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MOTIVATION
1) Stochastic control problem

Controlled stochastic dynamical system

dXs = asds +dWs, s>0, with Xg=x¢€ Q)

(Ws)s>o0 = Brownian Motion with values in R™

Xs)s>0 = position of the particle (stochastic process
> p p p

Q) s>0 = control (the controler can choose the wvelocity of X
> Y

ug € Co(Q) = spatial distribution of rewards, i.e.:

At a given time horizon s =t > 0, the final reward is
{uo (Xt), provided X stays in € until time ¢ (i.e. 7 := first exit time > ¢)

0, otherwise

The cost of the control at each time s is |ag|P/P~1) (as long as X, stays in Q)

Goal (of the controler): maximize the net gain |Gy = xr>ruo(Xe) — / ]as]p/(p_l) ds
0




MOTIVATION

1) Stochastic control problem
Controlled stochastic dynamical system

dXs = ads+dW,, s>0, with Xg =2z € Q (smooth)

(Ws)s>0 = Brownian Motion with values in R™

(Xs)s>0 = position of the particle (stochastic process)

(as)s>0 = control (the controler can choose the velocity of X)
mn = gpatial distribution of rewards, i.e.:

At a given time horizon s =t > 0, the final reward is
up(X¢), provided X stays in € until time ¢ (i.e. 7 := first exit time > ¢)
{ 0, otherwise
The cost of the control at each time s is |ag|?/P~1) (as long as X, stays in Q)

Goal (of the controler): maximize the net gain | Gy = xr>tuo(Xt) — / |as|p/(p_1) ds
0

Theorem: [Barles-Burdeau CPDE 95, Barles-Da Lio JMPA 04] The value function (max-
imal gain) is given by the unique (continuous) wviscosity solution of (DHJ), namely:

u(z,t) = sup E (G| Xo = x)

(as)s



MOTIVATION

2) KPZ model of surface growth
[Kardar-Parisi-Zhang 86] (p = 2) and [Krug-Spohn 88] (p > 1)

ur = vAu + A\|\VulP +n(z,t)

e u = height of surface, growing by ballistic deposition of dusts (alumine)
e growth term A\|Vu|P: deposition of new particles on the surface
e diffusion term rAuwu: relaxation of the interface by surface tension

e 7)(x,t): noise term

3) Model case in theory of NL parabolic equations
Among simplest parabolic PDE’s with 1st order nonlinearity

Cp. classical problem with zero order nonlinearity (NLH or Fujita equation):

ur — Au=uP, p>1



BASIC PROPERTIES

p > 1, Q C R™ smooth bounded, up € X, := {v € C}(Q); v >0, vjpn = 0}
e Local existence-uniqueness, maximal classical solution T = T(up) € (0, 00].

e Maximum principle estimate:

0 <u(t) <||uollew, 0<t<T

e Blow-up alternative: If T' < oo, then Gradient Blow-up (GBU), i.e.:

li o =
T [ V() = o0

e p < 2: Global existence and C''-boundedness for all ug
e p > 2: GBU for large data / Global existence and decay for small data

[Ladyzenskaja 56, Filippov 61, Lieberman 86, Alikakos-Bates-Grant 89, Dlotko 91,
Alaa 96, S. 02, Benachour-Dabuleanu 03, Hesaaraki-Moameni 04, S.-Zhang 06, ...]



OTHER TOPICS

e Cauchy problem (2 = R"™): all solutions global for any p > 0.

Detailed studies of asymptotic behavior:

[Amour, Barles, Ben Artzi, Benachour, Biler, Guedda, Gilding, Karch, Kersner, Koch,
Laurencot, Porretta, Quaas, Rodriguez, S., Tabet-Tchamba, Weissler, ...|

e More general diffusions: p-Laplace, fractional, fully nonlinear, ...

[Attouchi, Barles, Bidaut-Véron, Laurencot, Leonori, Magliocca, Quaas, Rodriguez, S.,
Stinner, Véron, ...]

e Rough initial data, maximal regularity

[Ben Artzi, Benachour, Cirant, Dabuleanu, Goffi, Laurengot, S., Weissler, ...]

e Boundary and initial trace problems

[Bidaut-Véron, Dao, Garcia-Huidobro, Véron, ...]

e Extinction problems (0 < p < 1)

[Benachour, Tagar, Laurengot, Schmitt, S., Stinner, ...]

e Null-controllability

[Porretta, Zuazua]



BEHAVIOR OF SOLUTIONS - QUESTIONS
(p > 2, Q bounded assumed throughout)

1) GBU singularities:
e Singular set

e Space profile

e Time rate

2) Post-GBU behavior:

e Weak continuation

e Loss of boundary conditions

e Recovery of boundary conditions and regularization
e Oscillations



Diffusive HJ equations Part 1 — GBU set

GBU SET
B(ug) := {xo € Q; Vu is unbounded near (zo,7)}.

Theorem. [S.-Zhang JAM 06]

B(UO) C 00N

|Vu| < C6—P(x) in Qx0,T), f=——, ©ox)=dist(z,00)

Local Bernstein type gradient estimate (elliptic case: [PL Lions, JAM 85])

Remarks.

e Similar result for quasilinear case u; — Apu = |Vul? (¢ >p>2) [Attouchi JDE 12]

e Gradient estim. of this type = Liouville-type thms for ancient solutions in (—oo, 0) x R™.



Diffusive HJ equations Part 1 — GBU set

GBU SET (1II)
Question: location of GBU points within the boundary ?

1. Symmetric case: 2 = Bg and ug radial = | B(ug) = 02

2. [Li-S. CMP 10] Localization in any small open set, assuming supp(ug) is concentrated
3. [Li-S. CMP 10] Single-point GBU
Theorem. Assume Q C R?, 0 € 01, and

e cither (2 is a disk or

Q symm. convex in x-direction, locally flat near 0 p = T'(ug) < oo and B(ug) = {0}

e uy symm. \, in x, suitably concentrated near 0

y

/)__——\\

Q




Diffusive HJ equations Part 1 — GBU set

GBU SET
e Remarks
- True for more general (nonflat) symmetric domains [Esteve JMPA 19]
- Nonlinear diffusion  u; — Ayu = [Vul? (¢ >p > 2) [Attouchi-S. TAMS 17]

- Possible physical interpretation (KPZ model): the surface tension (diffusion) forces the
steep region to become more and more concentrated near a single boundary point

e Ideas of proof

- Auxiliary function | J(z,y,t) = uy + Axy~ Tul (r,ysmall, ¢ >1, 0<y<qg—1)

- Use MP to show J < 0 (— long computations using Bernstein type gradient estimate)
- Integration in . = u(x,y,t) <« x~2/(@=DyP=2)/(p=1)

- GBU at x # 0 would contradict nondegeneracy result obtained by barrier arguments
(analogue of [Giga-Kohn CPAM 89| for NLH)

e Open problems

- Finiteness of B(ug) for n = 2 and nonradial ug ? ([Chen-Matano JDE 89] for NLH)
- Finiteness of (n — 2)-Hausdorff measure of B(ug) ? ([Veldzquez IUMJ 93] for NLH)



Diffusive HJ equations Part 1 — Space profile

SPACE PROFILE (I)

[Filippucci-Pucci-S. CPDE 20]
e Gradient estimate with sharp constant

Vu|l < (1+¢e)d,6P+C. in Qx[0,T), f=—— dy=p" (Ve>0
D P

e Sharp GBU profile in normal direction: For any GBU point a € 012,

lim s°Vu(a + sv,, T) = dpv, | (hence |Vu(z,T)| ~ dp,0=%, asx — a,  —a 1L 0Q)

s—0

e Main ingredient: elliptic Liouville-type theorem in half-space

{—Av = |V, r e R} ={(x1,...,2,); x, >0},
v = 0, xr € IRY

(1)

Theorem. [Filippucci-Pucci-S. CPDE 20|
Let p > 2 and let v € C*(R%) N C(R") be a solution of (1). Then v depends
only on the variable x,,.

Recall whole space case Liouville thm: all solutions are constant  [PL Lions, JAM 85]



Diffusive HJ equations Part 1 — Space profile

SPACE PROFILE (II): TANGENTIAL PROFILE

Q (in single-point GBU): along 0%, how fast is u,, damped away from the GBU point ?
1. General result (csq of above Liouville Thm): For any GBU point a, the final profile
is more singular in tangential direction (hence anisotropic):

li —al? T) =
m—)al,ra?eafl‘x a’ U,/(CE, ) >

2. Sharp profiles (n = 2)

Theorem. [Porretta-S. IMRN 17] Let 2 < p < 3 and consider situation of single point
GBU theorem in locally flat case, with ug symm. decreasing in x. Then |u,| < C' and

2p-1)/(p-2)] /7Y
uy(z,y,T) =~ dy |y + C|z|*P P for x,y small.

N u(x,y,T)

In particular (final profile of normal
derivative on 09):

uy(2,0,T) ~ |z|72/ (=2

Open problems: p > 3 7 Other profiles ?



Diffusive HJ equations Part 1 — Time rate

TIME RATE OF GBU: Lower estimate
Consider slightly more general KPZ type equation (h smooth)
up — Au = |Vul? + h(x).
e For any GBU solution [Porretta-S. JMPA 19]:

[Vu(t)||oo > C(T — )~/ (=2, 0<t<T

Previous partial results [Conner-Grant DIE 96, Guo-Hu DCDS 08]

e Consequence: GBU rate is always type II, i.e. never self-similar

1 1
Natural scale invariance would lead to ——— << —)
2(p—1) p—2



Diffusive HJ equations Part 1 — Time rate

TIME RATE OF GBU: Upper estimate

For time-increasing solutions (sufficient condition: Aug + |Vug|P + h > 0), we have

1) CUT )02 < [[Vu(t) e < Co(T — 1)~ /5=

provided

en=1 [Guo-Hu DCDS 08, Porretta-S. JMPA 19|
e ) = Bpg, ug radially symmetric [Li-Zhang AMSci 13|
e () convex, 2 <p<3 [Attouchi-S., CVPDE 20|

Open problem: p > 3 (also open for some of the elliptic results in [Lasry-Lions, 89])

Ingredients of proofs: MP with tricky auxiliary functions, sharp gradient estimates,
zero-number arguments on u; (1d)



Diffusive HJ equations Part 1 — Time rate

TIME RATE OF GBU:

Faster rates and complete classification in 1d

Ut — Ugy = |ugl?, x2€Q=(0,R), t>0 (0 < R < o0)
u = 0, xr€ed, t>0
u(z,0) = wo(z), x€.

Theorem. [Mizoguchi-S., preprint 21]
(a) For any up € X4 with 0 € B, there exist an integer £ > 1 and C' > 0 such that

limy_y7(T — )72 1y (0,¢) = C (1)

Moreover, in small boundary layer, u has bubbling space-time behavior, described by

u="Vyp(x) +0(?), ast—T_, with A\(t) :=cul™?(0,t) =0

(b) For any integer ¢ > 1, there exists up € X4 and C' > 0 such that (1) holds.



Diffusive HJ equations Part 1 — Time rate

TIME RATE OF GBU:

Faster rates and complete classification in 1d (continued)

e Bubble Va(y)

Cp

defined by the steady states v
V(x) = cpz®=2/P=1)  (singular) 2
Volz) =V(z+a)—V(a), a>0 (regular)

e Geometric characterization of ¢:

¢ = number of vanishing intersections of u(-,t) with U as t — T~

e Stability of GBU time and GBU rate
- T continuous w.r.t. initial data iff £ odd
- rate (and profile) stable iff £ =1



Diffusive HJ equations Part 1 — Time rate

IDEAS OF PROOFS (Part (b))

Based on construction of special solutions with precise space-time behavior, by a modifi-
cation of Herrero-Veldzquez’ method for NLH “type-1I” solutions (1994)

Ingredients:
e similarity variables y = x//T —t, s = —log(T —t) (cf. Giga-Kohn 1985-89)
e inner/outer expansions: inner region (quasi-stationary behavior) and
outer region (linearization around singular steady-state — rates given by eigenvalues !)
e heavy a priori estimates

e topological degree



Diffusive HJ equations Part 1 — Time rate

IDEAS OF PROOFS (Part (a))

Based on zero number and braid group techniques to compare 3 solutions u, U, v,
where

e U : singular steady state

e v : special sol. with known rate, s.t. 7*(v) = T*(u) and v — U has same # of vanishing
zeros as u — U

YXY2X2Y XY I X Y

Parabolic reduction principle (Matano): denote G(t) = braid (vy, va, v3)

G(t) loses finitely many X2 or Y2 (up to topological equivalence)



Diffusive HJ equations Part 2 — Post-GBU behavior

VISCOSITY SOLUTIONS
Viscosity solutions of (DHJ) [Barles-DaLio JMPA 2004]
e 3! global viscosity solution @ € BC([0,00) x Q), @ > 0

o uc CH2((0,00) x Q), classical solution inside

¢ Boundary conditions in generalized visc. sense: | min(u, u; — Au — |VulP) <0

e i =uwuon [0,T(up)) = @ is a weak continuation of u after T

Equivalent formulation by approximation/truncation:
vy — Av = Fi(|Vol]) := |Vo2 min(kP~2,|Vo|P~2), z€Q, t>0,
(Pr) v(z,t) =0, x€0Q, t>0,
v(z,0) = up(x), x €.
Solution vy of (Py) is global in classical sense
v 7@ in Cip ((0,00) x Q) But NOT in C (€ x [0,00)) !!

Possible loss of BC <+ boundary layer phenomenon



Diffusive HJ equations Part 2 — Post-GBU behavior

VISCOSITY SOLUTIONS: LARGE TIME BEHAVIOR

QUESTIONS:

1) Is there actual loss of boundary conditions after GBU 7
2) Does the solution become eventually classical again 7

3) If yes how does the solution look like in the intermediate time range 7



Diffusive HJ equations Part 2 — Post-GBU behavior

VISCOSITY SOLUTIONS: LARGE TIME BEHAVIOR

QUESTIONS:

1) Is there actual loss of boundary conditions 7
2) Does the solution become eventually classical again 7

3) If yes how does the solution look like in the intermediate time range 7

Answer to Q2: [Porretta-Zuazua ATHP 12]

There exists T'(ug) € [T'(ug),00) such that u(-,t) € CF(Q) on [T (ug), o)

T(ug): final regularization time. Moreover,

lim [[(t)cn = 0

t—o00



Diffusive HJ equations Part 2 — Post-GBU behavior

LOSS OF BOUNDARY CONDITONS

Answer to Q1 (does LBC occur for GBU solutions ?): YES and NO !

[Porretta-S. AIHP 17| (positive and negative results)
[Quaas-Rodriguez JDE 18] (positive results, also for fully nonlinear problems)

L(ug) = {:Bo € 09, u(xg,t) > 0 for some t > O} (p > 2, 2 bounded)

e | Jug such that L(ug) # 0, and even L(ug) = 0N

e | L(up) can be made arbitrarily close to any given open subset of 92 = ()

e | Jug such that 7' < oo and L(ug) =0 e, u=0 on 09 x (0,00)

e | GBU without loss of BC is exceptional:

Vo Z?é uyg — ,C(’Uo) 7& @
vo <# ug = T(vg) =00 (Threshold between global classical solutions and GBU)
[Porretta-S. ATHP 17] for n = 1, [Filippucci-Pucci-S. CPDE 20] for n > 2




Diffusive HJ equations Part 2 — Post-GBU behavior

INTERMEDIATE TIME RANGE BEHAVIOR
Q3: How does the solution look like between T'(ug) and T'(ug) ?

Precise description in 1d (€2 = (0,1)) [Porretta-S. JMPA 19], [Mizoguchi-S. preprint 20]
So={t>0; u(0,t) =0 and limsup |u,(z,t)| = oo} (“transition” times)
z—0

Theorem 1. [Mizoguchi-S. 20]
(i) The set Sy is finite.
(ii) On each interval between two consecutive times t1,ts € Sy, the solution is either:
(iil) classical up to x = 0, i.e.:
u e CY2([0,1/2] x (t1,t2)) and w =0 on {0} x (t1,t2)
(ii2) or of LBC type at x = 0, i.e. u > 0 on {0} x (t1,12).

u(t, 0)
s time intervals where
solution is classical

0 6L=T b s th s to it 7 t

Rem: No “Waiting time” phenomenon is possible: either immediate LBC or immediate
regularization after each time t € Sy



Diffusive HJ equations Part 2 — Post-GBU behavior

INTERMEDIATE TIME RANGE BEHAVIOR
Theorem 2. [Mizoguchi-S. 20]

(i) For any integer m > 1, there exist solutions with exactly m times of LBC and m
times of reqularization (oscillatory behavior)

(ii) More generally, for any finite sequence of interval types “C” or “LBC” in any
given order, there exists a solution realizing this sequence. This in particular produces
“bouncing” times and times of GBU without LBC.

w(t, 0)
u(0, ) . GBU without LBC
c /u C A\/L\m C L c | c
0 t=T ta ts te tz g to two=T t

Main tool of proof: zero number arguments adapted to viscosity solutions.



Diffusive HJ equations Part 2 — Post-GBU behavior

INTERMEDIATE TIME RANGE BEHAVIOR

e Shape of initial data leading to solution with m LBC (works also in higher
dimension):

ug ()

A

0] X

- Recursive construction of a multiscale, compactly supported initial data
- m suitably rescaled bumps located farther and farther from the boundary
- Bump closest to boundary responsible for first GBU and LBC

- Influence of 2nd bump becomes significant only after some lapse of time, leaving
enough time for regularization by diffusion (before producing 2nd GBU and LBC, etc.)

- General case (including bouncing and GBU sol withou LBC) requires delicate ar-
gument with arbitrary number of critical parameters

e Application of multi-bump LBC solutions to stochastic control problem:

For suitable multibump spatial distributions of rewards inside the domain, if
a controled Brownian particle starts near the boundary, the net gain can be maximized
on different time horizons but not on some intermediate times.



Diffusive HJ equations Part 2 — Post-GBU behavior

INTERMEDIATE TIME RANGE BEHAVIOR: FURTHER RESULTS

e Rates of recovery of BC: complete classification in 1d. [Mizoguchi-S., preprint 21|

Analogue of above classification of GBU rates but, instead of multiples of —1/(p — 2),
rates are the integers: . .
u(0,t) ~C(T —t)*, ast—1T".

e For some special classes of solutions in 1d: [Porretta-S. JMPA 19]
-Rate of LBCis~t—T,ast —T7"
- Rate of final regularization of ||ug(t)||sc ~ (t — T)"Y/®=2) ast — T+

(no complete classification available so far)

u(z,t)

0 T 7 t
GBU 1 regul.
loss of B.C.

e In higher d: existence of solutions with multiple GBU/LBC and some other partial
results, but many open questions...



THANK YOU !!



