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Overdetermined elliptic problems

The problem. To understand the geometry of domains Ω that
support a solution of the over-determined system
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∆u+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

where f is a locally Lipschitz function.

The most basic case is when Ω is a regular bounded domain of
Rn.
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Serrin’s theorem, 1971, ARMA.

If f is Lipschitz and Ω is a C2 bounded domain where there
exists a solution u to the problem
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Moving plane method - Analogy with CMC surfaces

The proof of Serrin’s moving plane method comes from the
Alexandrof moving plane method, used to prove that the only
compact embedded CMC surfaces are the spheres.
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Natural generalization of the Serrin’s theorem

The most natural manifolds where we can try to generalize the
Serrin theorem are the constant curvature manifolds.

This means the spheres (positive constant curvature) and the
hyperbolic spaces (constant negative curvature).

Prototype manifolds: Sn and H
n (curvatures 1 and -1).

The overdetermined problem now depends on the metric g:
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u > 0 in Ω

u = 0 on ∂Ω

∂u

∂νg
= constant on ∂Ω
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Let Ω be a bounded domain of Hn such that there exists a
solution to
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where f is a locally Lipschitz function.

Then Ω is a geodesic ball.

Proof: They generalize the moving plane method by replacing
the Euclidean planes by totally geodesic surfaces of Hn.
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Kumaresan and Prajapat’s theorems, 1998, Duke (2)

Let Ω be a bounded domain of Sn such that there exists a
solution to































∆g u+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

∂u

∂νg
= constant on ∂Ω

where f is a locally Lipschitz function.

If Ω is contained in a hemi-sphere then Ω is a geodesic ball.

Proof: again the “moving plane method”, done by replacing the
Euclidean planes by totally geodesic surfaces of Sn.
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The natural question on the sphere

(1) What happen for domains that are not contained in any
hemi-sphere?

(2) Can we obtain the Serrin’s theorem in the sphere?

NO: in symmetric neighborhoods of any equator you can
solve an overdetermined elliptic problem, obviously.

(3) Which is the natural topological class of domains where we
could hope to obtain a Serrin’s result?

Simply connected domains.

(4) Is it possible to obtain a Serrin’s result for simply connected
domains of the sphere?
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the only immersed genus 0 CMC surfaces in R
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Let Ω ⊂ S
2 simply connected. Let f : R+ → R verifying:

f ∈ C1 , f(t) > 0 , f(t) ≥ t f ′(t)

Then, if


















∆gu+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω
∂u
∂ν

= constant on ∂Ω

Ω must be a geodesic ball.

Proof: They generalize the method used by Hopf to prove that
the only immersed genus 0 CMC surfaces in R

n are the
spheres.

And for a general f?
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Let’s divagate a little bit... The unbounded case

The problem to classify solutions in unbounded domains is
presented in a paper by Berestycki, Caffarelli and Nirenberg
(CPAM, 1997)

They study overdetermined elliptic problems in epigraphs Ω, for

some special terms f , as the Allen-Cahn f(t) = t− t3.

They obtain rigidity results (i.e. Ω must be a half-space) but
under assumptions of the asymptotical flatness of the domain.

Question (1997). Under the assumption that Rn\Ω is connected

and u is bounded, is it true that Ω must be a ball, or a half space,

or a cylinder Rj ×B (where B is a ball) or the complement of
one of these three domains?
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Analogy with CMC surfaces

(1) Serrin’s theorem - Alexandrof theorem.

(2) Espinar-Mazet’s theorem - Hopf’s theorem.

(3) Solutions of


















∆u+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω
∂u
∂ν

= constant on ∂Ω

in domains whose boundary looks like Delaunay surfaces

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

for f(u) = λu (S. 2010), or f(u) = u− u3 (Del Pino, Pacard,

Wei, 2015).
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(4) Solutions of
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u > 0 in Ω

u = 0 on ∂Ω
∂u
∂ν

= constant on ∂Ω

in domains whose boundary looks like the Bombieri-De Giorgi-Giusti graph.

Del Pino, Pacard, Wei (2015)
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(4) Solutions of


















∆u+ u− u3 = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω
∂u
∂ν

= constant on ∂Ω

in domains whose boundary looks like the Bombieri-De Giorgi-Giusti graph.

Del Pino, Pacard, Wei (2015)

(5) If Ω is the complement of a bounded region and u is a bounded solutions of


















∆u+ u− u3 = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω
∂u
∂ν

= constant on ∂Ω

then Ω must be the exterior of a ball (Reichel, 1997)
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Take a symmetry group G that leaves invariant the origin and,
denoting by {µik}k∈N the eigenvalues of ∆Sn−1 restricted to

G−symmetric functions and mk their multiplicity, require i1 ≥ 2
and m1 odd (Example: G = O(m)×O(n−m), m < n)
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But not always the analogy works...

Take a symmetry group G that leaves invariant the origin and,
denoting by {µik}k∈N the eigenvalues of ∆Sn−1 restricted to

G−symmetric functions and mk their multiplicity, require i1 ≥ 2
and m1 odd (Example: G = O(m)×O(n−m), m < n)

Theorem (Ros-Ruiz-Sicbaldi - JEMS 2020)

Let 1 < p < n+2
n−2 (p > 1 if n = 2). There exist R∗ > 0 such that

the complement of the ball of radius R∗ can be perturbed in non
trivial G-symmetric domains Ω such that the problem















−∆u+ u− up = 0 in Rn\Ω
u = 0 on ∂Ω

∂u
∂ν

= constant on ∂Ω

admits a positive solution in C2,α ∩H1.
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Key ingredient

(Esteban - Lions, 1982) For any R > 0, there exists a radially
symmetric C∞ solution of
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Coming back to the sphere...

If k > 0, let Sn(k) be the n-dimensional sphere of radius 1√
k

naturally embedded in R
n+1.

We consider the metric gk endowed by the embedding. Then,
the curvature of Sn(k) is equal to k.

We fixe a point S of Sn(k), say the south pole.

We use the coordinates given by the exponential map centered
at the south pole composed with polar coordinates in Rn.

(r, θ) → expS(r θ) (r, θ) ∈
[

0,
π√
k

)

× S
n−1

gk = dr2 +
sin2(

√
kr)

k
dθ2,

– p. 15/19
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Proposition. For any λ > 0, there exists k0 > 0 such that for any
k ∈ (0, k0) there exists a solution uk,λ to the problem
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u = 0 on ∂B1

depending only on the variable r.
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‖uk,λ − ũλ‖H1(Sn(k)\B1) = 0,
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Solving the Dirichlet problem

There exists Λ0 > 0 such that for any λ > Λ0, for all k ∈ (0, k0)

and for all function v ∈ C2,α(Sn−1) whose norm is small, there
exists a unique positive solution

u = uk(λ, v) ∈ C2,α(Sn(k)\B1+v) ∩H1
0 (S

n(k)\B1+v) to the
problem















−λ∆gku+ u− up = 0 in Sn(k)\B1+v

u > 0 in Sn(k)\B1+v

u = 0 on ∂B1+v

where

B1+v := {(r, θ) ∈ S
n(k) : 0 ≤ r < 1 + v (θ)} .
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exists a unique positive solution

u = uk(λ, v) ∈ C2,α(Sn(k)\B1+v) ∩H1
0 (S

n(k)\B1+v) to the
problem















−λ∆gku+ u− up = 0 in Sn(k)\B1+v

u > 0 in Sn(k)\B1+v

u = 0 on ∂B1+v

where

B1+v := {(r, θ) ∈ S
n(k) : 0 ≤ r < 1 + v (θ)} .

In addition u depends smoothly on the function v, and u = uk,λ
when v ≡ 0.
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Our operator

For any λ > Λ0, k ∈ (0, k0) and v ∈ C2,α(Sn−1) with norm small,

we define

Fk(λ, v) =
∂uk(λ, v)

∂ν
− 1

Vol(∂B1+v)

ˆ

∂B1+v

∂uk(λ, v)

∂ν

where ν denotes the unit normal vector field to ∂B1+v.
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v 6= 0 such that Fk(λ, v) = 0. Observe that then u(λ, v) is a

solution of the initial overdetermined problem.
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where ν denotes the unit normal vector field to ∂B1+v.

By Schauder estimates, F take its values in C1,α(Sn−1)

Remark that Fk(λ, 0) = 0 for all λ.

Our aim is to find, for any k ∈ (0, k0) a value λ and a function

v 6= 0 such that Fk(λ, v) = 0. Observe that then u(λ, v) is a

solution of the initial overdetermined problem.

We show that there exists a bifurcation point (λ∗(k), 0) for the

equation Fk(λ, 0) = 0.
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The theorem (Ruiz, Sicbaldi, Wu, 2022)
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