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Nematic liquid crystal flow in dimension two

We consider the following initial-boundary value problem of
nematic liquid crystal flow in a bounded, smooth domain € in
R™ (n>2),and T'> 0

O +v-Vv+ VP =Av =5V - (Vuo Vu - §[Vu/’l)
(NLCF) {V.0=0
O+ v - Vu = Au + |Vul?u,

(v,u)}tzo = (vo,up) in €,

v=0 on INx(0,T), wu=wy on 0N x (0,T),

> v:Qx(0,7) — R" fluid velocity
» P:Qx(0,7) — R fluid pressure
> u:Qx (0,T) — S? orientation field of nematic liquid
crystal molecules
> ¢y > 0: competition between kinetic energy and elastic
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Nematic liquid crystal flow

(NLCF) is a simplified version of the Ericksen-Leslie model first
proposed by Lin 1989. (NLCF) couples two important PDEs:

» Incompressible Navier—Stokes equation

ov+v-Vo+VP=Av in Qx(0,T)

(NS) {V'vzo in Qx(0,T)

» Harmonic map heat flow

Ou = Au+ |Vul?>u in Qx(0,T)

(HMEF) {u Q% (0,T) — S?

Coupling terms
» (HMF) provides forcing term to (iNS)

—eoV - (Vu © Vu — %\Vu|2]12)
» (iNS) provides transport term to (HMF) v - Vu
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(iNS) and (HMF)
> (iNS)

> Existence of suitable weak solutions: Leray 1934, Hopf 1951
Leray—Hopf solution is regular in R?

» Partial regularity results in R?: Caffarelli-Kohn-Nirenberg
1982, Lin 1998

> (HMF)

> n =2, Struwe (1985) established the existence of global
weak solution, which has at most finitely many singular
points

> n > 3: existence of global weak solutions Chen—Struwe
1989, Chen—Lin 1993

> n > 3: examples of finite time blow-up Coron-Ghidaglia
1989, Chen-Ding 1990

» n = 2: critical dimension. Finite time blow-up
Chang—Ding—Ye 1991
van den Berg—Hulshof-King 2003 (formal analysis)
Raphaél-Schweyer 2013
Dévila—del Pino—Wei 2017 (blow-up at multiple points in
general domains)
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NLCF

Existence of weak solutions and partial regularity results
for n = 2,3: Lin—Liu 1995, 1996

n = 2: Lin-Lin-Wang (2010) proved the global existence of
Leray—Hopf type weak solutions for (NLCF) that is smooth
away from finitely many points.

n = 2: Lin-Wang (2010) proved the uniqueness of
Leray-Hopf weak solution to (NLCF)

n = 3: Lin-Wang (2016) proved the global existence of
weak solutions satisfying the global energy inequality under
the assumption that the initial orientation field dy () C S7.

Blow-solutions in two dimensions at a finite number of
points by Lai-Lin-Wei-Wang-Zhou (2021)
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A new model with free boundary (F.H. Lin, Y. S., J.
Wei, Y. Zhou)

O +v-Vv+ VP =Av =5V - (Vuo Vu - §[Vu|’l)
(LCF) {V-v=0
o+ v - Vu = Au+ |Vul?u,

v-v =0, on 08 x (0,7),
(FB) (Sv-v)r =0, on 90 x (0,7),
u(z,t) € 3, on 90 x (0,T),

Qu(z,t) L TS, on 092 x (0,7T),

where v is the unit outer normal of 9€2, S is the strain tensor
(deformation tensor, shear stress)

Sv = %(VU + (Vo)T),
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The blow-up result via parabolic gluing

We construct both interior and boundary bubbling in the
half-plane:

Theorem (F.H. Lin, Y. S., J. Wei, Y. Zhou)

For T > 0 sufficiently small and any given points in @, there
exists initial data (up,vg) such that the solution (u,v) to liquid
crystal flow with free boundary conditions blows up at finite
time T exactly at these given points. Moreover, u takes the
form at leading order of the sharply scaled 1-corotational profile
(equivariant harmonic map ) with type II rate

T —t
MO~ Tog@ - D
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Inner—outer gluing method for parabolic equations

» good approximation = small error

perturbation

» o = approximation + nro(y, t) + ¥(x,t), y= x;(gt()t)
—_— =

inner outer

» Inner problem: A\2¢; = L[¢] + coupling(v)) + error

H
» Outer problem (maximum principle):
Y = Agh + (0Angr + 2Vng - V@) + nonlinear terms + error

coupling

» Orthogonality conditions ({Z;} span the kernel around a
"bubble”)

> /’HZjdy =0 = good inner solution

> /’HZjdy =0 = reduced equations for A, ¢

P> Fixed point argument: ¢, ¥, A, &
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A crucial tool for the study: estimates of Stokes
operator with Navier B.C.

Consider the following Stokes system

O+ VP = Av + F,
V-v=0,
0,01 o 0, v et
U|t=0 =0,
F is solenoidal:
V- -F=0,

x2=0 =

in R? x (0,00),

in R% x (0,00),
(0.1)
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Theorem (F.H. Lin, Y. S., J. Wei, Y. Zhou)
The solution to (0.1) with solenoidal forcing can be expressed in
the form
t
o) = [ [ 6wyt =Py r)dydr+
0 JRZ

t T
/0 /Rig (m,y,t—T)/O F(y,s)dsdydr (0.2)

t
Pat)= [ [ Play.t—r)- Fly.r)dyar
+

/ 2
m L4|k|+]m!| ey
O3 DEDI Py, t)| SR (e -y P ) e
m 24|kl +m!| _ ¥3
O DED G (2, y, ) St T (o =y P )T 2 et
(0.3)

See Solonnikov for others B.C.
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Heat flow of harmonic maps with free boundary
Let (M, g) be an m-dimensional smooth Riemannian manifold
with boundary OM and N be another smooth compact
Riemannian manifold without boundary. Suppose X is a
k-dimensional submanifold of N without boundary. Any
continuous map wug : M — N satisfying ug(OM) C ¥ defines a
relative homotopy class in maps from (M,0M) to (N,%). A
map u: M — N with u(OM) C X is called homotopic to ug if
there exists a continuous homotopy A : [0,1] x M — N
satisfying h([0,1] x OM) C X, h(0) = up and h(1) = u. An
interesting problem is that whether or not each relative
homotopy class of maps has a representation by harmonic
maps, which is equivalent to the following problem:

—Au =T'(u)(Vu, Vu),
w(OM) C 3, (0.4)
du | T,%.
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Here v is the unit normal vector of M along the boundary dM,
A = Ay is the Laplace-Beltrami operator of (M, g), I' is the
second fundamental form of N (viewed as a submanifold in R
via Nash’s isometric embedding), T,V is the tangent space in
Rf of N at p and L means orthogonal in Rf. (0.4) is the
Euler-Lagrange equation for critical points of the Dirichlet
energy functional

E(u) :/ |Vul? do,
M
defined over the space of maps
HLY(M,N)={uc HY(M,N) : u(z) C ¥ a.e. x € OM}.

Existence by flow (see Eells-Sampson for standard harmonic
maps)

Ou — Au =T'(u)(Vu,Vu) on M x [0, 00),

u(z,t) € ¥ on OM x [0, 00), 05)
%(ZL‘, t) 1 T‘u(;r,t)Z on OM x [O7 oo)
U(,O) = Ug on M.
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Weak solutions of the harmonic map heat flow with FB

Take M = RZ‘F'H and N = Rf. We will try to solve the following
regularized version of the heat flow (extrinsic version):

du— Au=0 in RTH xRy,
u(x,0,t) € X xeR"t>0,
ou (0.6)
— lim —(z,y,t) LT Y zeR"t>0,
yi}ng 8y (CL’ Yy ) u(z,0,t) z

,U’(xaya 0) = Uo(ZE,y) ($7y) € R:L—Jrl'

We focus on the study of (0.6) for

Intrinsic version: Hamilton, Struwe, Chen-Lin

13 /24



Harmonic maps with free boundary and their geometric
interest

—Au =T'(u)(Vu, Vu),
u(OM) C X,
du | T,

P> Existence and regularity: Nitsche, Hildebrandt, Jost,
Duzaar-Steffen, Hardt-Lin, etc...

» New point of view via half-harmonic maps: Da Lio-Riviere,
Millot-S., Da Lio-Riviere-Laurain

» Branched minimal immersions with free boundary and
spectral geometry of extremal Steklov eigenvalues:
Fraser-Schoen, Karpukhin, Laurain-Petrides, etc..
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Ginzburg-Landau approximation
Given Uy € Hl(erfl, S~1) and e > 0, consider
(at - A)UE('Z’ y7t) =0 in Ri+1 X (07 OO),
Ud(z,y,0) = Up(z,y)  in R, (0.7)

v, 1
= L UL on ORI x (0,c0).

For fixed € > 0, (0.7) is the gradient flow of

1 2 (1-U?)?
E.(U) _/Rg+12NU| dxdy+/m+l452dx.

There exist smooth solutions U, : R x (0,00) — R” of (0.7):
t
E-(U:)(t) +/ / |0:U2|? dadydt
0 JRYH

1
< E.(Up) = /RW SIV UG dady. (0.8)
+
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For Uy € Hl(RZ'H,SL*l), let ug = UO\BRTL Let P* denote the

k-dimensional Hausdorff measure on R”*! x R with respect to

8((X,1),(Y,s)) =max {|X —Y|,\/|t — s|}.

Theorem (A. Hyder, A. Segatti, Y. S., C. Wang)

1) 3 UL € L®Ry, HY (R, SY) with 6,U, € L2 (R x Ry)
solving

(O — AU, =0 in R’ x (0, 00),

U*|t:0 =0y on R’frl,
Ui(z,0,t) € N; %L;* (2,0,t) L Ty, (50N  on R™ x (0, 00).

such that U. — U, in HY (R x RY).
2) 3% C R x (0, 00), with P"+H(8) < oo, such that

U. = U € CF (R x (0,00) \ 2).
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Theorem (Continued)

3) Set u, = U*|8R1+1x Then uy, € C*(R™ x (0,00) \ X)

[0,00)"

solves the %—harmom’c map heat flow:

{(at — A)zu, LT, SE1 in R™ x (0, 00), 0.9)

us(x,0) = up(z) in R™.
4) For any Cy > 0, Jeg > 0 such that if

0| f,00(rnt+1y = “05 0) > €o,
[V o gariny < Co, E(Uo) <

x[0,00)
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Why is the LCF with FB model physical ?

We first derive the energy law. Multiply by v and integrate over
Q.

2dt/|v\2+/ v-Vo) v+/ VP-v=— /|Vv|2 / (Au-Vu)-v

where we have used

1
V. (Vu © Vu — 2|Vu|2112> = Au - Vu.

/(U-Vv)-v:/VP-U:().
Q Q
So we have

S = - ~ [ (au-vu)-v. 1
53 == [ v = [ (@u- w0 (0.10)
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Multiply with Au + |Vu|?u and integrate over

—5%/ \Vu]Q—i-/ (v-Vu) - (Au+|Vul*u) /‘Au—i—\vmz ‘

Since

/(v V) - (|Vul?u) /]Vu|2 ﬂ =0,
Q

we obtain

1d 2 2 2
—f—/ |Vul +/(Au-Vu)~v:/ ‘Au+]Vu| u‘ . (0.11)
2dt Jao Q Q

Combining (0.10) and (0.11), we get

2
</ |v2+\vu|2> :f/ ]Vv|2f/ At [VaPul” (0.12)
th Q Q

which is called the basic energy law (energy dissipation ).
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On the other hand, the physical compatibility condition should
be satisfied

T
<<W+2(Vv) —P]IQ—VUQV'Lb) 1/,7'> =0, on 01,

(0.13)

where

- <W + (V)T

— Pl —Vu0® Vu)

is called stress tensor. It is easy to see that < Plav, 7 >=0 as

<wv,7 >=0. Also,
<VU +2(vv)Tm> Ly
is the Navier boundary condition and
0= ((Vuo Vu)r,7) = (V,yu, V,u)
implies the free boundary condition

ou
211

L T,% on 99 x (0,T).
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Symmetry encoded in the free boundary condition
Since on OR% one has

aa:gul = 07
,t) € X,
{gff” ) — { Opus =0, (0.14)
E(‘/L'vt) 1 Tu(x,t)za us =0
and
v=0 o) =0
Lr=s R . (0.15)
(Sv-v); =0, vy =0,

then even reflection for uq, ug, v1 and odd reflection for ug, vo:

U1($1,—I‘2,t) U1(561 — 19 t)
W(x1,x2,t) = | uwa(xr, —x2,t) |, O(x1,22,t) = 7 ’ ;
—v(z1, —x2,1)
—ug(z1, —x2,1)

(0.16)

is such that the free boundary conditions are satisfied.
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With the previous reflections and

}j($1,x2,t) ::lj(xl,——xg,t), (0.17)
the structure of the equation is preserved, i.e.,

Oyt + v - Vi = At + | Vi,
O +7-Vo+ VP = A5~ V- (Vio Vi §|Vif’L),
V. =0.

(0.18)
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Open problems

> Caffarelli-Kohn-Nirenberg partial regularity of suitable
solutions in two dimensions

» Global Weak solutions in three dimensions

» Coupling surface diffusion with heat flows of harmonic
maps ( Vorticity formulation with
compensated-compactness phenomena with the Hopf
differential)

» (Heat flow of) Harmonic maps with free boundary:
Rigidity a la Siu-Sampson for manifolds with boundary,
singular domains/targets, Teichmuller flow on moduli space
of hyperbolic metrics on surfaces with boundary
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THANK YOU
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