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Uniformly elliptic PDE

We consider equations

F(x,u, Du, D*u) = f(x) inQ (1)
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Uniformly elliptic PDE

We consider equations

F(z,u, Du, D*u) = f(x) in Q (1)

e ) C R™is a bounded domain.

o [1: QxR xR"xS(n) — R is measurable, where S(n) is the set of
all n x n symmetric matrices.

r — F(x,r,p, X) is nondecreasing, F(z,0,0,0) =0, f € L"(Q).

F is uniformly elliptic, with fixed ellipticity constants 0 < A < A, and

has gradient dependence coefficient function (drift coefficient) in
L"™(€2). More precisely:

ANDRZEJ SWIECH (joint work with S. KoAleksandrov-Bakelman-Pucci maximum priCorrona, May 31, 2022 2/27



Uniformly elliptic PDE

PiaX =Y) —y(z)lp — g — w(|r — s])
< F(zx,r,p,X) — F(z,s,q,Y)
<PYAX =Y) +7(@)lp— gl +w(lr —s))
forall r,s e R,p,q e R", X, Y € S(n),a.e. x € Q
for some v € L' (2) and a modulus w.

73,\_,/\773;—,/\ are the Pucci extremal operators are defined by
Pia(X) = —ATr(XT) + ATr(X ™), Py (X) = ATr(X ™) = ATr(X™)

for X € S(n).
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ABP mazimum principle

e Classical Aleksandrov-Bakelman-Pucci maximum principle: There exist
C = C(n,\, [[7llr(e)) > 0 such that if u € Wlif(Q) N C(Q) is a strong
subsolution (resp., supersolution) of

P~ (D?*u) — y(z)|Du| = f(z) in Q

(resp., PT(D?*u) + y(z)|Du| = — f(z) in Q)

then

mgx u < né%x u 4+ Cdiam(Q2) ||f”Ln(F+(u))

(resp., max(—u) < max(—u) + Cdiam(Q)|| f|| r @+ (—u)))-
Q o2

It (u) =T (u,Q) := {x € Q| Ip € R" such that
u(y) < u(@) + (p,y —x) for y € 2}

is the upper contact set of wu.
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ABP maximum principle

e Classical ABP maximum principle is stated for linear equations and does
not require uniform ellipticity.
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ABP maximum principle

e Classical ABP maximum principle is stated for linear equations and does
not require uniform ellipticity.

e Generalizations to viscosity solutions: when v, f € L>®(Q) N C ()
(Caffarelli, Caffarelli-Cabré, Trudinger); L™-viscosity solutions when

v € L®(Q)NC(Q), f € L™(Q) (Caffarelli-Crandall-Kocan-Swigch).
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ABP maximum principle

e Classical ABP maximum principle is stated for linear equations and does
not require uniform ellipticity.

e Generalizations to viscosity solutions: when v, f € L>®(Q) N C ()
(Caffarelli, Caffarelli-Cabré, Trudinger); L™-viscosity solutions when

v € L®(Q)NC(Q), f € L™(Q) (Caffarelli-Crandall-Kocan-Swigch).

e Generalized ABP maximum principle with norms over contact sets
replaced by norms over Q2 when v € L1(Q),q > n, f € LP(f2) for some

p > po = po(n, A/A): strong solutions (Fabes-Stroock, Escauriaza,
Cabre,...); LP-viscosity solutions (Fok, Crandall-Swiech, Koike-Swiech, ...).
Recent generalizations by Krylov for strong solutions when v € L™(2) and
p > p for some constant p < n (also Dong-Krylov). Versions with
quadratically growing gradient terms (Koike-Swiech), versions for
degenerate/singular equations (Imbert, Davila-Felmer-Quaas), versions in
unbounded domains (Amendola, Birindelli, Cabré, Capuzzo-Dolcetta,
Leoni, Rossi, Vitolo, ...), ...
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ABP maximum principle

e It was not known if ABP maximum principle in a version with contact
sets is true for LP-viscosity solutions when ~ is unbounded.
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ABP mazimum principle

e It was not known if ABP maximum principle in a version with contact
sets is true for LP-viscosity solutions when ~ is unbounded.

e Goal: Prove classical ABP maximum principle with norms over contact
sets for L™-viscosity sub/super-solutions of extremal equations when
7. f € L"(Q).
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LP-viscosity solutions

Definition

A function u € C(Q2) is an LP-viscosity subsolution (resp., supersolution) of
(1) if
essliminf (F(y, u(y), Do(y), D*o(y)) — f(y)) <0

Yy—x

(reSp-, esslimsup (F(y,u(y), Do(y), D*o(y)) — f(y)) > 0)

y—x
whenever for ¢ € leocp(Q) u — ¢ attains a local maximum (resp.,
minimum) at z € . Finally, u € C(€2) is called an LP-viscosity solution of

(1) if it is both an LP-viscosity subsolution and an LP-viscosity
supersolution of (1).
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Existing approaches

e Proof of classical ABP max. principle for strong solutions: Uses
approximations by smooth sub/super-solutions. This is not possible here.
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Existing approaches

e Proof of classical ABP max. principle for strong solutions: Uses
approximations by smooth sub/super-solutions. This is not possible here.
e Original proof of Caffarelli (v =0, f € L*(Q) N C(Q)): Uses that the

concave envelope of u is C''! on the contact set. This may not be true
here.
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Existing approaches

e Proof of classical ABP max. principle for strong solutions: Uses
approximations by smooth sub/super-solutions. This is not possible here.

e Original proof of Caffarelli (v =0, f € L*(Q) N C(Q)): Uses that the
concave envelope of u is C''! on the contact set. This may not be true
here.

e Approach of Trudinger (v, f € L>®(Q2) N C(R)): Classical proof works for
semi-convex subsolutions (resp., semi-concave supersolutions).
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Existing approaches

e Proof of classical ABP max. principle for strong solutions: Uses
approximations by smooth sub/super-solutions. This is not possible here.
e Original proof of Caffarelli (v =0, f € L*(Q) N C(Q)): Uses that the
concave envelope of u is C''! on the contact set. This may not be true
here.

e Approach of Trudinger (v, f € L>®(Q2) N C(R)): Classical proof works for
semi-convex subsolutions (resp., semi-concave supersolutions).

e Proof of CCKS (v € L*(2) NC (), f € L>=(£2)): Approximation by
sup/inf-convolutions to produce semi-convex/semi-concave viscosity
sub/super-solutions when ~, f € L>(Q) N C (). Reduction to f € C(Q)
by solving appropriate extremal equation.
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Challenges

e No theory of L™-viscosity solutions when v € L™(12).
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Challenges

e No theory of L™-viscosity solutions when v € L™(12).

e We want to follow the approach of CCKS to reduce to a case where

v € L>®(Q) NC (), perhaps at a cost of introducing other terms.
Problem: if v € L™(Q) and » € W27(Q) then v|Dy| does not have to be
in L™(2). Thus it may not be possible to produce strong solutions to even
simple extremal equations

PE(D?u) £ y(z)|Du| = f(z) in Q.
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Challenges

e No theory of L™-viscosity solutions when v € L™(12).

e We want to follow the approach of CCKS to reduce to a case where

v € L>®(Q) NC (), perhaps at a cost of introducing other terms.
Problem: if v € L™(Q) and » € W27(Q) then v|Dy| does not have to be
in L™(2). Thus it may not be possible to produce strong solutions to even
simple extremal equations

PE(D?u) £ y(2)|Du| = f(z) in Q.
e Help: Recent Krylov's extension of the ABP maximum principle: There
exists a constant p = p(n, A\, A, [|7][zn(q)) < n such that if
p>p,f €Ll (Q)and ve W2P(Q)NC(Q) is a strong subsolution of

P~ (D*) — y(z)|Dv| = f(z) in Q

then

. 2P
maxv < maxv + C(diam()2 % | £ll1s (o,

where C' = C(pvna )\7A> ”/}/HL”(Q))
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Consequence of Krylov’s result

Theorem

Let Q be a bounded and open domain satisfying the exterior sphere
condition. Lety € L"(Q), p<p <n and f € LY (Q). Then extremal
equations

PE(D2v) + y(z)|Dv| = f(z) in Q
v=~h on 0N}

have unique strong solutions v € VVlif (Q) N C(Q) such that for every
e

lvllw2e@y < C (1fllze@) + 12l 00)) »
where C = C(p,n, \, A, [[7]| Ln (), 7, diam(€2), dist (€2, 092)). The
dependence of C on ~ is through a condition for a number R such that the
L™ norms of ~ over balls having this radius must be smaller than some
prescribed number.

v
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ABP for L™-viscosity solutions

Theorem
Let v € L'} (Q), f € L (Q). There exist C = C(n, A, |||/ 1n(q)) > 0 such

that if w € C(S2) is an L"-viscosity subsolution of
P~ (D) — A(x) | Dul = f(z) in O
then

mﬁaxu < r%%xu + Cdiam(Q)HfHL”(F*(U))‘

Bakel Pucci i priCorTONA, MAY 31, 2022 11 /27
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Preliminary results

e Solvability of modified extremal equations:

B - open ball, Q C B and the radius of B is equal to 4 diam(2). We
extend 7 and g setting v = g = 0 on R%\ Q. For 0 < § < diam(fQ2), we
define 5 := 7 x 15, where 7 is the standard mollifier.
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Preliminary results

e Solvability of modified extremal equations:

B - open ball, Q C B and the radius of B is equal to 4 diam(2). We
extend 7 and g setting v = g = 0 on R%\ Q. For 0 < § < diam(fQ2), we
define 5 := 7 x 15, where 7 is the standard mollifier.

Lemma

Let g € LE(Q) for p < p < n. There exist
g0 = eo(p,m, A\, A, ~y,diam(B)) > 0 such that if e < gy then equation

P~(D?v) — y5(x)| Dv| — e| Dv|7> = g(x) in B
v=20 ondB

has a strong solution v € W?P(B) such that

vl e (B) < C(llglle(y + ),

where C = C(p,n, \, A, [|[7]| 1n(q), diam(B)).
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Preliminary results

Proof of Lemma:
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Preliminary results

Proof of Lemma:
013<p’ < pand set r =np'/(n —p). For R > 0, we denote

Br = {ve WY (B) : ||v||w. p*(B% < R} C WHT(B). For w € Br denote
by T'w the unique solution u € W=P

P~ (D?u) — ys(x)| Du| — €|Dw|%_p =g(z) in B
v =0 on J0B.
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Br = {ve WY (B) : ||v||w. p*(B% < R} C WHT(B). For w € Br denote

by T'w the unique solution u € W=P

P~ (D?u) — ys(x)| Du| — €|Dw|%_p =g(z) in B
v =0 on J0B.

o T :Br — WLT(B) is continuous.
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Preliminary results

Proof of Lemma:
013<p’ < pand set r =np'/(n —p). For R > 0, we denote

Br = {ve WY (B) : ||v||w. p*(B% < R} C WHT(B). For w € Br denote
by T'w the unique solution u € W=P

P~ (D?u) — ys(x)| Du| — 5|Dw|%_p =g(z) in B
v =0 on J0B.

o T :Br — WLT(B) is continuous.
e T': Bp — Bg for some R > 0 and T'(Bg) is precompact in Wi (B).
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Preliminary results

Proof of Lemma:
013<p’ < pand set r =np'/(n —p). For R > 0, we denote

Br = {ve WY (B) : ||v||w. p*(B% < R} C WHT(B). For w € Br denote
by T'w the unique solution u € W=P

P~ (D?u) — ys(x)| Du| — 5|Dw|%_p =g(z) in B
v =0 on J0B.

e T :Br — WLT(B) is continuous.

e T': Bp — Bg for some R > 0 and T'(Bg) is precompact in Wi (B).

e Use the Schauder fixed point theorem to conclude that T : B — Bg has
a fixed point which is a strong solution of the equation.
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Preliminary results

e LP-viscosity solutions = L -viscosity solutions for p < p1 < p < n:

Theorem

Letp<pir<p<mn, feLP(Q),ye L} (Q). IfueC(Q)isan
LP-viscosity subsolution (resp., supersolution) of F(z,u, Du, D*u) = f(x)
in Q then w is an LP'-viscosity subsolution (resp., supersolution) of
F(x,u, Du, D*>u) = f(x).
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Idea of proof

Proof of ABP Maximum Principle:
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Idea of proof

Proof of ABP Maximum Principle:
e Take p<p<mnande>0. Denote v,y =y N1, frn=f*n,

Fm = — Yms fm = f — fm. Using Theorem (L™ = LP) and
v()| Du| < Yon(@)|Dul + & Dul 75 + Celfom ()7,
w is an LP-viscosity subsolution of
P~ (D?*u) — v ()| Du| — 5]Du\"%1? = f(z)+ Cgﬁm(x)\% in Q.
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Idea of proof

Proof of ABP Maximum Principle:
e Take p<p<mnande>0. Denote v,y =y N1, frn=f*n,

Fm = — Yms fm = f — fm. Using Theorem (L™ = LP) and
v()| Du| < Yon(@)|Dul + & Dul 75 + Celfom ()7,
w is an LP-viscosity subsolution of
P~ (D?*u) — v ()| Du| — dDu\"%P = f(z)+ Cgﬁm(x)\% in Q.

e Use Lemma to find a strong solution w,,, € W2?(Bg) of

P~ (D*wy) — Y ()| Dwy| — aC*|Dwm\"%P = flx) + C€|f~ym(ar)]% in B
Wy = 0 on 0B,

where C, = 27%1?. We have

meHLoo B) < C(HmeLP + C- H’YmHLn )+5)
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Idea of proof

e Then u,, = u — wy, is an LP-viscosity subsolution of
'P_(D2um) = Ym(2)[Dup | — Cx| Dy |77 = fi ()

in Q and hence also a C-viscosity subsolution.
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Idea of proof

e Then u,, = u — wy, is an LP-viscosity subsolution of
'P_(D2um) = Ym(2)[Dup | — Cx| Dy |77 = fi ()

in Q and hence also a C-viscosity subsolution.

° Af/j [w], Al_/j [w] mean sup- and inf-convolutions of w. It is standard that
Af/j [um](2) == sup{um(y) — 4|z — y|> | y € R"} is a viscosity subsolution
of

P~ (D) = 74 (2)| Dtt| — £Cu| Do |77 = f ()

where 'y%qj, fg1 converge uniformly to v, fi.
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Idea of proof

e Using a technique of Crandall-Kocan-Soravia-Swiech we show that for
sufficiently large [ = I(j), the function

U = Ap ) (AT iy o]

is a viscosity subsolution of the same equation in some increasing regions
Q. But ul, is C1! so it is a strong subsolution.
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Idea of proof

e Using a technique of Crandall-Kocan-Soravia-Swiech we show that for

sufficiently large [ = I(j), the function

U = Ap ) (AT iy o]

is a viscosity subsolution of the same equation in some increasing regions

Q. But ul, is OV so it is a strong subsolution.

Set
* e d_maxﬁu—maxagu Me—dil
N diam((?) ’ N
p maxg vl — maxgg,; vﬁn
7 dlam(Qj)

For large j, d;j < M.
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Idea of proof

o If for r > 0,
T (ul,, Q) :={z € Q; | Ip € B,(0) such that
ul, (y) < ul,(z) + (p,y — x) for y € Q;},
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Idea of proof

o If for r > 0,
T (ul,, Q) :={z € Q; | Ip € B,(0) such that
up(y) < uh (@) + (p,y — ) for y € Oy},
we have

J
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Idea of proof

o If for r > 0,
T (ul,, Q) :={z € Q; | Ip € B,(0) such that
up(y) < uh (@) + (p,y — ) for y € Oy},
we have

J

and hence on Tt (u,, Q;),

eC| DVl (2)| 77 < eC.M77 = c..
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Idea of proof

o If for r > 0,
T (ul,, Q) :={z € Q; | Ip € B,(0) such that
up(y) < uh (@) + (p,y — ) for y € Oy},
we have

By, (0) = Duj, (T (uf,, )

J
and hence on Fj(uin,Qj),
eC,|Dvl ()77 < eC.Mm7 = c..
Following the standard proof of ABP maximum principle we then get

A A _ , 1
mavs e < g, + Ciam( @)L+ oy + =1

for C = C(n, A, [l ey ) < Cns X 1l o ))-
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Idea of proof

e Since limsup;_, Tt (ud, Qy/;) C T (um, Q2), we conclude

1
ity < 0t O (D) fnl 1+ ) + 21927
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Idea of proof

e Since limsup;_, Tt (ud, Qy/;) C T (um, Q2), we conclude

1
ity < 0t O (D) fnl 1+ ) + 21927

e Send m — oo, use the uniform convergence of v, to u on €, the fact
that H77n - 'YHL”(Q) + Hgm - f”Ln(Q) — 0 to obtain

maxu < maxu + Cdian(@) (/]| v+ + el

where C' = C(TL, A: HVHL"(Q))
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Idea of proof

e Since limsup;_, Tt (ud, Qy/;) C T (um, Q2), we conclude

1
ity < 0t O (D) fnl 1+ ) + 21927

e Send m — oo, use the uniform convergence of v, to u on €, the fact
that H77n - 'YHL”(Q) + Hgm - f”Ln(Q) — 0 to obtain

maxu < maxu + Cdian(@) (/]| v+ + el

where C' = C(TL, A: HVHL"(Q))

e Send £ — 0 to conclude.
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Consequences of ABP mazimum principle

e Pointwise maximum principle for LP-viscosity solutions:

Corollary
Let vy € LV (2), f € L (Q). Let u € C(Q2) be an L™-viscosity subsolution
of

P~ (D?*u) — y(z)|Du| = f(z) in Q
and let uw — o have a strict local maximum at x € Q). Then for every small
enoughr > 0 and k > 0, [T} (u — ¢, B,(x)))| > 0.
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Consequences of ABP mazimum principle

e Krylov's version of ABP for LP-viscosity solutions:

Theorem
Let v € L (Q), f € LE(Q), for p < p < n. There exist

C = C(n,p, \, A, |7l zn (o)) such that if u € C(Q) is an LP-viscosity
subsolution of

P (D*u) = 7(x)| Dul = f(x) inQ

then

max u < maxu + C(diam(2))% £l e (2)-
Q [2}9)
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Consequences of ABP mazimum principle

e Krylov's version of ABP for LP-viscosity solutions:

Theorem
Let v € L (Q), f € LE(Q), for p < p < n. There exist

C = C(n,p, \, A, |7l zn (o)) such that if u € C(Q) is an LP-viscosity
subsolution of

P (D*u) = 7(x)| Dul = f(x) inQ

then

max u < maxu + C(diam(2))% £l e (2)-
Q [2}9)

e Good theory of LP-viscosity solutions for p < p < n: solvability,
consistency results, relation to strong solutions, ...
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Pointwise properties LP-viscosity solutions

e Equation is satisfied a.e.:

p<p<mn,vyeL}(Q),feLP(Q). If uis an LP-viscosity subsolution
(resp., supersolution) of F' = 0, then w is twice pointwise
super-differentiable (resp., sub-differentiable) a.e. in 2 and

F(x,u(z), Du(z), D*u(z)) < f(x) (resp., > f(z)) a.e. inQ
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Pointwise properties of LP-viscosity solutions

e Equivalent definition of LP-viscosity solutions:

p<p yeLL(Q),fecLl() and u e C() is twice pointwise
differentiable a.e. in Q. Then w is an LP-viscosity subsolution (resp.,
supersolution) of F'(z,u, Du, D?u) = f(x) in Q if and only if
F(x,u(z), Du(z), D®>u(x)) < f(z) (resp.,

F(z,u(z), Du(x), D®>u(x)) > f(z)) a.e. in  and whenever ¢ € VVlif(Q)
and u — ¢ has a local maximum (resp., minimum) at & € 2, then

esslimsup(P~(D*(u — ¢)(x)) — v(2)|D(u — ¢)(2)]) = 0

T—T
(resp.,

esslim inf(PT(D?(u — ¢)(z)) + v(z)|D(u — ¢)(z)|) < 0).

T -
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Pointunse properties LP-viscosity solutions

e We can move LP-viscosity solutions around:

ANDRZEJ SWIECH (joint work with S. KoAleksandrov-Bakelman-Pucci maximum priCorrona, May 31, 2022 24 /27



Pointwise properties LP-viscosity solutions

e We can move LP-viscosity solutions around:
F, Fy, F; satisfy basic assumptions with the same v € L7 (), p < p and
fi, fo € LP(Q).
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Pointwise properties LP-viscosity solutions

e We can move LP-viscosity solutions around:
F, Fy, F; satisfy basic assumptions with the same v € L7 (), p < p and
fi, fo € LP(Q).

(i) If u is an LP-viscosity subsolution of Fy(x,u, Du, D?*u) = fi(z) in Q,
an LP-viscosity supersolution of Fy(z,u, Du, D?*u) = fa(z) in  and
f(x) := F(x,u(x), Du(z), D*u(z)) € LP(R), then u is LP-viscosity
solution of F(x,u, Du, D*u) = f(z) in .
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Pointwise properties LP-viscosity solutions

e We can move LP-viscosity solutions around:
F, Fy, F; satisfy basic assumptions with the same v € L7 (), p < p and
fi, fo € LP(Q).

(i) If u is an LP-viscosity subsolution of Fy(x,u, Du, D?*u) = fi(z) in Q,
an LP-viscosity supersolution of Fy(z,u, Du, D?*u) = fa(z) in  and
f(x) := F(x,u(x), Du(z), D*u(z)) € LP(R), then u is LP-viscosity
solution of F(x,u, Du, D*u) = f(z) in .

(ii) If u is an LP-viscosity subsolution of F(z,u, Du, D?>u) = fi(z) in Q,
an LP-viscosity supersolution of F(z,u, Du, D?>u) = fa(z) in § then

f(z) == F(z,u(z), Du(z), D*u(x)) € LP() and u is LP-viscosity solution
of F(z,u, Du, D*>u) = f(x) in Q.
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Pointwise maximum principle

Notice that if u is twice pointwise differentiable a.e. in € then the functions
z — Du(z), z — D*u(x)

are measurable so the function z — F(x, u(x)Du(z), D*u(z)) is always
measurable.
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Pointwise maximum principle

Notice that if u is twice pointwise differentiable a.e. in € then the functions
z — Du(z), z — D*u(x)

are measurable so the function z — F(x, u(x)Du(z), D*u(z)) is always
measurable.

Also fi < [ < fa'so f € LP(Q).
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Consequences

e Being an LP-viscosity subsolution/supersolution is more a property of a
function than of a particular equation. Once u is an LP-viscosity
subsolution /supersolution of one equation it is an LP-viscosity
subsolution/supersolution of every equation with a similar structure. Thus
LP-viscosity solutions behave like strong solutions and the techniques based
on pointwise properties allow to operate on them easily and move them
from one equation to another.
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Consequences

e Being an LP-viscosity subsolution/supersolution is more a property of a
function than of a particular equation. Once u is an LP-viscosity
subsolution /supersolution of one equation it is an LP-viscosity
subsolution/supersolution of every equation with a similar structure. Thus
LP-viscosity solutions behave like strong solutions and the techniques based
on pointwise properties allow to operate on them easily and move them
from one equation to another.

e Regularity results which hold for LP-viscosity solutions of equations also
hold for LP-viscosity solutions of differential inequalities provided they do
not depend on the regularity of the right-hand side.
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Consequences

e Being an LP-viscosity subsolution/supersolution is more a property of a
function than of a particular equation. Once u is an LP-viscosity
subsolution /supersolution of one equation it is an LP-viscosity
subsolution/supersolution of every equation with a similar structure. Thus
LP-viscosity solutions behave like strong solutions and the techniques based
on pointwise properties allow to operate on them easily and move them
from one equation to another.

e Regularity results which hold for LP-viscosity solutions of equations also
hold for LP-viscosity solutions of differential inequalities provided they do
not depend on the regularity of the right-hand side.

e | expect one should be able to prove standard regularity results for
LP-viscosity solutions of equations with v € L (£2).
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THANK YOU!
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