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In memory of Maurizio



Story of our lives



I’ll be back in 10 minutes. If not, read again. WARNING: Convergence not guaranteed!!!



Figure: October 2019. Selfie with Maurizio at Forte de Copacabana.



Figure: October 2019. Dinner at Braseiro da Gavea.



Figure: June 2022. Maurizio playing bocce



Figure: September 2022. Photo from Cetraro.



Maurizio’s mottos

– Do not panic

– Go on

– Calma

– Eccoci (dopo almeno 30 minuti di ritardo)

– Non ci siamo

– Abbiamo ancora 5 minuti

– Anche questa è fatta

– Va bene, bye bye

– Do not panic

– Go on

– Calm down

– Here, we are (after a delay of 30 minutes)

– We are not there yet

– We still have 5 minutes

– And also this one is done

– Ok, bye bye



Problem setting

State equation


yt(t, ξ) =

n∑
j=1

µjFj(y(t, ξ), yξ(t, ξ), yξξ(t, ξ), yξξξ(t, ξ), . . .) + B(ξ)u(t), t ∈ [0,∞), ξ ∈ (a, b),

y(0, ξ) = y0(ξ), ξ ∈ [a, b],

y(t, a) = 0, y(t, b) = 0, t ∈ [0,∞)

Cost functional

J(u;µ) =

∫ ∞
0
‖y(t, ·;µ)‖2

L2(a,b) + R‖u(t;µ)‖2 dt, R > 0

Control problem

min
u∈U

J(u;µ) such that y solves the state equation and µ is the parameter to identify



Assumptions of our problem

– y : [0,∞]× R→ R, µj ∈ R, u(t) : [0,∞)→ Rm and B(ξ) : [a, b]→∈ R1×m

– the model is the sum of simple monomial bases functions Fj of y and its derivatives

– the functions Fj ’s may be thought as a library with terms that has to be selected by the
coefficients µj ’s

– the system is fully identified by the knowledge of the coefficient µ = (µ1, . . . , µn) ∈ Rn

which is considered unknown in the present work

– we set zero Dirichlet boundary conditions (without loss of generality)

Notation

For a given parameter configuration µ̃ ∈ Rn, we will refer to y(t, ·; µ̃) as the solution of the
state equation with µ = µ̃ and to u(t; µ̃) as the control computed using the state equation
with µ = µ̃
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Building blocks: Bayesian linear regression and State Dependent Riccati equation Bayesian linear regression

Linear regression (LR)

In LR, we consider data in the form of input-output pairs

D = {(xi , yi )}i=1,...,d

and we suppose that the output variable yi ∈ R can be expressed approximately as a linear
function of the input variable xi ∈ Rn, i.e.

yi ≈ xTi θ, for i = 1, . . . , d

We look for a parameter θ ∈ Rn such that we minimize the sum of squared residuals

E (θ) =
d∑

i=1

|yi − xTi θ|2

The LS solution can be computed analytically and is given by

θLS = (XTX )−1XTY

where we collected all the observed inputs in a matrix X ∈ Rd×n and all the observed outputs
in a vector Y ∈ Rd



Building blocks: Bayesian linear regression and State Dependent Riccati equation Bayesian linear regression

Bayesian Linear Regression (BLR)

BLR is a probabilistic method for solving the classical LR problem.
In BLR, the deviation of the data from the linear model can be described by a Gaussian noise

yi = xTi θ + εi , εi ∼ N (0, σ2)

where θ ∈ Rn is an unknown parameter to be determined and σ > 0 known.

The available information on the parameter θ is included in the model through the definition
of a prior distribution, e.g. θ ∼ N (m0,Σ0)

θ̄BLR =

(
1

σ2
XTX + Σ−1

0

)−1( 1

σ2
XTY + Σ−1

0 m0

)

– BLR provides a quantification of the uncertainty of this estimate

– the estimate θ̄BLR converges to the LS solution, when the noise variance σ goes to 0



Building blocks: Bayesian linear regression and State Dependent Riccati equation State Dependent Riccati Equation (SDRE)

Control Problem

ẋ(t) = A(x(t))x(t) + B(x(t))u(t), t ∈ (0,∞),

min
u(·)∈U

J(u(·)) :=

∞∫
0

(
‖x(t)‖2

Q + ‖u(t)‖2
R

)
dt

Assumptions

– x(t) : [0,∞]→ Rd , A(x) : Rd → Rd×d

– u(·) ∈ U := L∞(R+;Rm)

– ‖x‖2
Q := x>Qx with Q ∈ Rd×d , Q � 0, ‖u‖2

R = u>Ru with R ∈ Rm×m, R � 0

– This formulation of the H2 synthesis corresponds to the asymptotic stabilization of
nonlinear dynamics towards the origin



Building blocks: Bayesian linear regression and State Dependent Riccati equation State Dependent Riccati Equation (SDRE)

State-Dependent Riccati Equation (SDRE)

LQR

A(x) = A with A ∈ Rd×d and B(x) = B ∈ Rd×m, V (x) = x>Πx , with Π ∈ Rd×d positive
definite, and HJB becomes an Algebraic Riccati Equation (ARE) for Π

A>Π + ΠA− ΠBR−1B>Π + Q = 0

u(x) := −R−1B>Πx

SDRE

ẋ = A(x)x + B(x)u(t)

A>(x)Π(x) + Π(x)A(x)− Π(x)B(x)R−1B>(x)Π(x) + Q = 0

Solving this equation leads to a state-dependent Riccati operator Π(x), with nonlinear
feedback law

u(x) := −R−1B>(x)Π(x)x



Building blocks: Bayesian linear regression and State Dependent Riccati equation State Dependent Riccati Equation (SDRE)

State-Dependent Riccati Equation (SDRE)

Remarks

– SDRE can be interpreted as a MPC loop where at a given instant, the dynamics
(A(x),B(x)) are frozen at the current state and an LQR feedback is numerically
approximated

– Even if this solution is computed for every state x , the closed-loop differs from the
optimal feedback obtained from solving HJB, as the SDRE approach assumes the value
function is always locally approximated as V (x) ≈ x>Π(x)x

– It is possible to show local asymptotic stability for the SDRE feedback (for ODEs)



Building blocks: Bayesian linear regression and State Dependent Riccati equation State Dependent Riccati Equation (SDRE)

SDRE

Algorithm 1: SDRE-MPC loop

Require: {t0, t1, . . .}, model, R,Q,
1: for k = 0, 1, . . . do
2: Compute Π(x(tk)) from SDRE
3: Set K (x(tk)) := R−1B>(x(tk))Π(x(tk))
4: Set u(tk) := −K (x(tk))x(tk)
5: Integrate system dynamics to x(tk+1)
6: end for

Warning

This algorithm requires an high rate of calls to an ARE solver. This is a demanding
computational task for the type of large-scale dynamics arising in optimal control of PDEs

Reference

A., D. Kalise, V. Simoncini. State-dependent Riccati equation feedback stabilization for
nonlinear PDEs, ACOM, 2023
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Identification and control through RL methods

Reinforcement Learning (RL)

Optimal Control 
min
u∈U

J(u) =
∫∞

0 ‖x(s)‖Q + ‖u(s)‖R ds

ẋ(t) = A(x(t))x(t) + B(x(t))u(t))

x(0) = x0



Identification and control through RL methods

Reinforcement Learning (RL)

Reinforcement Learning Optimal Control
Agent Controller
State State

Action Control
Reward (opposite of) Cost

Environment Controlled System

Both RL and OC

– are sequential decision problems

– try to optimize not only immediate rewards but also future ones

RL deals with control problems in which the dynamics of the system is (partially)
uncertain but observable



Identification and control through RL methods

State equation


yt(t, ξ) =

n∑
j=1

µjFj(y(t, ξ), yξ(t, ξ), yξξ(t, ξ), yξξξ(t, ξ), . . .) + B(ξ)u(t), t ∈ [0,∞), ξ ∈ (a, b),

y(0, ξ) = y0(ξ), ξ ∈ [a, b],

y(t, a) = 0, y(t, b) = 0, t ∈ [0,∞)

FD discretization

– x(t) : [0,∞)→ Rd with xi (t) ≈ y(t, ξi ) for i = 1, . . . , d

– A(x) =
∑n

j=1 µjAj(x) and Fj ≈ Aj with Aj(x) : Rd → Rd×d for j = 1, . . . , n

– the coefficients µj unknown

– the terms Aj(x) given as the library

– the discretizazion of the cost corresponds to the choice Q = ∆ξId with ∆ξ > 0 being the
spatial step size and Id the d × d identity matrix



Identification and control through RL methods

Goal

– control an unknown problem

– discover on the fly the problem we are controlling

RL assumption

Let µ∗ be the true parameter configuration. The dynamics generated by this true model
configuration µ∗ is always observable as a black box.
This is a typical assumption in the Reinforcement Learning setting, where an agent can take
actions and observe how the environment responds to them

Notation

– x(t; u(t; µ̃), µ∗): trajectory computed with control u(t; µ̃) related to the true model µ∗

– x i (u(ti ; µ̃), µ∗) = x(ti ; u(ti ; µ̃), µ∗) : solution at discrete time ti we will identify



Identification and control through RL methods

How we learn µ through RL

– The observation of the true trajectory might provides or approximates the solution of the
original controlled problem for a given input u(t, µ̃)

– We do not compute the whole trajectory since we aim to discover and control on the fly
updating the parameter configuration at each time instance

– We drop the dependence in what follows, e.g. x i := x i (u(ti ; µ̃), µ∗)

Implicit scheme with explicit gain matrix K i

x i+1 − x i

∆t
≈

n∑
j=1

µjAj(x
i+1)x i+1 − BK ix i+1, i = 0, 1, . . .



Identification and control through RL methods

How we learn µ through RL

LS problem

x i+1 − x i

∆t
+ BK ix i+1 ≈

n∑
j=1

µjAj(x
i+1)x i+1 =⇒ Y i ≈ X iµi i = 1, 2, 3, . . .

– X i := [A1(x i+1)x i+1, . . .An(x i+1)x i+1] ∈ Rd×n

– Y i := x i+1−x i
∆t + BK ix i+1 ∈ Rd and µi ∈ Rn

Remarks

– µi is computed using BLR every time iteration

– we learn the system on the fly using the data provided by the control problem

– Stopping criteria: ‖µi+1 − µi‖ ≤ tolµ with tolµ > 0 being the threshold since we look
for a constant configuration



Identification and control through RL methods

Algorithm 2: Online RL algorithm

Require: {t0, t1, . . .}, model {Aj(x)}nj=1,B,R,Q, µ̃0, tolµ, flag = 0,
1: for i = 0, 1, . . . do
2: Obtain Π(x(ti ); µ̃i ) from ARE with µ̃i

3: Set K (x(ti ); µ̃i ) := R−1B>(x(ti ))Π(x(ti ); µ̃i )
4: Set u(ti ; µ̃

i ) := −K (x(ti ); µ̃i )x(ti ) (or u(ti ; µ̃
i ) := −K (x(ti ); µ̃i )x(ti+1))

5: Observe the trajectories x i+1(u(ti ; µ̃
i ), µ∗)

6: if flag ==0 then
7: Update µ̃i using BLR
8: if ‖µ̃i − µ̃i−1‖∞ < tolµ then
9: flag = 1

10: µ̃ := µ̃i

11: end if
12: else
13: µ̃i = µ̃
14: end if
15: end for

Remark

There are cases where the ARE does not provide a solution and this may depends on the
particular parameter configuration chosen/computed. In that case we fix the feedback gain
equal to the zero vector and we go to the next step.
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Numerical experiments

Numerical experiments


yt(t, ξ) = µ1yξξ(t, ξ) + µ2yξ(t, ξ) + µ3y(t, ξ) + µ4y

2(t, ξ)

+ µ5y
3(t, ξ) + µ6y(t, ξ)yξ(t, ξ) + µ7yξξξ(t, ξ) + Bu(t) t ∈ [0, tend ], ξ ∈ (0, 1)

y(0, ξ) = y0(ξ) ξ ∈ [0, 1]

y(t, 0) = 0, y(t, 1) = 0 OR yξ(t, 0) = 0, yξ(t, 1) = 0 t ∈ [0, tend ]

The term A(x) will be given by

A(x) = µ1∆d + µ2T + µ3Id + µ4diag(x) + µ5diag(x ◦ x) + µ6D̃(x) + µ7M

Time integration

Controlled trajectories are integrated in time using an implicit Euler method, which is
accelerated using a Jacobian–Free Newton Krylov method using 10−5 as threshold for the
stopping criteria of the method and less of 500 iterations



Numerical experiments

Test 1: Allen-Cahn


yt(t, ξ) = yξξ(t, ξ) + 11(y(t, ξ)− y3(t, ξ)) + u(t), t ∈ (0, 0.5], x ∈ (0, 1),

y(0, ξ) = 0.2 sin(πξ), x ∈ (0, 1),

y(t, 0) = 0, y(t, 1) = 0, t ∈ [0, 0.5]

Parameters

– d = 101

– µ1 = 1, µ3 = 11, µ5 = −11

– ∆ξ = 0.01 = ∆t

– B vector is given by a vector of ones

Reference

N. Altmüller, L. Grüne, K. Worthmann. Receding horizon optimal control for the wave
equation, CDC, 2010



Numerical experiments

Test 1: Allen-Cahn

True µ 1 0 11 0 -11 0 0

Reconstr. µ 0.9992 -0.0017 11.0008 -0.0653 -10.8232 0.0431 0

Table: Reconstructed parameter configuration



Numerical experiments

Test 1: Allen-Cahn
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Figure: On the left the comparison between the control found using knowledge of the true µ and the
control found by the RL algorithm is shown. In the middle, the cumulative cost. On the right, the error
on the parameter estimation at each time.



Numerical experiments

Test 2: Viscous Burgers


yt(t, ξ) = 0.01yξξ(t, ξ) + y(t, ξ)yx(t, ξ) + B(ξ)u(t), t ∈ [0, 1], ξ ∈ (−1.5, 1.5),

y(0, ξ) = sin(πx)χ[0,1](ξ), ξ ∈ (−1.5, 1.5),

y(t,−1.5) = 0, y(t, 1.5) = 0, t ∈ [0, 1]

Parameters

– d = 121

– ∆ξ = 0.025 = ∆t

– µ1 = 0.01, µ6 = 1

– B(ξ) =

(
χ[0.25,0.5](ξ) 0

0 χ[0.75,1](ξ)

)
– u(t) ∈ R2



Numerical experiments

Test 2: Viscous Burgers

True µ 0.01 0 0 0 0 1 0

Reconstr. µ 0.0096 0 -0.0008 0.002 -0.001 0.9999 0

Table: Reconstructed parameter configuration
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Test 2: Viscous Burgers
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Figure: The left plot shows the comparison between each of the two components of the control found
using knowledge of the true µ and the control found by the RL algorithm. The middle plot shows the
cumulative cost. The right plot shows the error on the parameter estimation at each time until the
update stop.



Numerical experiments

Test 2: Viscous Burgers – Black box

Full library

True µ 0.01 0 0 0 0 1 0

Reconstr. µ 0.0096 -0.0002 0.0008 0.0004 0.1762 1.021 0

Library without µ5 (the y3 term)

True µ 0.01 0 0 0 − 1 0

Reconstr. µ 0.0101 -0.0003 0.0007 0.0116 − 1.0199 0

Library with the right terms

True µ 0.01 − − − − 1 −
Reconstr. µ 0.0099 − − − − 1.0564 −



Numerical experiments

Test 2: Viscous Burgers – Black box

full NO µ5 Only (µ1, µ6)
‖sol RL− sol RL bb‖2

‖sol RL‖2
0.017 0.017 0.017

‖sol c − sol RL bb‖2

‖sol c‖2
0.021 0.021 0.021

‖sol c − sol RL‖2

‖sol c‖2
0.021 0.021 0.021

‖sol c − sol c bb‖2

‖sol c‖2
0.016 0.016 0.016

Table: Comparison between RL solutions with and without black box

Comments

– With or without black box same order of the error

– Values found in the reconstructed model do not modify the quality of the results



Numerical experiments

Test 3: Korteweg-De Vries



yt(t, ξ) =
1

2
yξξ(t, ξ) + 6y(t, ξ)yξ(t, ξ)

− yξξξ(t, ξ) + χ[1,4](ξ)u(t), t ∈ [0, 2], x ∈ (−10, 7),

y(0, ξ) = χ[0,6](ξ)

(
cos
(π

3
(ξ − 3)

)
+ 1

)
ξ ∈ (−10, 7),

y(t,−10) = 0, y(t, 7) = 0, t ∈ [0, 2]

Parameters

– d = 171

– µ1 = 0.5, µ6 = 6, µ7 = −1

– ∆ξ = 0.1,∆t = 0.025



Numerical experiments

Test 3: Korteweg-De Vries

True µ 0.5 0 0 0 0 6 -1

Reconstr. µ 0.4931 0.0012 0.0004 0.001 -0.0016 5.9943 -0.9999

Table: Reconstructed parameter configuration
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Test 3: Korteweg-De Vries
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Figure: On the left the comparison between the control found using knowledge of the true µ and the
control found by the RL algorithm is shown. In the middle the cumulative cost. On the right, the error
on the parameter estimation at each time until the update stop.



Numerical experiments

CPU times

uncontrolled SDRE RL controlled

Test 1 (d = 101) 0.69s 8.7s 10.1s

Test 2 (d = 121) 0.87s 19.9s 21.3s

Test 3 (d = 171) 12.1s 67.7s 64.2s

Table: CPU times of the three presented tests. The times have been computed as the arithmetic mean
of the time required to complete 50 algorithm’s executions
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Figure: Cumulative execution times at each iteration for Test 1 (left), Test 2 (middle) and Test 3
(Right). Mean times over 50 executions are considered.
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Convergence to the PDE
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Numerical experiments

Conclusions and future works

Conclusions

– We have presented a new algorithm that identifies and controls an unknown PDE

– The method relies on RL assumptions where the model can be osbervable

– Numerical experiments have shown the convergence of our method

Future works

– Large-scale problems

– Theoretical convergence results



Numerical experiments
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