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Intro

Overview

We consider the following price model:

» The model involves numerous agents trading a commodity
(such as energy stored in batteries) continuously.

» Agents aim to maximize profit by trading at price w(t),
determined by supply-demand balance.

» the supply, Q(t), is exogenous (and possibly stochastic).
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Intro

Related references

» Basar and Srikant - revenue maximizing Stackelberg games

» Kizilkale and Malhamé - load adaptive pricing (see also
Alasseur, Ben Taher, and Matoussi)

» Fujii and Takahashi - market clearing conditions with common
noise

» Shrivats, Firoozi and Jaimungal - equilibrium pricing in solar
renewable energy certificates
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Intro

Deterministic Framework

The model involves three key variables:
» a price w € C([0, T))
» a value function v € C(R x [0, T])

P a path describing the statistical distribution of the agents,
m € C([0, T],P).

NOTE: P is the set of probabilities on R with finite second-moment endowed with the 1-Wasserstein distance.
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Intro

Deterministic problem

Given e >0, He C*>, asupplyrate Q: [0, T] = R, Q € C*,
solve
—ur + H(x, @ (t) + uy) = €Uy

my — (DpH(x, w(t) + ux)m)x = emyy
Jo DoH(x,w(t) + ux)dm = —Q(t),

with the initial-terminal conditions

{u(x, T) = i(x),
m(x,0) = m(x),

where where &, m are smooth, and m is a probability.
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Intro

Main Result - deterministic case

Theorem (G. and Sadde)
Under natural assumptions, there exists a solution (u, m,w):

» u is a viscosity solution, Lipschitz and semiconcave in x, and
differentiable almost everywhere with respect to m

» me C([0, T],P)
» w is Lipschitz continuous on [0, T].

If € > 0 or if e = 0, under additional convexity assumptions, the
solution is unique.
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Intro

A stochastic PDE for common noise

Let Q2 be a probability space and consider the supply

{dQ(t) = bS(Q(t), t)dt + oS(Q(t), t)dW(t),
Q(0) = qo-

Find m:[0,T] xR =R, u,Z:[0, T] xRxQ — R, and
w : [0, T] x Q — R progressively measurable, satisfying m > 0 and

(—du+ H(x, @ + uy)dt = Z(t, x)dW(t),
u(T,x) = ur(x),
m; — (Hp(x, @ + ux)m) =0,
m(0,x) = mo(x),
[ — Jg Hpo(x, @ + u)mdx = Q(t). )
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Intro

The model - deterministic case

To simplify, we set € = 0.
» Each consumer has a storage device connected to the network.

» Consumers trade electricity, charging the batteries when price
is low and selling electricity when price is high.

» Consumers take into account price and battery wear.
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Intro

The control problem

» Each agent battery’s charge x(t) changes according to

P> Each agent selects o to minimize the cost

-
J(x, t,0) = /t 0(x(2), a(s), t)ds + a(x(T)),
where the Lagrangian is
Ux, o, t) = lo(x, o) + w(t)a(t).

and the terminal cost, i is given.
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Intro

Running cost as a price impact

For example, if
C 2
lo(x, o, t) = S (t) + V(x).

the running term $a(t) can also be seen as a (temporary) price
impact:

» Agents trading at a rate « pay an effective price

+c
w+ o
2
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Intro

Value function

The value function, u, is the infimum of J over all bounded
measurable controls:

u(x,t) =inf J(x, t,a).
The corresponding Hamiltonian, H, is
H(X7 P) = sup (_pa - EO(X7 a)) :

acR

)
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Intro

The Hamilton—Jacobi equation

Then, u is a viscosity solution of

{—ut + H(x,w(t) +ux) =0
u(x, T) = d(x).

At points of differentiability of u,

() = —DpH(x(t), w(t) + ux(x(t), t)).

)
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Intro

The transport equation

The associated transport equation is:

{mt — (DpH(x, ux + w(t))m), =0,
m(x,0) = m(x),

where m is the initial distribution of the agents.

)
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Intro

Balance condition

We require that demand matches the energy production function

Q(1):
/Ra*(t)m(x, fdx = Q(b):

that is,

A DpH(x, ux + w(t))m(x, t)dx = —Q(t).

This constraint determines the price, w(t).
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Intro

Linear-quadratic model - deterministic

Let {(t, a) = §a? + aw(t). Then

gy + WP

me — E(m(w(t) + Ux))x =0
¢ Ja(@(t) + ux)mdx = —Q(t).

The preceding system implies the linear price-supply relation

w =0 —cQ(t).
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Finitely many agents

> Let Q, be an L2 adapted stochastic process with respect to a
filtration ¥

» Each agent controls their trading rate according to
dX: = wdt, t € [0, T],

where v € Hp

» THy is the set of processes v : [0, T| x Q — R, that are
measurable and adapted w.r.t. I, and satisfy HVH%{]F < 00,
where

-
(v,w)m, = E [/0 thtdt] , ||VHI%{]F = (v, V)Hy

X



Finitely many agents

Problem formulation

Find a price @ and control v/, all adapted to IF, such that for
1<i <N, X' solves dX| = v{dt, with Xj = x3, and minimizes the

-
B [ L) + mod desaxh)]
0
subject to
1L
NZvé:Qt, for0<t<T.
i=1

Here, w is the Lagrange multiplier for this balance constraint.
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Existence of a price

Theorem
Under natural growth and convexity assumptions:

» There exists a unique minimizer v* € ]H%

» consider the corresponding trajectory X*. For 1 <i < N, let
P Z" € Hy solve, on [0, T],

dPi = —L (X, v dt + ZidW,
PL =T (X3).

» There exists a unique 1 € Hy such that

M=P 4+ L,(X" v) forl1 <i<N.

X

» Further, w = —I1.
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Binomial tree approximation

Numerical approximations

» Except for quadratic problems, there are no other known
solutions.

» Numerical methods are needed and a binomial tree is perhaps
one of the easiest ways to do so.
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Binomial tree approximation

Binomial aproximation

To obtain numerical approximations, we consider a binomial
discretization of the driving Brownian motion.

AW, = +Vh {0,+vVh, +Vh}

AWy = +Vh

AW, = —vA {0, +vh, — \/E}

AWy =0

AWy = +vVh {0’ _\/R + \/E}

AW, = —Vh

AWy = —vVh {0’_\/%, —\/E}

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of )
realizations of the noise (right).
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Binomial tree approximation

Q1,2
Q1,1
@2
Qo = q0
Q3,2
Q2,1
Qa2

{q0, Qu,1, Qu 2}

{90, Q1,1, @22}

{q0, Q2,1, @32}

{q0, @,1, Qa2}

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of

realizations of the supply (right).
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Binomial tree approximation

> At time t, the discrete price process w takes the value wy,
and the measurability condition w.r.t. F, means that
wi € {ka, ... ,’(D'zk’k}, where the values w; ) are unknown

» The controls for each player are also a function of the tree

v

At each node, we imposed the balance condition constraint

» We discretize the objective functional in the natural way
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Binomial tree approximation

w}-Binomial Tree

a}—Hamilton Jacobi
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Fig. Binomial Tree and Hamilton-Jacobi approximations for n = 0 and 3,

5, 7, and 9 time steps.
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Binomial tree approximation

wy-Binomial Tree - w—-Hamilton Jacobi — Q

0.8
0.6
04
02 1 |
\///\—_____

I L L I
02 0.4 06 o8

t

Fig. Sample path of the supply and the corresponding Binomial Tree and
Hamilton-Jacobi approximations of the price for M = 9 time steps. The
L? distance between price approximations is 9.16618 % 1072,
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Machine learning approach - finitely many agents

Motivation for ML approaches

» Stochastic supply price can be approximated numerically by a
binomial tree

» Good agreement between numerical results and exact solutions
» However, dimensionality curse limits accuracy.

» Machine learning can improve resolution as we show here.
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Machine learning approach - finitely many agents

RNN architecture - trading rate
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Machine learning approach - finitely many agents

RNN price
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Fig. Iteration of the RNN for @, RNN,,, with supply history dependence i
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Machine learning approach - finitely many agents

Loss function

We consider the adversarial loss function

N M—-1

1 i i

L(©,,05) = N g ( E h(L(X( )<k>,v( )(k>(ev))
i=1 k=0

+w(eL) <v(i)(k)(@v) - Q<k>> )

; uT(x<f><M>)> |

Using £, we train NN, and NN, using an adversarial approach.
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Arrow-Hurwicz-Uzawa like iteration

Key idea:

» Perform a descent step in ©,

» Perform a ascent step in ©.
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‘—Machine learning approach - finitely many agents

(a) Supply and price

(b) Optimal feedback v*

(¢) m and characteristics

Fig. Analytical solutions for @ = 7e~*sin(3rt)
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Machine learning approach - finitely many agents

Results

(b) Absolute error (¢) m-weighted
(v*) error (v*)

(a) Absolute error

(=)

Zoon
o0z

o0

ot - AP

Fig. Approximation errors for @ and v* using RNN; and RNN,,
respectively, for Q(t) = 7e~'sin(3nt)
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Machine learning approach - finitely many agents

Common noise RRN training

» We discretize the SDE for the price.
» The loss functional is identical to the deterministic setting.

» To train the RNN, we use a new sample for @ at each SGD
step.

» The RNN preserves progressive measurability.
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Machine learning approach - finitely many agents

Common noise - approximate optimality conditions

In general, the ML framework returns an approximate solution of
the optimality conditions

dP"(t) = (HX()"("(t), Pr(t) + =N (1)) + 6"(t)> dt
+27(£)dW(t),

Pr(T) = up(X"(T)) — €7,

dX"(t) = —Hp(X"(t), P"(t) + &N(t))dt,

Xn(0) = x5,

b 3 Hp(R7(0) P(8) + () = QO + eal),




Machine learning approach - finitely many agents

A posteriori estimates - common noise

Theorem

Let H be uniformly concave-convex in (x, p), separable, with
Lipschitz continuous derivatives, ut is convex with Dut Lipschitz.
Let (X,P) and w" solve the N-player price problem with a
common noise. Let (X P) and &N be a corresponding
approximate solution. Then

[ — M| < c(neHn T ||es||).
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Machine learning approach - finitely many agents

@(0)
°
3

0.0 0.2 0.4 06 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
t t

(a) Price realization (b) Price realization.

Fig. Exact price and RNN approximation. The grey window highlights
the times where noise operates.
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Stochastic potential

Integrating the transport equation

» Let (u, m, @) solve the price problem.

P> The transport equation can be written as
div(e x) (m, —Hp(x, @ + ux)m) = 0.
» Hence, by Poincaré lemma, there exists ¢ such that

m =y, Hp(x, @+ u)m= ;.
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Stochastic potential

Perspective function

» Consider the perspective function of L

L<x,#>m, m>0
F(X7.jam)= +00, J#O,m:O
0, j=0,m=0.

U J
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Stochastic potential

Deterministic potential problem

Find ¢ minimizing
[ P e = upx)ier ded,

over p s.t. ¢(0,x) = [ mg(y)dy, and, for all t € [0, T],
©x(t,-) € P(R) and

/R p(t,x) — (0, x)dx = — /0 " Q(s)ds.

)
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Stochastic potential

The Euler-Lagrange equations for

/F(x, —p1,0x) — @ (1 + Qx) — Urpr dxdt.
are equivalent to the Hamilton-Jacobi equation

(—ux)e + (H(x, @ + uy)), = 0.

%')))},
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Stochastic potential

Stochastic potential problem

Find a progressively measurable function ¢ minimizing

E/ F(x,—p¢, ox) — @ (pr + Qpx) — e dxdt

over the set of PMP ¢ such that (0,x) = [*__ mo(y)dy, and for
all t € [0, T] satisfy p,(t,-) € P(R) and

/RQO(t,X) — (0, x)dx = — /Ot Q(s)ds.

The optimality conditions for this problem are also equivalent to
HJ equations.
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Machine learning framework - potential approximation

Machine learning framework

» To approximate ¢, we consider a RNN.

» A hidden state, h, carries information about the path history.
Thus, the outputs of this architecture depend on the path
history and this guarantees their progressive measurability.

» Following several numerical experiments, we select a RNN
with a hidden layer and three dense layers, all layers with
dimension 32.
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Machine learning framework - potential approximation

(£, x(0) = 413

A3 — Wil2 4 b3l
A2 — S(WERI |2
A1 = SWH (x(), 16 4 Bl

o= k1) h®) = tanh (W,y ) +bj) =— pk
x(0), k)
vk = (¢, QU pik-1)

Fig. RNN cell computation at time k. S is the sigmoid function, W
denotes a weight matrix, and b denotes a bias.
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Machine learning framework - potential approximation

Loss components

My My ) ) )
Ly(or) = hehe S5 {F (X7, —00o {00, 5,0
k=1 i=1

i (o0}

Mg My )
Lo(pr) = Z Z max {_BXSOS—k>(I)a 0} 5

k=1 i=1

M¢ My 2
caten) =3 <hx S 0000 o“)) ,

k=1 i1
My ) )

Lypler) =D (%S-O)(') - Mo(x(')))2 )
i=1
M My 2

Lpler)=)" (1 — hy Zaxwik”")) .
k=1 i1

L+, corresponds to the discretization of the variational functional. Deviations from the balance constraint are
penalized by £z, and the initial condition is enforced in CMO. Moreover, Ly and L guarantee that px(t, ) is'a ,)))},
density function.
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‘—Machine learning framework - potential approximation

Consider the loss function that aggregates the terms

L=Ly+ Lo+ L+ Ly, +Lop.
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Machine learning framework - potential approximation

Table Stochastic training step j.

Input: My, dQ, 7~ 1.
1 | compute sample Q;
2| for k=1,...,M; do

3 compute h{k)
4 fori=1,...,M,do
5 compute @ j—1(t), x())

¢ | compute L(p,j-1)
7 | compute 7/ by gradient descend
Output: 7/

) J

(]



Machine learning framework - potential approximation

Stochastic examples

> \We consider a mean-reverting supply
dQ(t) =6 (Q — Q(t)) dt + odW/(t),

on [0, T], where Q(0) = —0.5,0 =2, Q =1, and 0 = 0.2.
» The theoretical formula for the price is

dw = —dQ

)
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‘—Machine learning framework - potential approximation

— Analytical
04 ——
— analytical
02 L]
— Analytical
00 N
g
£ -02
5
-04
-06
-08
00 02 04 3 o8 10

Fig. Stochastic price approx. (3 samples)
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Conclusions

Conclusions and future work

» We developed two variational approaches to price formation
with common noise.

» Our formulations, combined with machine learning techniques,
provide a way for solving certain infinite-dimensional MFGs
without using the master equation.

» Future work should identify better network architectures and
convergence results.
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The end

Thanks a lot for your attention! Questions?
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