad f(t) \geq t f^{\prime}(t)
$$

Then, if

$$
\left\{\begin{aligned}
\Delta_{g} u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Ω must be a geodesic ball.
Proof: They generalize the method used by Hopf to prove that the only immersed genus 0 CMC surfaces in \mathbb{R}^{n} are the spheres.

And for a general f ?

Let's divagate a little bit... The unbounded case

Let's divagate a little bit... The unbounded case

The problem to classify solutions in unbounded domains is presented in a paper by Berestycki, Caffarelli and Nirenberg (CPAM, 1997)

Let's divagate a little bit... The unbounded case

The problem to classify solutions in unbounded domains is presented in a paper by Berestycki, Caffarelli and Nirenberg (CPAM, 1997)

They study overdetermined elliptic problems in epigraphs Ω, for some special terms f, as the Allen-Cahn $f(t)=t-t^{3}$.

Let's divagate a little bit... The unbounded case

The problem to classify solutions in unbounded domains is presented in a paper by Berestycki, Caffarelli and Nirenberg (CPAM, 1997)

They study overdetermined elliptic problems in epigraphs Ω, for some special terms f, as the Allen-Cahn $f(t)=t-t^{3}$.

They obtain rigidity results (i.e. Ω must be a half-space) but under assumptions of the asymptotical flatness of the domain.

Let's divagate a little bit... The unbounded case

The problem to classify solutions in unbounded domains is presented in a paper by Berestycki, Caffarelli and Nirenberg (CPAM, 1997)

They study overdetermined elliptic problems in epigraphs Ω, for some special terms f, as the Allen-Cahn $f(t)=t-t^{3}$.

They obtain rigidity results (i.e. Ω must be a half-space) but under assumptions of the asymptotical flatness of the domain.

Question (1997). Under the assumption that $\mathbb{R}^{n} \backslash \bar{\Omega}$ is connected and u is bounded, is it true that Ω must be a ball, or a half space, or a cylinder $\mathbb{R}^{j} \times B$ (where B is a ball) or the complement of one of these three domains?

Analogy with CMC surfaces

Analogy with CMC surfaces

(1) Serrin's theorem - Alexandrof theorem.

Analogy with CMC surfaces

(1) Serrin's theorem - Alexandrof theorem.
(2) Espinar-Mazet's theorem - Hopf's theorem.

Analogy with CMC surfaces

(1) Serrin's theorem - Alexandrof theorem.
(2) Espinar-Mazet's theorem - Hopf's theorem.
(3) Solutions of

$$
\left\{\begin{aligned}
\Delta u+f(u) & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

in domains whose boundary looks like Delaunay surfaces

for $f(u)=\lambda u\left(\right.$ S. 2010), or $f(u)=u-u^{3}$ (Del Pino, Pacard, Wei, 2015).

Analogy with CMC surfaces

Analogy with CMC surfaces

(4) Solutions of

$$
\left\{\begin{aligned}
\Delta u+u-u^{3} & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

in domains whose boundary looks like the Bombieri-De Giorgi-Giusti graph.
Del Pino, Pacard, Wei (2015)

Analogy with CMC surfaces

(4) Solutions of

$$
\left\{\begin{aligned}
\Delta u+u-u^{3} & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

in domains whose boundary looks like the Bombieri-De Giorgi-Giusti graph.
Del Pino, Pacard, Wei (2015)
(5) If Ω is the complement of a bounded region and u is a bounded solutions of

$$
\left\{\begin{aligned}
\Delta u+u-u^{3} & =0 & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu} & =\text { constant } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

then Ω must be the exterior of a ball (Reichel, 1997)

But not always the analogy works...

But not always the analogy works...

Take a symmetry group G that leaves invariant the origin and, denoting by $\left\{\mu_{i_{k}}\right\}_{k \in \mathbb{N}}$ the eigenvalues of $\Delta_{\mathbb{S}^{n-1}}$ restricted to G-symmetric functions and m_{k} their multiplicity, require $i_{1} \geq 2$ and m_{1} odd (Example: $\left.G=O(m) \times O(n-m), m<n\right)$

But not always the analogy works...

Take a symmetry group G that leaves invariant the origin and, denoting by $\left\{\mu_{i_{k}}\right\}_{k \in \mathbb{N}}$ the eigenvalues of $\Delta_{\mathbb{S}^{n-1}}$ restricted to G-symmetric functions and m_{k} their multiplicity, require $i_{1} \geq 2$ and m_{1} odd (Example: $\left.G=O(m) \times O(n-m), m<n\right)$

Theorem (Ros-Ruiz-Sicbaldi - JEMS 2020)

But not always the analogy works...

Take a symmetry group G that leaves invariant the origin and, denoting by $\left\{\mu_{i_{k}}\right\}_{k \in \mathbb{N}}$ the eigenvalues of $\Delta_{\mathbb{S}^{n-1}}$ restricted to G-symmetric functions and m_{k} their multiplicity, require $i_{1} \geq 2$ and m_{1} odd (Example: $\left.G=O(m) \times O(n-m), m<n\right)$
Theorem (Ros-Ruiz-Sicbaldi - JEMS 2020)
Let $1<p<\frac{n+2}{n-2}(p>1$ if $n=2)$. There exist $R_{*}>0$ such that the complement of the ball of radius R_{*} can be perturbed in non trivial G-symmetric domains Ω such that the problem

$$
\begin{cases}-\Delta u+u-u^{p}=0 & \text { in } \mathbb{R}^{n} \backslash \Omega \\ u=0 & \text { on } \partial \Omega \\ \frac{\partial u}{\partial \nu}=\text { constant } & \text { on } \partial \Omega\end{cases}
$$

admits a positive solution in $C^{2, \alpha} \cap H^{1}$.

Key ingredient

(Esteban - Lions, 1982) For any $R>0$, there exists a radially symmetric C^{∞} solution of

$$
\left\{\begin{array}{rlll}
-\Delta u+u-u^{p} & =0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & >0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & =0 & \text { on } & \partial B_{R}
\end{array}\right.
$$

Key ingredient

(Esteban - Lions, 1982) For any $R>0$, there exists a radially symmetric C^{∞} solution of

$$
\left\{\begin{array}{rlll}
-\Delta u+u-u^{p} & =0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & >0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & =0 & \text { on } & \partial B_{R}
\end{array}\right.
$$

This solution increases in the radius up to a certain maximum, and then it decreases and converges to 0 at infinity.

Key ingredient

(Esteban - Lions, 1982) For any $R>0$, there exists a radially symmetric C^{∞} solution of

$$
\left\{\begin{array}{rlll}
-\Delta u+u-u^{p} & =0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & >0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & =0 & \text { on } & \partial B_{R}
\end{array}\right.
$$

This solution increases in the radius up to a certain maximum, and then it decreases and converges to 0 at infinity.

The moving plane method does not apply to such solution.

Key ingredient

(Esteban - Lions, 1982) For any $R>0$, there exists a radially symmetric C^{∞} solution of

$$
\left\{\begin{array}{rlll}
-\Delta u+u-u^{p} & =0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & >0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & =0 & \text { on } & \partial B_{R}
\end{array}\right.
$$

This solution increases in the radius up to a certain maximum, and then it decreases and converges to 0 at infinity.

The moving plane method does not apply to such solution.
In our proof we show that such solutions, at a certain $R=R_{*}$, bifurcate in a new branch of solutions.

Key ingredient

(Esteban - Lions, 1982) For any $R>0$, there exists a radially symmetric C^{∞} solution of

$$
\left\{\begin{array}{rlll}
-\Delta u+u-u^{p} & =0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & >0 & \text { in } & \mathbb{R}^{n} \backslash B_{R} \\
u & =0 & \text { on } & \partial B_{R}
\end{array}\right.
$$

This solution increases in the radius up to a certain maximum, and then it decreases and converges to 0 at infinity.

The moving plane method does not apply to such solution.
In our proof we show that such solutions, at a certain $R=R_{*}$, bifurcate in a new branch of solutions.

Coming back to the sphere...

Coming back to the sphere...

If $k>0$, let $\mathbb{S}^{n}(k)$ be the n-dimensional sphere of radius $\frac{1}{\sqrt{k}}$ naturally embedded in \mathbb{R}^{n+1}.

Coming back to the sphere...

If $k>0$, let $\mathbb{S}^{n}(k)$ be the n-dimensional sphere of radius $\frac{1}{\sqrt{k}}$ naturally embedded in \mathbb{R}^{n+1}.

We consider the metric g_{k} endowed by the embedding. Then, the curvature of $\mathbb{S}^{n}(k)$ is equal to k.

Coming back to the sphere...

If $k>0$, let $\mathbb{S}^{n}(k)$ be the n-dimensional sphere of radius $\frac{1}{\sqrt{k}}$ naturally embedded in \mathbb{R}^{n+1}.

We consider the metric g_{k} endowed by the embedding. Then, the curvature of $\mathbb{S}^{n}(k)$ is equal to k.

We fixe a point S of $\mathbb{S}^{n}(k)$, say the south pole.

Coming back to the sphere...

If $k>0$, let $\mathbb{S}^{n}(k)$ be the n-dimensional sphere of radius $\frac{1}{\sqrt{k}}$ naturally embedded in \mathbb{R}^{n+1}.

We consider the metric g_{k} endowed by the embedding. Then, the curvature of $\mathbb{S}^{n}(k)$ is equal to k.

We fixe a point S of $\mathbb{S}^{n}(k)$, say the south pole.
We use the coordinates given by the exponential map centered at the south pole composed with polar coordinates in \mathbb{R}^{n}.

$$
\begin{gathered}
(r, \theta) \rightarrow \exp _{S}(r \theta) \quad(r, \theta) \in\left[0, \frac{\pi}{\sqrt{k}}\right) \times \mathbb{S}^{n-1} \\
g_{k}=d r^{2}+\frac{\sin ^{2}(\sqrt{k} r)}{k} d \theta^{2}
\end{gathered}
$$

Main ingredient...

Main ingredient...

Proposition. For any $\lambda>0$, there exists $k_{0}>0$ such that for any $k \in\left(0, k_{0}\right)$ there exists a solution $u_{k, \lambda}$ to the problem

$$
\left\{\begin{aligned}
-\lambda \Delta_{g_{k}} u+u-u^{p} & =0
\end{aligned} \quad \text { in } \quad \mathbb{S}^{n}(k) \backslash B_{1}\right.
$$

depending only on the variable r.

Main ingredient...

Proposition. For any $\lambda>0$, there exists $k_{0}>0$ such that for any $k \in\left(0, k_{0}\right)$ there exists a solution $u_{k, \lambda}$ to the problem

$$
\left\{\begin{aligned}
-\lambda \Delta_{g_{k}} u+u-u^{p} & =0
\end{aligned} \quad \text { in } \quad \mathbb{S}^{n}(k) \backslash B_{1}\right] \text { in } \mathbb{S}^{n}(k) \backslash B_{1}
$$

depending only on the variable r. Moreover

$$
\lim _{k \rightarrow 0}\left\|u_{k, \lambda}-\tilde{u}_{\lambda}\right\|_{H^{1}\left(\mathbb{S}^{n}(k) \backslash B_{1}\right)}=0
$$

where \tilde{u}_{λ} is the radial solution of the limit problem in $\mathbb{R}^{n} \backslash B_{1}$.

Main ingredient...

Proposition. For any $\lambda>0$, there exists $k_{0}>0$ such that for any $k \in\left(0, k_{0}\right)$ there exists a solution $u_{k, \lambda}$ to the problem

$$
\left\{\begin{aligned}
-\lambda \Delta_{g_{k}} u+u-u^{p} & =0
\end{aligned} \quad \text { in } \quad \mathbb{S}^{n}(k) \backslash B_{1}\right] \text { in } \mathbb{S}^{n}(k) \backslash B_{1}
$$

depending only on the variable r. Moreover

$$
\lim _{k \rightarrow 0}\left\|u_{k, \lambda}-\tilde{u}_{\lambda}\right\|_{H^{1}\left(\mathbb{S}^{n}(k) \backslash B_{1}\right)}=0
$$

where \tilde{u}_{λ} is the radial solution of the limit problem in $\mathbb{R}^{n} \backslash B_{1}$.
The moving plane method does not apply to such solutions.

Solving the Dirichlet problem

$+$

Solving the Dirichlet problem

There exists $\Lambda_{0}>0$ such that for any $\lambda>\Lambda_{0}$, for all $k \in\left(0, k_{0}\right)$ and for all function $v \in C^{2, \alpha}\left(\mathbb{S}^{n-1}\right)$ whose norm is small, there exists a unique positive solution
$u=u_{k}(\lambda, v) \in C^{2, \alpha}\left(\mathbb{S}^{n}(k) \backslash B_{1+v}\right) \cap H_{0}^{1}\left(\mathbb{S}^{n}(k) \backslash B_{1+v}\right)$ to the problem
where

$$
B_{1+v}:=\left\{(r, \theta) \in \mathbb{S}^{n}(k) \quad: \quad 0 \leq r<1+v(\theta)\right\} .
$$

Solving the Dirichlet problem

There exists $\Lambda_{0}>0$ such that for any $\lambda>\Lambda_{0}$, for all $k \in\left(0, k_{0}\right)$ and for all function $v \in C^{2, \alpha}\left(\mathbb{S}^{n-1}\right)$ whose norm is small, there exists a unique positive solution $u=u_{k}(\lambda, v) \in C^{2, \alpha}\left(\mathbb{S}^{n}(k) \backslash B_{1+v}\right) \cap H_{0}^{1}\left(\mathbb{S}^{n}(k) \backslash B_{1+v}\right)$ to the problem
where

$$
B_{1+v}:=\left\{(r, \theta) \in \mathbb{S}^{n}(k) \quad: \quad 0 \leq r<1+v(\theta)\right\} .
$$

In addition u depends smoothly on the function v, and $u=u_{k, \lambda}$ when $v \equiv 0$.

Our operator

Our operator

For any $\lambda>\Lambda_{0}, k \in\left(0, k_{0}\right)$ and $v \in C^{2, \alpha}\left(\mathbb{S}^{n-1}\right)$ with norm small, we define

$$
F_{k}(\lambda, v)=\frac{\partial u_{k}(\lambda, v)}{\partial \nu}-\frac{1}{\operatorname{Vol}\left(\partial B_{1+v}\right)} \int_{\partial B_{1+v}} \frac{\partial u_{k}(\lambda, v)}{\partial \nu}
$$

where ν denotes the unit normal vector field to ∂B_{1+v}.

Our operator

For any $\lambda>\Lambda_{0}, k \in\left(0, k_{0}\right)$ and $v \in C^{2, \alpha}\left(\mathbb{S}^{n-1}\right)$ with norm small, we define

$$
F_{k}(\lambda, v)=\frac{\partial u_{k}(\lambda, v)}{\partial \nu}-\frac{1}{\operatorname{Vol}\left(\partial B_{1+v}\right)} \int_{\partial B_{1+v}} \frac{\partial u_{k}(\lambda, v)}{\partial \nu}
$$

where ν denotes the unit normal vector field to ∂B_{1+v}.
By Schauder estimates, F take its values in $C^{1, \alpha}\left(\mathbb{S}^{n-1}\right)$

Our operator

For any $\lambda>\Lambda_{0}, k \in\left(0, k_{0}\right)$ and $v \in C^{2, \alpha}\left(\mathbb{S}^{n-1}\right)$ with norm small, we define

$$
F_{k}(\lambda, v)=\frac{\partial u_{k}(\lambda, v)}{\partial \nu}-\frac{1}{\operatorname{Vol}\left(\partial B_{1+v}\right)} \int_{\partial B_{1+v}} \frac{\partial u_{k}(\lambda, v)}{\partial \nu}
$$

where ν denotes the unit normal vector field to ∂B_{1+v}.
By Schauder estimates, F take its values in $C^{1, \alpha}\left(\mathbb{S}^{n-1}\right)$
Remark that $F_{k}(\lambda, 0)=0$ for all λ.

Our operator

For any $\lambda>\Lambda_{0}, k \in\left(0, k_{0}\right)$ and $v \in C^{2, \alpha}\left(\mathbb{S}^{n-1}\right)$ with norm small, we define

$$
F_{k}(\lambda, v)=\frac{\partial u_{k}(\lambda, v)}{\partial \nu}-\frac{1}{\operatorname{Vol}\left(\partial B_{1+v}\right)} \int_{\partial B_{1+v}} \frac{\partial u_{k}(\lambda, v)}{\partial \nu}
$$

where ν denotes the unit normal vector field to ∂B_{1+v}.
By Schauder estimates, F take its values in $C^{1, \alpha}\left(\mathbb{S}^{n-1}\right)$
Remark that $F_{k}(\lambda, 0)=0$ for all λ.
Our aim is to find, for any $k \in\left(0, k_{0}\right)$ a value λ and a function $v \neq 0$ such that $F_{k}(\lambda, v)=0$. Observe that then $u(\lambda, v)$ is a solution of the initial overdetermined problem.

Our operator

For any $\lambda>\Lambda_{0}, k \in\left(0, k_{0}\right)$ and $v \in C^{2, \alpha}\left(\mathbb{S}^{n-1}\right)$ with norm small, we define

$$
F_{k}(\lambda, v)=\frac{\partial u_{k}(\lambda, v)}{\partial \nu}-\frac{1}{\operatorname{Vol}\left(\partial B_{1+v}\right)} \int_{\partial B_{1+v}} \frac{\partial u_{k}(\lambda, v)}{\partial \nu}
$$

where ν denotes the unit normal vector field to ∂B_{1+v}.
By Schauder estimates, F take its values in $C^{1, \alpha}\left(\mathbb{S}^{n-1}\right)$
Remark that $F_{k}(\lambda, 0)=0$ for all λ.
Our aim is to find, for any $k \in\left(0, k_{0}\right)$ a value λ and a function $v \neq 0$ such that $F_{k}(\lambda, v)=0$. Observe that then $u(\lambda, v)$ is a solution of the initial overdetermined problem.

We show that there exists a bifurcation point $\left(\lambda_{*}(k), 0\right)$ for the equation $F_{k}(\lambda, 0)=0$.

The theorem (Ruiz, Sicbaldi, Wu, 2022)

The theorem (Ruiz, Sicbaldi, Wu, 2022)

Theorem. Let $n \in \mathbb{N}, n \geq 2$, let $1<p<\frac{n+2}{n-2}(p>1$ if $n=2)$.

The theorem (Ruiz, Sicbaldi, Wu, 2022)

Theorem. Let $n \in \mathbb{N}, n \geq 2$, let $1<p<\frac{n+2}{n-2}(p>1$ if $n=2)$.
Then, there exists $k_{0}>0$ such that for any $k \in\left(0, k_{0}\right)$:

The theorem (Ruiz, Sicbaldi, Wu, 2022)

Theorem. Let $n \in \mathbb{N}, n \geq 2$, let $1<p<\frac{n+2}{n-2}(p>1$ if $n=2)$. Then, there exists $k_{0}>0$ such that for any $k \in\left(0, k_{0}\right)$: there exists a sequence of real parameters $\lambda_{m}=\lambda_{m}(k)$ converging to a $\lambda^{*}(k)>0$, a sequence of nonconstant functions $v_{m}=v_{m}(k) \in C^{2, \alpha}\left(\mathbb{S}^{n-1}\right)$ converging to 0 in $C^{2, \alpha}$, and a sequence of functions $u_{m}=u_{m}(k) \in C^{2, \alpha}\left(\mathbb{S}^{n}(k) \backslash B_{1+v_{m}(k)}\right)$, such that:

$$
\left\{\begin{array}{rccc}
-\lambda_{m} \Delta_{g_{k}} u_{m}+u_{m}-u_{m}^{p}=0 & \text { in } & \mathbb{S}^{n}(k) \backslash B_{1+v_{m}} \\
u_{m}>0 & \text { in } & \mathbb{S}^{n}(k) \backslash B_{1+v_{m}} \\
u_{m}=0 & \text { on } & \partial B_{1+v_{m}} \\
\frac{\partial u}{\partial \nu}=\text { constant } & \text { on } & \partial B_{1+v_{m}}
\end{array}\right.
$$

The theorem (Ruiz, Sicbaldi, Wu, 2022)
Theorem. Let $n \in \mathbb{N}, n \geq 2$, let $1<p<\frac{n+2}{n-2}(p>1$ if $n=2)$. Then, there exists $k_{0}>0$ such that for any $k \in\left(0, k_{0}\right)$: there exists a sequence of real parameters $\lambda_{m}=\lambda_{m}(k)$ converging to a $\lambda^{*}(k)>0$, a sequence of nonconstant functions $v_{m}=v_{m}(k) \in C^{2, \alpha}\left(\mathbb{S}^{n-1}\right)$ converging to 0 in $C^{2, \alpha}$, and a sequence of functions $u_{m}=u_{m}(k) \in C^{2, \alpha}\left(\mathbb{S}^{n}(k) \backslash B_{1+v_{m}(k)}\right)$, such that:

$$
\left\{\begin{array}{rcc}
-\lambda_{m} \Delta_{g_{k}} u_{m}+u_{m}-u_{m}^{p}=0 & \text { in } & \mathbb{S}^{n}(k) \backslash B_{1+v_{m}} \\
u_{m}>0 & \text { in } & \mathbb{S}^{n}(k) \backslash B_{1+v_{m}} \\
u_{m}=0 & \text { on } & \partial B_{1+v_{m}} \\
\frac{\partial u}{\partial \nu}=\text { constant } & \text { on } & \partial B_{1+v_{m}}
\end{array}\right.
$$

