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Plan

Global optimization

I Entropic gradient descent
I The Deep relaxation algorithm and Singular Perturbations

Deep relaxation with control
I Convergence of the value function
I Convergence of trajectories.

Methods:
I Homogenization of the Hamilton-Jacobi-Bellman equation
I The effective Hamiltonian via ergodic control
I The limit is a value function
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Global unconstrained optimization

Problem: Given a loss function f ∈ C(Rn), find a strategy (a
dynamical system...) to reach the global minima of f (if they exist....).

Recent interest in this very classical problem comes from deep
learning in neural networks: n very large, f highly nonlinear,
non-convex and non-smooth....

Easy case: When f is convex and smooth, then the gradient flow

or gradient descent (GD) answers the problem, i.e., any trajectory of

ẏ(s) = −∇f (y(s))

tends to argmin f as t → +∞.

In general a trajectory converges to a local minimum or a saddle point.
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Classical variants for NON-convex functions f :

Stochastic gradient descent

dy(s) = −∇f (y(s)) ds + εdWs,

Ws = Wiener process, avoids saddle points and shallow minima.
−∇f = exploitation, εdWs = exploration

Problems:
no guarantee of convergence,
∇f may not exist... need to regularize f ,
a sufficiently low "robust" minimum, i.e., with large basin of
attraction, can be preferable to a lower minimum in a narrow
valley.
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Entropy regularization

Figure: From Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y.,
Baldassi, C., Borgs, C., ... & Zecchina, R. (2019).
Entropy-SGD: Biasing gradient descent into wide valleys.
J. Statistical Mechanics: Theory and Experiment, 2019(12), 124018.
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From Chaudhari, LeCun et al J. Stat. Mech. (2019) :

“We expect xrobust to be more
robust that xnon-robust to
perturbations of data or
parameters and thus
generalize well (...). For low
values of γ, the energy
landscape is significantly
smoother than the orginal
landscape and still maintains
our desired characteristic:
global minimimum at a wide
valley.”

“The local entropy thus provides a way of picking large, approximately flat,
regions of the landscape over sharp, narrow valleys in spite of the latter
possibly having a lower loss.”
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Local entropy and Gibbs distribution

From Chaudhari, Le Cun et al J. Stat. Mech. (2019):
“To focus on the flat regions such as xrobust, we construct ......

Definition (Local Entropy)
= the log-partition function of the modified Gibbs distribution:

F (x , γ) = log
∫
Rn

exp
(
−f (y)− γ

2
|x − y |2

)
dy

= log
[
exp

(
−γ| · |

2

2

)
∗ exp(−f (x))

]
.

⇒ F (x , γ) = log
(

Gγ ∗ exp (−f (x))

)
,

where Gγ is the heat kernel (up to a multiplicative constant).
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The entropic gradient

A calculation gives the nice structure of the gradient:

∇xF (x , γ) =

∫
Rn
− γ(x − y) ρ∞(dy ; x)

ρ∞(y ; x) = exp
(
−f (y)− γ

2
|x − y |2

)
/Z (x)

(Z (x) = normalizing constant ) =⇒ ∇xF (x , γ) is an average of x − y
w.r.t. the Gibbs measure ρ∞ , that does not depend on ∇f .

Under mild assumptions on f and for γ large enough, the process

(E) dYt = −∇y

(
f (Yt ) +

γ

2
|x − Yt |2

)
dt +

√
2 dWt

is ergodic, and ρ∞ is its invariant measure. Then for all initial
positions Y0 of (E)∫

Rn
y ρ∞(dy ; x) = lim

T→+∞

1
T

∫ T

0
E [Yt ] dt .
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Approximation of the entropic gradient descent

Problem: find an efficient approximation of

Ẋt = ∇xF (Xt , γ) =

∫
Rn
− γ(Xt − y) ρ∞(dy ; Xt )

Difficulty: how to compute the average on the right hand side?

Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G. :
Deep relaxation: partial differential equations for optimizing deep
neural networks. Res. Math. Sci. 2018,

propose an algorithm, called Deep Relaxation based on the system
with different time scales

dX ε
t = −γ (X ε

t − Y ε
t ) dt

dY ε
t = −1

ε
∇y

(
f (Y ε

t ) +
γ

2
|X ε

t − Y ε
t |2
)

dt +

√
2
ε

dWt

Y ε
t = fast variables approximating Y. solving (E) for large times.
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The singular perturbation problem

Consider the coupled system with different time scales
dX ε

t = −γ (X ε
t − Y ε

t ) dt

dY ε
t = −1

ε
∇y

(
f (Y ε

t ) +
γ

2
|X ε

t − Y ε
t |2
)

dt +

√
2
ε

dWt

where X ε
t are "slow" variables and Y ε

t "fast" variables.

Expect, for ε→ 0, t/ε→ +∞ ,

Y ε
t ≈ Yt/ε ≈

∫
Rn

y ρ∞(dy ; X ε
t ), Y. solving (E),

so by a homogenization procedure the two-scale system should
converge, as ε→ 0 , to the averaged system

Ẋt = −γ
(

Xt −
∫

Rn
y ρ∞(dy ; Xt )

)
= ∇xF (Xt , γ)

which is the entropic gradient descent !
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The algorithm: Deep Relaxation

This multiscale argument is the rationale behind an algorithm, called

Deep Relaxation, in

Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G. ,
Res. Math. Sci. 2018.

They use an Euler scheme for the two-scale system,

and implement it, with several variants, on standard computer vision

datasets for training deep neural networks with the task of

image classification.
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Summary [Chaudhari, Osher et al. 2018]

Let V (y , x) = f (y) + γ
2 |x − y |2 and the multi-scale system

(Sε)


dX ε

t = −∇xV (Y ε
t ,X

ε
t ) dt

dY ε
t = −1

ε
∇yV (Y ε

t ,X
ε
t ) dt +

√
2
ε

dWt .

We expect that letting ε→ 0 yields the deterministic averaged system

(S)
dX̂t

dt
= ∇xF (X̂t , γ) = −

∫
Rn
∇xV (y , X̂t ) ρ∞(dy ; X̂t ),

i.e. the gradient descent of the local entropy F corresponding to f .

Our first goal: Justify the convergence ε→ 0.

Our second goal: Add to the problem some control variables (e.g.,
some tuning parameters) and prove similar convergence results.
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Convergence of SP without controls

(A) f ∈ C1(Rn), ∇f Lipschitz, γ > Lip(∇f ).

Theorem (1)
Assume (A), (X ε,Y ε) solution of (Sε) with X ε

0 = x ,Y ε
0 = y,

X̂· solution of (S) with X̂0 = x. Then, ∀ T > 0, ∀ y ∈ Rn

lim
ε→0

∫ T

0
E
[
|X ε

s − X̂s|2
]

ds = 0,

lim
ε→0

E
[
|X ε

T − X̂T |2
]

= 0.

I.o.w., the x-component of the solution of (Sε) converges to
the solution of (S), as ε→ 0, for all initial positions of the
y -component.

Martino Bardi (Università di Padova) Rome, May 26, 2023 14 / 31



Deep relaxation with control

Motivated by Weinan E et al. 2017, we add as control parameter
ut ∈ [0,1] the learning rate of the algorithm, and study the control
system

(CSε)


dX ε

t = −ut∇xV (Y ε
t ,X

ε
t ) dt

dY ε
t = −1

ε
∇yV (Y ε

t ,X
ε
t ) dt +

√
2
ε

dWt .

with V (y , x) = f (y) + γ
2 |x − y |2 and the goal of minimizing E[f (XT )].

Is there a limit control problem? and who is it?

If Ẋ ε
t = utg1(X ε

t ) + g2(X ε
t ,Y

ε
t ) , i.e., u and Y separated, one expects,

as without control, Ẋt = utg1(Xt ) +
∫

Rng2(Xt , y)ρ∞(dy ; X̂t ),

see Kushner’s book 1990, but in our case

Ẋ ε
t = −utγ(X ε

t − Y ε
t ) ,

this does not work!
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Extended controls

Let U ⊆ R compact the set of values for the control ut , e.g., U = [0,1].
Define Uex := L∞(Rn,U) , and for ν ∈ Uex

φ(x ,ν) := −
∫
Rn

ν(y)γ(x − y)ρ∞(dy ; x)

The candidate limit control system is

(CS)
dX̂t

dt
= φ(X̂t ,νt ) , νt ∈ Uex .

N.B.: if ν(y) ≡ u ∀ y , i.e., it is constant, then

φ(x ,u) = −u
∫
Rn
γ(x − y)ρ∞(dy ; x) = u∇xF (x , γ) ,

i.e., the controlled Entropic Gradient Descent.
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Convergence of the value functions

Define, for U = progressively meas.le processes in U,
(X ε,Y ε) solution of (CSε) with X ε

0 = x ,Y ε
0 = y ,

Vε(x , y) := inf
u·∈U

E[ f (X ε
T ) ]

and, for Uex = progressively meas.le processes in Uex ,
X̂· solution of (CS) with X̂0 = x ,

V(x) := inf
ν·∈Uex

f (X̂T ) .

Theorem (2)
Assume (A). Then for all T > 0

lim
ε→0
Vε(x , y) = V(x) locally uniformly,

i.e., the value functions with perturbed dynamics converge to the value
of Entropic gradient descent with extended controls.
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Approximation of Entropic Gradient Descent

The controlled Entropic Gradient Descent is

Ẋt = ut∇F (Xt , γ) .

Its value function is

V(x) := inf
u·∈U

f (XT ) , X0 = x .

Corollary

lim
ε→0
Vε(x , y)≤V(x),

i.e., the perturbed dynamics yields a value not larger than the
controlled Entropic gradient descent.

This gives a further justification to the use of the Deep Relaxation
algorithm for the search of the global minima of f .
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Convergence of trajectories - 1

Theorem (3.a)
Assume (A) and (X εn ,Y εn ) be trajectories of (CPε) such that

lim
εn→0

∫ T

0
E
[
|X εn

s − x̄s|2
]

ds = 0,

for a deterministic process x̄· . Then

(i) x̄· is a trajectory of the limit system (CS) for some control ν. ∈ Uex ;

(ii) if (X εn ,Y εn ) are sub-optimal, i.e., E[f (X εn
T )] ≤ Vεn (x , y) + o(1)

as εn → 0 , and E
[
f (X εn

T )
]
→ f (x̄T ) , then

x̄· is an OPTIMAL trajectory for the limit problem, i.e., f (x̄T ) = V(x).
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Convergence of trajectories - 2

Theorem (3.b)

Conversely, if X̂· is a trajectory of the limit system (CS), then

(i) ∃ a sequence (X εn ,Y εn ) of trajectories of (CPε) such that

lim
εn→0

∫ T

0
E
[
|X εn

s − X̂s|2
]

ds = 0, E
[
|X εn

T − X̂T |2
]
→ 0 ,

(ii) if, moreover, X̂· is optimal for the limit problem, then

(X εn ,Y εn ) are sub-optimal for the perturbed problem.

We also have: if ν̂(·) ∈ Uex is the control corresponding to X̂·,
then the control uεn corresponding to X εn above also satisfies

lim
εn→0

∫ T

0
E

[∫
Rm
|uεn

s − ν̂s(r)|q dµX̂s
(r)

]
ds = 0, ∀q > 0.

In particular, if ν̂(·) ∈ U , then no need for
∫
Rm . . . dµX̂s

(r).
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Conclusions of the main results

The two-scale control system (CSε) converges to the deterministic
control system

(CS)
dX̂t

dt
= φ(X̂t ,νt ) , νt ∈ Uex

which is an extension of the controlled Entropic Gradient Descent,
and convergence is in two senses:

variational: ε-value function converge to limit value function,

pathwise: ε-trajectories converge to limit trajectories, and
suboptimal for (CSε) go to optimal for (CS).
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Ingredients of the proofs in a general setting

We consider the more general control system of SDEs (not gradient!)

(Sε)


dX ε

s = φ(X ε
s ,Y

ε
s ,us) dt X ε

t = x ∈ Rn

dY ε
s =

1
ε

b(X ε
s ,Y

ε
s ) dt +

√
2
ε

dWs, Y ε
t = y ∈ Rm

Assumptions:
U compact set, ε > 0, φ,b Lipschitz continuous unif. in u s.t.

|φ(x , y ,u)|, |b(x , y)| ≤ C(1 + |x |+ |y |), ∀ x , y , ∀u ∈ U

a recurrence condition on the fast process Y :

∃κ > 0 : (b(x , y1)− b(x , y2)) · (y1− y2) ≤ −κ |y1− y2|2, ∀ x , y1, y2.

In the model b(x , y) = γ(x − y)−∇f , so the recurrence holds under
condition (A).
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The ε-HJB equation

Set U = processes with values in U progress. measurable w.r.t. Ws.
Define the value function and the Hamiltonian

V ε(t , x , y) := inf
u·∈U

E[ f (X ε
T ) ], H(x , y ,p) := −min

u∈U
φ(x , y ,u) · p

Ass. (A) ⇒ |f (x)| ≤ K (1 + |x |2) ∀ x .

V ε solves the Cauchy problem in [0,T )×Rn ×Rm
− ∂tV ε + H(x , y ,DxV ε)− 1

ε
(b · DyV ε + ∆yyV ε) = 0,

V ε(T , x , y) = f (x), in Rn ×Rm,

and it is the unique viscosity solution satisfying

|V ε(t , x , y)| ≤ K (1 + |x |2 + |y |2), ∀ (t , x , y) ∈ [0,T ]×Rn ×Rm.
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How to find the limit HJB equation

We want to show that V ε(t , x , y) −→ v(t , x) as ε→ 0, s.t.

(Eff) −∂tv + H̄ (x ,Dxv) = 0, in [0,T )×Rn

Main difficulty: construct the effective Hamiltonian H̄.

Try to guess it by the ansatz V ε(t , x , y) = v(t , x) + ε χ(y)+ l.o.t. :

−∂tv + H(x , y ,Dxv)− (b · Dyχ+ ∆yyχ) = l .o.t ..

To get the equation (Eff) for v we freeze (x̄ , p̄) , solve the cell problem

find (c, χ(y)) ∈ R×C(Rm) :

(C) H(x̄ , y , p̄)− (b(x̄ , y) · Dχ+ ∆χ) = c

and finally set H̄(x̄ , p̄) := c . Then formally get (Eff).
(C) is an ergodic HJB PDE , c = critical value (as in weak KAM theory),
χ is called corrector.
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Truncated cell problems

Classical approach: compact settings or bounded coefficients:
Lions-Papanicolaou-Varadhan (1987), Kushner (1990), M.B.-Alvarez
(2003-10), Borkar-Gaitsgory (2007), M.B.-Cesaroni (2010-11),....
In our problem data are unbounded in y : must change approach!

We consider a truncated δ−cell problem:

Let Dn = ball of radius n in Rm and set h(y) := H(x̄ , y , p̄).
Consider the Dirichlet-Poisson problem{

δωn
δ − (b · Dωn

δ + ∆ωn
δ ) = −h, in Dn

ωn
δ = 0, on ∂Dn.

=⇒ ωn
δ (y) = E

[
−
∫ τn

0 h(Yy (t))e−δtdt
]

is an approximate corrector,

where τn = 1st exit time from Dn of the process

(E’) dYy (t) = b(x̄ ,Yy (t)) dt +
√

2 dWt , Yy (0) = y .
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Approximate correctors and H̄

By the recurrence assumption on b the process (E’) is ergodic, with
unique invariant measure µx̄ . [ µx̄ = ρ∞(·; x̄) in the model problem]
We guess the effective Hamiltonian is

H̄(x̄ , p̄) :=
∫
Rm h(y)dµ(y) =

∫
Rm H(x̄ , y , p̄)dµx̄ (y).

Theorem
Let δ(n) = O

(
n−(4+α)

)
for some α > 0. Then

lim
n→∞

∣∣∣ δ(n)ωn
δ(n)(y) + H̄

∣∣∣ = 0, loc. unif. in y .

Key new technical step of the proof:
fine probabilistic estimates of E

[
e−δτn

]
, τn = exit time of Y from Dn.

⇒ The effective HJ Cauchy problem is{
−∂tv + H̄(x ,Dxv) = 0, (t , x) ∈ (0,T )×Rn,

v(T , x) = f (x), in Rn.
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A control representation of v(t , x)

Can prove V ε(t , x , y)→ v(t , x) = unique solution of effective problem.
Difficulty: the effective Hamiltonian H̄ is not Bellman:

H̄(x ,p) = −
∫

Rm
min
u∈U

φ(x , y ,u) · p dµx (y)

Proposition (Bellman representation of effective Ham.)

H̄(x ,p) = − min
ν∈Uex

∫
Rm

φ(x , y , ν(y)) · p dµx (y)

which is an exchange formula “
∫

min = min
∫

" , that uses
the extended controls Uex := L∞(Rn,U).

For ν ∈ Uex take the "averaged" vector field

φ̄(x , ν) :=

∫
Rm

φ(x , y , ν(y)) dµx (y)

Bogachev et al. 2014: x 7→ µx Lip ⇒ φ̄ Lip in x unif. in ν.
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Then we can consider the effective "averaged" control system

(S̄)


dX̂t

dt
= φ̄(X̂t ,νt )

νt ∈ Uex measurable, and X̂0 = x ∈ Rn.

Since
H̄(x ,p) = − min

ν∈Uex
φ̄(x , ν) · p

by uniqueness of solution to the effective HJ Cauchy problem we get

v(t , x) = inf f (X̂T ), subject to (S̄)

so v is the value function of a limit effective control problem.
Finally, we prove (as in the model problem) that

any solution X̂ of (S̄) is an accumulation point in L2 of trajectories
X ε of (Sε),
if a sequence X ε solving (Sε) converges in L2 to a deterministic
process X̄ then

dX t

dt
∈ coφ(xs,Uex )
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Final comment and references

There are many mathematical open problems in machine learning:

"a rigorous understanding of the roots of the remarkable success
of deep neural netwoks in a number of domains remains elusive".

M. Bardi and H. Kouhkouh: Singular perturbations in stochastic
optimal control with unbounded data, arXiv:2208.00655 (2022),
ESAIM Control Optim. Calc. Var.
M. Bardi and H. Kouhkouh: Deep Relaxation of Controlled
Stochastic Gradient Descent via Singular Perturbations,
arXiv:2209.05564 (2022).
H. Kouhkouh: PhD thesis 2022, University of Padova.
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Thanks for your attention!
Thanks to the organizers for this meeting!

We miss you Maurizio!
(San Diego 1994)

Martino Bardi (Università di Padova) Rome, May 26, 2023 30 / 31



Thanks for your attention!
Thanks to the organizers for this meeting!

We miss you Maurizio!
(San Diego 1994)

Martino Bardi (Università di Padova) Rome, May 26, 2023 30 / 31



Figure: Taken from Chaudhari, Osher et al. J. Stat. Mech. (2019)

Here the process Y is denoted by x ′ and the process X is x .
Xt is updated in line 7, where µ is the average of Y .
µ is computed by the loop in lines 2-6: the fast process Yt evolves
(L-time) faster than the slow process Xt .
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