Liquid crystal flows with free boundary

Yannick Sire

Johns Hopkins University

Nematic liquid crystal flow in dimension two

We consider the following initial-boundary value problem of nematic liquid crystal flow in a bounded, smooth domain Ω in $\mathbb{R}^{n}(n \geq 2)$, and $T>0$
$(\mathrm{NLCF})\left\{\begin{array}{l}\partial_{t} v+v \cdot \nabla v+\nabla P=\Delta v-\varepsilon_{0} \nabla \cdot\left(\nabla u \odot \nabla u-\frac{1}{2}|\nabla u|^{2} \mathbb{I}_{2}\right) \\ \nabla \cdot v=0 \\ \partial_{t} u+v \cdot \nabla u=\Delta u+|\nabla u|^{2} u,\end{array}\right.$

$$
\begin{aligned}
& \left.(v, u)\right|_{t=0}=\left(v_{0}, u_{0}\right) \text { in } \Omega \\
& v=0 \text { on } \partial \Omega \times(0, T), \quad u=u_{0} \text { on } \partial \Omega \times(0, T)
\end{aligned}
$$

- $v: \Omega \times(0, T) \rightarrow \mathbb{R}^{n}$ fluid velocity
- $P: \Omega \times(0, T) \rightarrow \mathbb{R}$ fluid pressure
- $u: \Omega \times(0, T) \rightarrow \mathbb{S}^{2}$ orientation field of nematic liquid crystal molecules
- $\varepsilon_{0}>0$: competition between kinetic energy and elastic energy

Nematic liquid crystal flow

(NLCF) is a simplified version of the Ericksen-Leslie model first proposed by Lin 1989. (NLCF) couples two important PDEs:

- Incompressible Navier-Stokes equation

$$
(\mathrm{iNS}) \begin{cases}\partial_{t} v+v \cdot \nabla v+\nabla P=\Delta v & \text { in } \Omega \times(0, T) \\ \nabla \cdot v=0 & \text { in } \Omega \times(0, T)\end{cases}
$$

- Harmonic map heat flow

$$
(\mathrm{HMF})\left\{\begin{array}{l}
\partial_{t} u=\Delta u+|\nabla u|^{2} u \quad \text { in } \Omega \times(0, T) \\
u: \Omega \times(0, T) \rightarrow \mathbb{S}^{2}
\end{array}\right.
$$

Coupling terms

- (HMF) provides forcing term to (iNS)

$$
-\varepsilon_{0} \nabla \cdot\left(\nabla u \odot \nabla u-\frac{1}{2}|\nabla u|^{2} \mathbb{I}_{2}\right)
$$

- (iNS) provides transport term to (HMF) $v \cdot \nabla u$

(iNS) and (HMF)

- (iNS)
- Existence of suitable weak solutions: Leray 1934, Hopf 1951 Leray-Hopf solution is regular in \mathbb{R}^{2}
- Partial regularity results in \mathbb{R}^{3} : Caffarelli-Kohn-Nirenberg 1982, Lin 1998
- (HMF)
- $n=2$, Struwe (1985) established the existence of global weak solution, which has at most finitely many singular points
- $n \geq 3$: existence of global weak solutions Chen-Struwe 1989, Chen-Lin 1993
- $n \geq 3$: examples of finite time blow-up Coron-Ghidaglia 1989, Chen-Ding 1990
- $n=2$: critical dimension. Finite time blow-up Chang-Ding-Ye 1991 van den Berg-Hulshof-King 2003 (formal analysis) Raphaël-Schweyer 2013 Dávila-del Pino-Wei 2017 (blow-up at multiple points in general domains)

NLCF

- Existence of weak solutions and partial regularity results for $n=2,3$: Lin-Liu 1995, 1996
- $n=2$: Lin-Lin-Wang (2010) proved the global existence of Leray-Hopf type weak solutions for (NLCF) that is smooth away from finitely many points.
- $n=2$: Lin-Wang (2010) proved the uniqueness of Leray-Hopf weak solution to (NLCF)
- $n=3$: Lin-Wang (2016) proved the global existence of weak solutions satisfying the global energy inequality under the assumption that the initial orientation field $d_{0}(\Omega) \subset \mathbb{S}_{+}^{2}$.
- Blow-solutions in two dimensions at a finite number of points by Lai-Lin-Wei-Wang-Zhou (2021)

A new model with free boundary (F.H. Lin, Y. S., J. Wei, Y. Zhou)
$(\mathrm{LCF})\left\{\begin{array}{l}\partial_{t} v+v \cdot \nabla v+\nabla P=\Delta v-\varepsilon_{0} \nabla \cdot\left(\nabla u \odot \nabla u-\frac{1}{2}|\nabla u|^{2} \mathbb{I}_{2}\right) \\ \nabla \cdot v=0 \\ \partial_{t} u+v \cdot \nabla u=\Delta u+|\nabla u|^{2} u,\end{array}\right.$

$$
\text { (FB) } \begin{cases}v \cdot \nu=0, & \text { on } \partial \Omega \times(0, T), \\ (S v \cdot \nu)_{\tau}=0, & \text { on } \partial \Omega \times(0, T), \\ u(x, t) \in \Sigma, & \text { on } \partial \Omega \times(0, T), \\ \frac{\partial u}{\partial \nu}(x, t) \perp T_{u(x, t)} \Sigma, & \text { on } \partial \Omega \times(0, T),\end{cases}
$$

where ν is the unit outer normal of $\partial \Omega, S$ is the strain tensor (deformation tensor, shear stress)

$$
S v=\frac{1}{2}\left(\nabla v+(\nabla v)^{T}\right)
$$

The blow-up result via parabolic gluing

We construct both interior and boundary bubbling in the half-plane:

Theorem (F.H. Lin, Y. S., J. Wei, Y. Zhou)
For $T>0$ sufficiently small and any given points in $\overline{\mathbb{R}_{+}^{2}}$, there exists initial data $\left(u_{0}, v_{0}\right)$ such that the solution (u, v) to liquid crystal flow with free boundary conditions blows up at finite time T exactly at these given points. Moreover, u takes the form at leading order of the sharply scaled 1-corotational profile (equivariant harmonic map) with type II rate

$$
\lambda(t) \sim \frac{T-t}{|\log (T-t)|^{2}}
$$

Inner-outer gluing method for parabolic equations

- good approximation \Longrightarrow small error

- Inner problem: $\lambda^{2} \phi_{t}=L[\phi]+\underbrace{\operatorname{coupling}(\psi)+\operatorname{error}}_{\mathcal{H}}$
- Outer problem (maximum principle): $\psi_{t}=\Delta_{x} \psi+\underbrace{\left(\phi \Delta \eta_{R}+2 \nabla \eta_{R} \cdot \nabla \phi\right)}_{\text {coupling }}+$ nonlinear terms + error
- Orthogonality conditions ($\left\{Z_{j}\right\}$ span the kernel around a "bubble")
- $\int \mathcal{H} Z_{j} d y=0 \Longrightarrow$ good inner solution
- $\int \mathcal{H} Z_{j} d y=0 \Longrightarrow$ reduced equations for λ, ξ
- Fixed point argument: ϕ, ψ, λ, ξ

A crucial tool for the study: estimates of Stokes

 operator with Navier B.C.Consider the following Stokes system

$$
\begin{cases}\partial_{t} v+\nabla P=\Delta v+F, & \text { in } \mathbb{R}_{+}^{2} \times(0, \infty), \\ \nabla \cdot v=0, & \text { in } \mathbb{R}_{+}^{2} \times(0, \infty), \\ \left.\partial_{x_{2}} v_{1}\right|_{x_{2}=0}=0,\left.\quad v_{2}\right|_{x_{2}=0}=0, & \tag{0.1}\\ \left.v\right|_{t=0}=0, & \end{cases}
$$

F is solenoidal:

$$
\nabla \cdot F=0,\left.\quad F_{2}\right|_{x_{2}=0}=0
$$

Theorem (F.H. Lin, Y. S., J. Wei, Y. Zhou)

The solution to (0.1) with solenoidal forcing can be expressed in the form

$$
\begin{gather*}
v(x, t)=\int_{0}^{t} \int_{\mathbb{R}_{+}^{2}} \mathcal{G}^{0}(x, y, t-\tau) F(y, \tau) d y d \tau+ \\
\int_{0}^{t} \int_{\mathbb{R}_{+}^{2}} \mathcal{G}^{*}(x, y, t-\tau) \int_{0}^{\tau} F(y, s) d s d y d \tau \tag{0.2}\\
P(x, t)=\int_{0}^{t} \int_{\mathbb{R}_{+}^{2}} \mathcal{P}(x, y, t-\tau) \cdot F(y, \tau) d y d \tau \\
\left|\partial_{t}^{s} D_{x}^{k} D_{y}^{m} P_{j}(x, y, t)\right| \lesssim t^{-1-s-\frac{m_{2}}{2}}\left(\left|x-y^{*}\right|^{2}+t\right)^{-\frac{1+|k|+\left|m^{\prime}\right|}{2}} e^{-\frac{c y_{2}^{2}}{t}} \\
\left|\partial_{t}^{s} D_{x}^{k} D_{y}^{m} G_{i j}^{*}(x, y, t)\right| \lesssim t^{-1-s-\frac{m_{2}}{2}}\left(\left|x-y^{*}\right|^{2}+t\right)^{-\frac{2+|k|+\left|m^{\prime}\right|}{2}} e^{-\frac{c y_{2}^{2}}{t}} \tag{0.3}
\end{gather*}
$$

See Solonnikov for others B.C.

Heat flow of harmonic maps with free boundary

Let (M, g) be an m-dimensional smooth Riemannian manifold with boundary ∂M and N be another smooth compact Riemannian manifold without boundary. Suppose Σ is a k-dimensional submanifold of N without boundary. Any continuous map $u_{0}: M \rightarrow N$ satisfying $u_{0}(\partial M) \subset \Sigma$ defines a relative homotopy class in maps from $(M, \partial M)$ to (N, Σ). A map $u: M \rightarrow N$ with $u(\partial M) \subset \Sigma$ is called homotopic to u_{0} if there exists a continuous homotopy $h:[0,1] \times M \rightarrow N$ satisfying $h([0,1] \times \partial M) \subset \Sigma, h(0)=u_{0}$ and $h(1)=u$. An interesting problem is that whether or not each relative homotopy class of maps has a representation by harmonic maps, which is equivalent to the following problem:

$$
\left\{\begin{array}{l}
-\Delta u=\Gamma(u)(\nabla u, \nabla u) \tag{0.4}\\
u(\partial M) \subset \Sigma \\
\frac{\partial u}{\partial \nu} \perp T_{u} \Sigma
\end{array}\right.
$$

Here ν is the unit normal vector of M along the boundary ∂M, $\Delta \equiv \Delta_{M}$ is the Laplace-Beltrami operator of $(M, g), \Gamma$ is the second fundamental form of N (viewed as a submanifold in \mathbb{R}^{l} via Nash's isometric embedding), $T_{p} N$ is the tangent space in \mathbb{R}^{ℓ} of N at p and \perp means orthogonal in \mathbb{R}^{ℓ}. (0.4) is the
Euler-Lagrange equation for critical points of the Dirichlet energy functional

$$
E(u)=\int_{M}|\nabla u|^{2} d v_{g}
$$

defined over the space of maps

$$
H_{\Sigma}^{1}(M, N)=\left\{u \in H^{1}(M, N): u(x) \subset \Sigma \text { a.e. } x \in \partial M\right\}
$$

Existence by flow (see Eells-Sampson for standard harmonic maps)

$$
\begin{cases}\partial_{t} u-\Delta u=\Gamma(u)(\nabla u, \nabla u) & \text { on } M \times[0, \infty) \tag{0.5}\\ u(x, t) \in \Sigma & \text { on } \partial M \times[0, \infty) \\ \frac{\partial u}{\partial \nu}(x, t) \perp T_{u(x, t)} \Sigma & \text { on } \partial M \times[0, \infty) \\ u(\cdot, 0)=u_{0} & \text { on } M\end{cases}
$$

Weak solutions of the harmonic map heat flow with FB

Take $M=\mathbb{R}_{+}^{n+1}$ and $N=\mathbb{R}^{\ell}$. We will try to solve the following regularized version of the heat flow (extrinsic version):

$$
\begin{cases}\partial_{t} u-\Delta u=0 & \text { in } \mathbb{R}_{+}^{n+1} \times \mathbb{R}_{+}, \\ u(x, 0, t) \in \Sigma & x \in \mathbb{R}^{n}, t>0 \tag{0.6}\\ -\lim _{y \rightarrow 0^{+}} \frac{\partial u}{\partial y}(x, y, t) \perp T_{u(x, 0, t)} \Sigma & x \in \mathbb{R}^{n}, t>0 \\ u(x, y, 0)=u_{0}(x, y) & (x, y) \in \mathbb{R}_{+}^{n+1}\end{cases}
$$

We focus on the study of (0.6) for

$$
\Sigma=\mathbb{S}^{\ell-1}
$$

Intrinsic version: Hamilton, Struwe, Chen-Lin

Harmonic maps with free boundary and their geometric

 interest$$
\left\{\begin{array}{l}
-\Delta u=\Gamma(u)(\nabla u, \nabla u) \\
u(\partial M) \subset \Sigma \\
\frac{u u}{\partial \nu} \perp T_{u} \Sigma
\end{array}\right.
$$

- Existence and regularity: Nitsche, Hildebrandt, Jost, Duzaar-Steffen, Hardt-Lin, etc...
- New point of view via half-harmonic maps: Da Lio-Rivière, Millot-S., Da Lio-Rivière-Laurain
- Branched minimal immersions with free boundary and spectral geometry of extremal Steklov eigenvalues: Fraser-Schoen, Karpukhin, Laurain-Petrides, etc..

Ginzburg-Landau approximation

Given $U_{0} \in \dot{H}^{1}\left(\mathbb{R}_{+}^{n+1}, \mathbb{S}^{\ell-1}\right)$ and $\varepsilon>0$, consider

$$
\begin{cases}\left(\partial_{t}-\Delta\right) U_{\varepsilon}(x, y, t)=0 & \text { in } \mathbb{R}_{+}^{n+1} \times(0, \infty) \tag{0.7}\\ U_{\varepsilon}(x, y, 0)=U_{0}(x, y) & \text { in } \mathbb{R}_{+}^{n+1} \\ \frac{\partial U_{\varepsilon}}{\partial y}=-\frac{1}{\varepsilon^{2}}\left(1-\left|U_{\varepsilon}\right|^{2}\right) U_{\varepsilon} & \text { on } \partial \mathbb{R}_{+}^{n+1} \times(0, \infty)\end{cases}
$$

For fixed $\varepsilon>0,(0.7)$ is the gradient flow of

$$
E_{\varepsilon}(U)=\int_{\mathbb{R}_{+}^{n+1}} \frac{1}{2}|\nabla U|^{2} d x d y+\int_{\partial \mathbb{R}_{+}^{n+1}} \frac{\left(1-|U|^{2}\right)^{2}}{4 \varepsilon^{2}} d x
$$

There exist smooth solutions $U_{\varepsilon}: \mathbb{R}_{+}^{n+1} \times(0, \infty) \rightarrow \mathbb{R}^{L}$ of (0.7):

$$
\begin{align*}
& E_{\varepsilon}\left(U_{\varepsilon}\right)(t)+\int_{0}^{t} \int_{\mathbb{R}_{+}^{n+1}}\left|\partial_{t} U_{\varepsilon}\right|^{2} d x d y d t \\
& \leq E_{\varepsilon}\left(U_{0}\right)=\int_{\mathbb{R}_{+}^{n+1}} \frac{1}{2}\left|\nabla U_{0}\right|^{2} d x d y \tag{0.8}
\end{align*}
$$

For $U_{0} \in H^{1}\left(\mathbb{R}_{+}^{n+1}, \mathbb{S}^{L-1}\right)$, let $u_{0}=\left.U_{0}\right|_{\partial \mathbb{R}_{+}^{n+1}}$. Let \mathcal{P}^{k} denote the k-dimensional Hausdorff measure on $\mathbb{R}^{n+1} \times \mathbb{R}$ with respect to

$$
\delta((X, t),(Y, s))=\max \{|X-Y|, \sqrt{|t-s|}\}
$$

Theorem (A. Hyder, A. Segatti, Y. S., C. Wang)

1) $\exists U_{*} \in L^{\infty}\left(\mathbb{R}_{+}, H^{1}\left(\mathbb{R}_{+}^{n+1}, \mathbb{S}^{\ell-1}\right)\right)$ with $\partial_{t} U_{*} \in L^{2}\left(\mathbb{R}_{+}^{n+1} \times \mathbb{R}_{+}\right)$ solving

$$
\begin{cases}\left(\partial_{t}-\Delta\right) U_{*}=0 & \text { in } \mathbb{R}_{+}^{n+1} \times(0, \infty), \\ \left.U_{*}\right|_{t=0}=U_{0} & \text { on } \mathbb{R}_{+}^{n+1}, \\ U_{*}(x, 0, t) \in N ; & \frac{\partial U_{*}}{\partial y}(x, 0, t) \perp T_{U_{*}(x, 0, t)} N \\ \text { on } \mathbb{R}^{n} \times(0, \infty)\end{cases}
$$

such that $U_{\varepsilon} \rightharpoonup U_{*}$ in $H^{1}\left(\mathbb{R}_{+}^{n+1} \times \mathbb{R}_{+}\right)$.
2) $\exists \Sigma \subset \partial \mathbb{R}_{+}^{n+1} \times(0, \infty)$, with $\mathcal{P}^{n+1}(\Sigma)<\infty$, such that

$$
U_{\varepsilon} \rightarrow U_{*} \in C_{l o c}^{2}\left(\overline{\mathbb{R}_{+}^{n+1}} \times(0, \infty) \backslash \Sigma\right)
$$

Theorem (Continued)

3) Set $u_{*}=\left.U_{*}\right|_{\partial \mathbb{R}_{+}^{n+1} \times[0, \infty)}$. Then $u_{*} \in C^{\infty}\left(\mathbb{R}^{n} \times(0, \infty) \backslash \Sigma\right)$ solves the $\frac{1}{2}$-harmonic map heat flow:

$$
\begin{cases}\left(\partial_{t}-\Delta\right)^{\frac{1}{2}} u_{*} \perp T_{u_{*}} \mathbb{S}^{L-1} & \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{0.9}\\ u_{*}(x, 0)=u_{0}(x) & \text { in } \mathbb{R}^{n}\end{cases}
$$

4) For any $C_{0}>0, \exists \epsilon_{0}>0$ such that if

$$
\left\|\nabla U_{0}\right\|_{L^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)} \leq C_{0}, \quad E\left(U_{0}\right) \leq \epsilon_{0}
$$

$$
U_{*} \in C^{\infty}\left(\overline{\mathbb{R}_{+}^{n+1}} \times(0, \infty)\right)\left(\Rightarrow u_{*}=\left.U_{*}\right|_{\partial \mathbb{R}_{+}^{n+1} \times[0, \infty)} \in C^{\infty}\right)
$$

Why is the LCF with FB model physical ?

We first derive the energy law. Multiply by v and integrate over Ω :
$\frac{1}{2} \frac{d}{d t} \int_{\Omega}|v|^{2}+\int_{\Omega}(v \cdot \nabla v) \cdot v+\int_{\Omega} \nabla P \cdot v=-\int_{\Omega}|\nabla v|^{2}-\int_{\Omega}(\Delta u \cdot \nabla u) \cdot v$,
where we have used

$$
\nabla \cdot\left(\nabla u \odot \nabla u-\frac{1}{2}|\nabla u|^{2} \mathbb{I}_{2}\right)=\Delta u \cdot \nabla u
$$

And

$$
\int_{\Omega}(v \cdot \nabla v) \cdot v=\int_{\Omega} \nabla P \cdot v=0 .
$$

So we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}|v|^{2}=-\int_{\Omega}|\nabla v|^{2}-\int_{\Omega}(\Delta u \cdot \nabla u) \cdot v \tag{0.10}
\end{equation*}
$$

Multiply with $\Delta u+|\nabla u|^{2} u$ and integrate over Ω

$$
-\frac{1}{2} \frac{d}{d t} \int_{\Omega}|\nabla u|^{2}+\int_{\Omega}(v \cdot \nabla u) \cdot\left(\Delta u+|\nabla u|^{2} u\right)=\int_{\Omega}\left|\Delta u+|\nabla u|^{2} u\right|^{2} .
$$

Since

$$
\int_{\Omega}(v \cdot \nabla u) \cdot\left(|\nabla u|^{2} u\right)=\int_{\Omega}|\nabla u|^{2} v \cdot \frac{\nabla\left(|u|^{2}\right)}{2}=0
$$

we obtain

$$
\begin{equation*}
-\frac{1}{2} \frac{d}{d t} \int_{\Omega}|\nabla u|^{2}+\int_{\Omega}(\Delta u \cdot \nabla u) \cdot v=\int_{\Omega}\left|\Delta u+|\nabla u|^{2} u\right|^{2} . \tag{0.11}
\end{equation*}
$$

Combining (0.10) and (0.11), we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\int_{\Omega}|v|^{2}+|\nabla u|^{2}\right)=-\int_{\Omega}|\nabla v|^{2}-\int_{\Omega}\left|\Delta u+|\nabla u|^{2} u\right|^{2} \tag{0.12}
\end{equation*}
$$

which is called the basic energy law (energy dissipation).

On the other hand, the physical compatibility condition should be satisfied

$$
\begin{equation*}
\left\langle\left(\frac{\nabla v+(\nabla v)^{T}}{2}-P \mathbb{I}_{2}-\nabla u \odot \nabla u\right) \nu, \tau\right\rangle=0, \quad \text { on } \quad \partial \Omega, \tag{0.13}
\end{equation*}
$$

where

$$
\nabla \cdot\left(\frac{\nabla v+(\nabla v)^{T}}{2}-P \mathbb{I}_{2}-\nabla u \odot \nabla u\right)
$$

is called stress tensor. It is easy to see that $\left\langle P \mathbb{I}_{2} \nu, \tau\right\rangle=0$ as $<\nu, \tau\rangle=0$. Also,

$$
\left\langle\frac{\nabla v+(\nabla v)^{T}}{2} \nu, \tau\right\rangle=0
$$

is the Navier boundary condition and

$$
0=\langle(\nabla u \odot \nabla u) \nu, \tau\rangle=\left\langle\nabla_{\nu} u, \nabla_{\tau} u\right\rangle
$$

implies the free boundary condition

$$
\frac{\partial u}{\partial u} \perp T_{u} \Sigma \text { on } \partial \Omega \times(0, T)
$$

Symmetry encoded in the free boundary condition

Since on $\partial \mathbb{R}_{+}^{2}$ one has

$$
\left\{\begin{array} { l }
{ u (x , t) \in \Sigma , } \tag{0.14}\\
{ \frac { \partial u } { \partial \nu } (x , t) \perp T _ { u (x , t) } \Sigma , }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\partial_{x_{2}} u_{1}=0, \\
\partial_{x_{2}} u_{2}=0, \\
u_{3}=0,
\end{array}\right.\right.
$$

and

$$
\left\{\begin{array} { l }
{ v \cdot \nu = 0 , } \tag{0.15}\\
{ (S v \cdot \nu) _ { \tau } = 0 , }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
\partial_{x_{2}} v_{1}=0 \\
v_{2}=0
\end{array}\right.\right.
$$

then even reflection for u_{1}, u_{2}, v_{1} and odd reflection for u_{3}, v_{2} :
$\tilde{u}\left(x_{1}, x_{2}, t\right)=\left(\begin{array}{c}u_{1}\left(x_{1},-x_{2}, t\right) \\ u_{2}\left(x_{1},-x_{2}, t\right) \\ -u_{3}\left(x_{1},-x_{2}, t\right)\end{array}\right), \quad \tilde{v}\left(x_{1}, x_{2}, t\right)=\binom{v_{1}\left(x_{1},-x_{2}, t\right)}{-v_{2}\left(x_{1},-x_{2}, t\right)}$,
(0.16)
is such that the free boundary conditions are satisfied.

With the previous reflections and

$$
\begin{equation*}
\tilde{P}\left(x_{1}, x_{2}, t\right)=P\left(x_{1},-x_{2}, t\right) \tag{0.17}
\end{equation*}
$$

the structure of the equation is preserved, i.e.,

$$
\left\{\begin{array}{l}
\partial_{t} \tilde{u}+\tilde{v} \cdot \nabla \tilde{u}=\Delta \tilde{u}+|\nabla \tilde{u}|^{2} \tilde{u} \\
\partial_{t} \tilde{v}+\tilde{v} \cdot \nabla \tilde{v}+\nabla \tilde{P}=\Delta \tilde{v}-\nabla \cdot\left(\nabla \tilde{u} \odot \nabla \tilde{u}-\frac{1}{2}|\nabla \tilde{u}|^{2} \mathbb{I}_{2}\right), \\
\nabla \cdot \tilde{v}=0 . \tag{0.18}
\end{array}\right.
$$

Open problems

- Caffarelli-Kohn-Nirenberg partial regularity of suitable solutions in two dimensions
- Global Weak solutions in three dimensions
- Coupling surface diffusion with heat flows of harmonic maps (Vorticity formulation with compensated-compactness phenomena with the Hopf differential)
- (Heat flow of) Harmonic maps with free boundary: Rigidity à la Siu-Sampson for manifolds with boundary, singular domains/targets, Teichmuller flow on moduli space of hyperbolic metrics on surfaces with boundary

THANK YOU

