Photographic 3D-reconstruction: A Tour

Jean-Denis Durou (IRIT, Toulouse)

In collaboration with Maurizio and other people

May 24, 2023

Jean-Denis DUROU

Roma

Outline

Introduction to 3D-reconstruction

2 Shape-from-shading

3 Photometric Stereo

4 Conclusion

Outline

1 Introduction to 3D-reconstruction

2 Shape-from-shading

3 Photometric Stereo

4 Conclusion

3D-scanning $\equiv 3D$ -reconstruction + Colour

Some applications of 3D-reconstruction

- Architecture
- Augmented reality
- Metrology
- Heritage preservation

Different approaches of 3D-reconstruction

- Sensor = Mechanical process
- Kinect V1 \equiv Projection of an infrared pattern
- Kinect V2 = Time-of-flight measurement of laser pulses
- Photographic techniques = Shape-from-X

3D-scanning $\equiv 3D$ -reconstruction + Colour

Some applications of 3D-reconstruction

- Architecture
- Augmented reality
- Metrology
- Heritage preservation

Different approaches of 3D-reconstruction

- Kinect V2 = Time-of-flight measurement of laser pulses
- Photographic techniques = Shape-from-X

Shape-from-X Techniques

	Geometric techniques	Photometric techniques
Single pose Single image	Shape-from-contour Shape-from-shadows Shape-from-texture Structured light projection Shape-from-template Shape-from-defocus	Shape-from-shading
Single pose $N > 1$ images	Shape-from-focus	Photometric stereo Shape-from-polarization
N > 1 poses N > 1 images	Structure-from-motion Multi-view stereo Shape-from-silhouettes	

Shape-from-X Techniques

	Geometric techniques	Photometric techniques
Single pose Single image	Shape-from-contour Shape-from-shadows Shape-from-texture Structured light projection Shape-from-template Shape-from-defocus	Shape-from-shading
Single pose $N > 1$ images	Shape-from-focus	Photometric stereo Shape-from-polarization
N > 1 poses N > 1 images	Structure-from-motion Multi-view stereo Shape-from-silhouettes	

The two most popular geometric techniques \equiv Photogrammetry

Shape-from-X Techniques

	Geometric techniques	Photometric techniques
Single pose Single image	Shape-from-contour Shape-from-shadows Shape-from-texture Structured light projection Shape-from-template Shape-from-defocus	Shape-from-shading
Single pose $N > 1$ images	Shape-from-focus	Photometric stereo Shape-from-polarization
N > 1 poses N > 1 images	Structure-from-motion Multi-view stereo Shape-from-silhouettes	

The two photometric techniques that are described in this talk

Photogrammetry: Matching + Triangulation

1- Matching: 2D-points \mathbf{q}_1 and \mathbf{q}_2 correspond to the same 3D-point 2- Triangulation: 3D-point \mathbf{Q} at the intersection of $(\mathbf{C}_1\mathbf{q}_1)$ and $(\mathbf{C}_2\mathbf{q}_2)$

Photometric Techniques: Modelling the Greylevel

Pair of images (depth + greylevel) from an atomic force microscope

Depth

Greylevel

Paradox: the 3D-shape is better perceived from the greylevel image

Photogrammetry vs. Photometric Techniques

Photogrammetry

- Principle: matching + triangulation
- Main tools: linear algebra
- Pros: operational softwares; can be used outdoors
- Cons: matching is difficult; colour is not estimated

Photometric techniques

- Principle: modelling the greylevel
- Main tools: nonlinear PDE solvers
- Pros: no matching; colour can be estimated
- Cons: lighting estimation; difficult to use outdoors

Historical Landmarks of Photometric Techniques

- [Van Diggelen, 1951] First paper on photoclinometry (ancestor of shape-from-shading)
- [Horn, 1970] First explicit mention of shape-from-shading
- [Woodham, 1980] First paper on photometric stereo
- [Rouy, Tourin, Lions, 1988] Solving SfS with viscosity solutions
- [Hayakawa, 1994] Renewed interest for photometric stereo (related to the democratization of digital photography?)
- Since 2000: More papers on photometric stereo than on shape-from-shading
- Since 2010: First applications of photometric stereo
- Since 2020: Deep learning approach

Historical Landmarks of Photometric Techniques

- [Van Diggelen, 1951] First paper on photoclinometry (ancestor of shape-from-shading)
- [Horn, 1970] First explicit mention of shape-from-shading
- [Woodham, 1980] First paper on photometric stereo
- [Rouy, Tourin, Lions, 1988] Solving SfS with viscosity solutions
- [Hayakawa, 1994] Renewed interest for photometric stereo (related to the democratization of digital photography?)
- Since 2000: More papers on photometric stereo than on shape-from-shading
- Since 2010: First applications of photometric stereo
- Since 2020: Deep learning approach

Less and less mathematics, more and more applications

Outline

Introduction to 3D-reconstruction

2 Shape-from-shading

3 Photometric Stereo

4 Conclusion

Shape-from-shading (SfS): Back to the Origin

Horn's PhD thesis (MIT, 1970)

- Goal: facial recognition system
- Means: 3D-reconstruction from a single image
- Result: failure, but laid the foundations of SfS

French TV game show from the 70's: « Which object is it? » Obviously, going through 3D-reconstruction is not necessary!

Shape-from-shading: A very Intuitive Technique

It is easy to deduce that the wall is not perfectly flat...

Jean-Denis DUROU

Roma

Modelling the Greylevel: Lambert's Law

From a Simple Equation in the Normal n...

- Data: greylevel I
- Assumption on the albedo: $\rho \equiv 1$
- Unknown: normal **n** such that $||\mathbf{n}|| = 1$

The local estimation of **n** is ill-posed!

... To a Nonlinear PDE in the Depth z

Linear equation in n

 $l = \mathbf{s} \cdot \mathbf{n}$ (1)

Additional assumption on the lighting

Frontal lighting: $\mathbf{s} = [0, 0, 1]^{\top}$ (2)

Additional assumption on the camera

Orthogonal projection:
$$\mathbf{n} = \frac{1}{\sqrt{\|\nabla z\|^2 + 1}} \begin{bmatrix} \nabla z \\ 1 \end{bmatrix}$$
 (3)

$$(1) + (2) + (3) \implies \text{Nonlinear PDE in } z$$
$$\|\nabla z\| = \sqrt{\frac{1}{l^2} - 1}$$

... To a Nonlinear PDE in the Depth z

Linear equation in n

 $l = \mathbf{s} \cdot \mathbf{n}$ (1)

Additional assumption on the lighting

Frontal lighting: $\mathbf{s} = [0, 0, 1]^{\top}$ (2)

Additional assumption on the camera

Orthogonal projection:
$$\mathbf{n} = \frac{1}{\sqrt{\|\nabla z\|^2 + 1}} \begin{bmatrix} \nabla z \\ 1 \end{bmatrix}$$
 (3)

$$\begin{array}{ll} (1) + (2) + (3) & \Rightarrow & \text{Nonlinear PDE in } z \\ \|\nabla z\| = \sqrt{\frac{1}{l^2} - 1} & \text{Eikonal equation} \end{array}$$

Shape-from-shading: Three Major Defects

Assumption on the albedo ρ

 $\rho \equiv \mathbf{1} \Rightarrow \mathsf{Arbitrary}$

Estimate $\rho \Rightarrow$ Difficult

Assumption on the lighting s

$$\mathbf{s} = [0, 0, 1]^{\top} \Rightarrow \text{Arbitrary}$$

Estimate $\mathbf{s} \Rightarrow$ Calibration

Elk image in Maurizio's office

But the problem is still ill-posed!

How to make the solution unique? ■ Equation *I* = s · n ⇒ Regularization (inaccurate) ■ Eikonal equation ⇒ Boundary condition (arbitrary)

Jean-Denis DUROU

Roma

Illustration of the SfS Ill-posedness

This 3D-shape has nothing to do with Lena, and yet...

\Rightarrow Video Lena.m4v

Concave / Convex Ambiguity

Photograph of a volcano in Hawaii (copyright Whitman Richards)

Concave / Convex Ambiguity

After rotating the image, we see another 3D-shape!

Jean-Denis DUROU

Roma

A Surprising Consequence of this Ambiguity

Concave Beethoven's bust under frontal lighting

\Rightarrow Video Beethoven.mp4

Jean-Denis DUROU

Roma

Outline

1 Introduction to 3D-reconstruction

2 Shape-from-shading

3 Photometric Stereo

4 Conclusion

Photometric Stereo: Real 3D-scanning Technique

Roma

A Linear Problem Easy to Solve Locally

Finally: $\rho = \|\mathbf{m}\|$ and $\mathbf{n} = \frac{\mathbf{m}}{\|\mathbf{m}\|}$

Photometric Stereo: Three Advantages over SfS

No assumption on the albedo $\rho \Rightarrow$ Realistic

- Now, ρ is an additional unknown
- Technique which can estimate the albedo (3D-scanning)

Well-posed problem \Rightarrow Accurate

- No regularization, no boundary condition
- Only need to know the N lightings sⁱ (by calibration)

Local linear problem \Rightarrow Fast solving

But integrating the normals **n** has to be done afterwards

Example: Plaster, Convex Beethoven's Bust

Albedo ρ

Normals **n** (RGB representation)

Jean-Denis DUROU

Roma

Application to Augmented Reality

Showroom in Toulouse

(a-b-c) Three photographs of a face (d-e) 3D-shape and 3D-model (accuracy \approx 0.8 mm)

Jean-Denis DUROU

Roma

Application to Metrology

Dermatological camera transformed into a 3D-scanner

Application to Metrology

Three samples of fake skin

3D-reconstructions (accuracy \approx 10 micrometers)

Jean-Denis DUROU

Roma

Application to Metrology

1 euro (Italy)

50 cents (Spain)

1 yuan (China)

3D-reconstructions (accuracy \approx 10 micrometers)

Jean-Denis DUROU

Roma

Application to Heritage Preservation

A painting by Pierre Soulages, known as the « master of black »

The lack of salient points makes photogrammetry unusable

Application to Heritage Preservation

Painted / engraved horse in the Chauvet cave (-38000 years)

PS is well-suited to separate painting from engraving

Roma

Outline

1 Introduction to 3D-reconstruction

2 Shape-from-shading

3 Photometric Stereo

4 Conclusion

A Funny Photometric Stereo Illusion

Chagall

Cézanne

\Rightarrow Video Chazanne.mp4

Jean-Denis DUROU

Roma

Collaborative Book Published in 2020

Merci Maurizio !

Jean-Denis DUROU

Roma