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Intro

Overview

We consider the following price model:

▶ The model involves numerous agents trading a commodity
(such as energy stored in batteries) continuously.

▶ Agents aim to maximize profit by trading at price ϖ(t),
determined by supply-demand balance.

▶ the supply, Q(t), is exogenous (and possibly stochastic).



Intro

Related references

▶ Basar and Srikant - revenue maximizing Stackelberg games

▶ Kizilkale and Malhamé - load adaptive pricing (see also
Alasseur, Ben Taher, and Matoussi)

▶ Fujii and Takahashi - market clearing conditions with common
noise

▶ Shrivats, Firoozi and Jaimungal - equilibrium pricing in solar
renewable energy certificates



Intro

Deterministic Framework

The model involves three key variables:

▶ a price ϖ ∈ C ([0,T ])

▶ a value function u ∈ C (R× [0,T ])

▶ a path describing the statistical distribution of the agents,
m ∈ C ([0,T ],P).

Note: P is the set of probabilities on R with finite second-moment endowed with the 1-Wasserstein distance.



Intro

Deterministic problem

Given ϵ ≥ 0, H ∈ C∞, a supply rate Q : [0,T ] → R, Q ∈ C∞,
solve 

−ut + H(x , ϖ(t) + ux) = ϵuxx

mt − (DpH(x , ϖ(t) + ux)m)x = ϵmxx∫
ΩDpH(x , ϖ(t) + ux)dm = −Q(t),

with the initial-terminal conditions{
u(x ,T ) = ū(x),

m(x , 0) = m̄(x),

where where ū, m̄ are smooth, and m̄ is a probability.



Intro

Main Result - deterministic case

Theorem (G. and Saúde)

Under natural assumptions, there exists a solution (u,m, ϖ):

▶ u is a viscosity solution, Lipschitz and semiconcave in x , and
differentiable almost everywhere with respect to m

▶ m ∈ C ([0,T ],P)

▶ ϖ is Lipschitz continuous on [0,T ].

If ϵ > 0 or if ϵ = 0, under additional convexity assumptions, the
solution is unique.



Intro

A stochastic PDE for common noise

Let Ω be a probability space and consider the supply{
dQ(t) = bS(Q(t), t)dt + σS(Q(t), t)dW (t),

Q(0) = q0.

Find m : [0,T ]× R → R, u,Z : [0,T ]× R× Ω → R, and
ϖ : [0,T ]×Ω → R progressively measurable, satisfying m ⩾ 0 and

−du + H(x , ϖ + ux)dt = Z (t, x)dW (t),

u(T , x) = uT (x),

mt − (Hp(x , ϖ + ux)m)x = 0,

m(0, x) = m0(x),

−
∫
RHp(x , ϖ + ux)mdx = Q(t).



Intro

The model - deterministic case

To simplify, we set ϵ = 0.

▶ Each consumer has a storage device connected to the network.

▶ Consumers trade electricity, charging the batteries when price
is low and selling electricity when price is high.

▶ Consumers take into account price and battery wear.



Intro

The control problem

▶ Each agent battery’s charge x(t) changes according to

ẋ(t) = α(t).

▶ Each agent selects α to minimize the cost

J(x , t, α) =

∫ T

t
ℓ(x(t), α(s), t)ds + ū(x(T )),

where the Lagrangian is

ℓ(x , α, t) = ℓ0(x , α) +ϖ(t)α(t).

and the terminal cost, ū is given.



Intro

Running cost as a price impact

For example, if

ℓ0(x , α, t) =
c

2
α2(t) + V (x).

the running term c
2α

2(t) can also be seen as a (temporary) price
impact:

▶ Agents trading at a rate α pay an effective price

ϖ +
c

2
α.



Intro

Value function

The value function, u, is the infimum of J over all bounded
measurable controls:

u(x , t) = inf
α
J(x , t, α).

The corresponding Hamiltonian, H, is

H(x , p) = sup
a∈R

(−pa− ℓ0(x , a)) .



Intro

The Hamilton–Jacobi equation

Then, u is a viscosity solution of{
−ut + H(x , ϖ(t) + ux) = 0

u(x ,T ) = ū(x).

At points of differentiability of u,

α∗(t) = −DpH(x(t), ϖ(t) + ux(x(t), t)).



Intro

The transport equation

The associated transport equation is:{
mt − (DpH(x , ux +ϖ(t))m)x = 0,

m(x , 0) = m̄(x),

where m̄ is the initial distribution of the agents.



Intro

Balance condition

We require that demand matches the energy production function
Q(t): ∫

R
α∗(t)m(x , t)dx = Q(t);

that is, ∫
R
DpH(x , ux +ϖ(t))m(x , t)dx = −Q(t).

This constraint determines the price, ϖ(t).



Intro

Linear-quadratic model - deterministic

Let ℓ(t, α) = c
2α

2 + αϖ(t). Then
−ut +

(ϖ(t)+ux )2

2c = 0

mt − 1
c (m(ϖ(t) + ux))x = 0

1
c

∫
R(ϖ(t) + ux)mdx = −Q(t).

The preceding system implies the linear price-supply relation

ϖ = Θ− cQ(t).
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Finitely many agents

Finitely many agents

▶ Let Q, be an L2 adapted stochastic process with respect to a
filtration F

▶ Each agent controls their trading rate according to

dXt = vtdt, t ∈ [0,T ],

where v ∈ HF
▶ HF is the set of processes v : [0,T ]× Ω → R, that are

measurable and adapted w.r.t. F, and satisfy ∥v∥2HF < ∞,
where

⟨v ,w⟩HF := E

[∫ T

0
vtwtdt

]
, ∥v∥2HF := ⟨v , v⟩HF



Finitely many agents

Problem formulation

Find a price ϖ and control v i , all adapted to F, such that for
1 ⩽ i ⩽ N, X i solves dX i

t = v itdt, with X i
0 = x i0, and minimizes the

E

[∫ T

0
L(X i

t , v
i
t ) +ϖtv

i
t dt + ū(X i

T )

]
,

subject to

1

N

N∑
i=1

v it = Qt , for 0 ⩽ t ⩽ T .

Here, ϖ is the Lagrange multiplier for this balance constraint.



Finitely many agents

Existence of a price

Theorem
Under natural growth and convexity assumptions:

▶ There exists a unique minimizer v∗ ∈ HN
F

▶ consider the corresponding trajectory X ∗. For 1 ⩽ i ⩽ N, let
P i ,Z i ∈ HF solve, on [0,T ],{

dP i
t = −Lx(X

∗
t
i , v∗t

i )dt + Z i
tdWt

P i
T = ū′(X ∗

T
i ).

▶ There exists a unique Π ∈ HF such that

Π = P i + Lv (X
∗i , v∗i ) for 1 ⩽ i ⩽ N.

▶ Further, ϖ = −Π.
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Binomial tree approximation

Numerical approximations

▶ Except for quadratic problems, there are no other known
solutions.

▶ Numerical methods are needed and a binomial tree is perhaps
one of the easiest ways to do so.



Binomial tree approximation

Binomial aproximation

To obtain numerical approximations, we consider a binomial
discretization of the driving Brownian motion.

∆W0 = 0

∆W1 = +
√

h

∆W1 = −
√

h

∆W2 = +
√
h

∆W2 = −
√
h

∆W2 = +
√
h

∆W2 = −
√
h

{0,+
√
h, +

√
h}

{0,+
√
h, −

√
h}

{0,−
√
h, +

√
h}

{0,−
√
h, −

√
h}

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of
realizations of the noise (right).



Binomial tree approximation

Q0 = q0

Q1,1

Q2,1

Q1,2

Q2,2

Q3,2

Q4,2

{q0,Q1,1,Q1,2}

{q0,Q1,1,Q2,2}

{q0,Q2,1,Q3,2}

{q0,Q2,1,Q4,2}

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of
realizations of the supply (right).



Binomial tree approximation

▶ At time tk , the discrete price process ϖ takes the value ϖk ,
and the measurability condition w.r.t. Fk means that
ϖk ∈

{
ϖ1,k , . . . , ϖ2k ,k

}
, where the values ϖj ,k are unknown

▶ The controls for each player are also a function of the tree

▶ At each node, we imposed the balance condition constraint

▶ We discretize the objective functional in the natural way



Binomial tree approximation

Fig. Binomial Tree and Hamilton-Jacobi approximations for η = 0 and 3,
5, 7, and 9 time steps.



Binomial tree approximation

Fig. Sample path of the supply and the corresponding Binomial Tree and
Hamilton-Jacobi approximations of the price for M = 9 time steps. The
L2 distance between price approximations is 9.16618 ∗ 10−2.



Machine learning approach - finitely many agents

Outline

Intro

Finitely many agents

Binomial tree approximation

Machine learning approach - finitely many agents

Stochastic potential

Machine learning framework - potential approximation

Conclusions



Machine learning approach - finitely many agents

Motivation for ML approaches

▶ Stochastic supply price can be approximated numerically by a
binomial tree

▶ Good agreement between numerical results and exact solutions

▶ However, dimensionality curse limits accuracy.

▶ Machine learning can improve resolution as we show here.



Machine learning approach - finitely many agents

RNN architecture - trading rate

(
t0,X

(i)⟨0⟩, ϖ⟨0⟩)
y
⟨0⟩
h =

(
Q⟨0⟩,h⟨−1⟩)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =

(
t0,X

(i)⟨0⟩, ϖ⟨0⟩, a⟨0⟩
)

a⟨0⟩ = σ[1]
(
W

[2]
h h⟨0⟩ + b

[2]
h

)
h⟨0⟩ = σ

[1]
h

(
W

[1]
h y

⟨0⟩
h + b

[1]
h

)

y[2] = σ[2]
(
W[2]y[1] + b[2]

)
y[3] = W[3]y[2] + b[3]

v(i)⟨0⟩ = y[3]

X (i)⟨1⟩ = X (i)⟨1⟩ + hv(i)⟨0⟩

y
⟨1⟩
h =

(
Q⟨1⟩, h⟨0⟩

)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =
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t1,X
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)
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(
W

[2]
h h⟨1⟩ + b

[2]
h

)
h⟨1⟩ = σ

[1]
h

(
W

[1]
h y

⟨1⟩
h + b

[1]
h

)

y[2] = σ[2]
(
W[2]y[1] + b[2]

)
y[3] = W[3]y[2] + b[3]

v(i)⟨1⟩ = y[3]

. . .

X (i)⟨M⟩ = X (i)⟨M−1⟩ + hv(i)⟨M−1⟩

y
⟨M⟩
h =

(
Q⟨M⟩, h⟨M−1⟩)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =

(
tM ,X (i)⟨M⟩, ϖ⟨M⟩, a⟨M⟩)

a⟨M⟩ = σ[1]
(
W

[2]
h h⟨M⟩ + b

[2]
h

)
h⟨M⟩ = σ

[1]
h

(
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[1]
h y

⟨M⟩
h + b

[1]
h

)
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(
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)
y[3] = W[3]y[2] + b[3]

v(i)⟨M⟩ = y[3]

Fig. Iteration of the RNN for v∗, RNNv , with supply history dependence



Machine learning approach - finitely many agents

RNN price

y
⟨0⟩
h =

(
Q⟨0⟩,h⟨−1⟩)
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W[1]y[0] + b[1]

)
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(
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)
y[3] = W[3]y[2] + b[3]

ϖ⟨1⟩ = y[3]

. . .

y
⟨M⟩
h =

(
Q⟨M⟩, h⟨M−1⟩)

y[1] = σ[1]
(
W[1]y[0] + b[1]

)
y[0] =

(
tM , a⟨M⟩)

a⟨M⟩ = σ[1]
(
W

[2]
h h⟨M⟩ + b

[2]
h

)
h⟨M⟩ = σ

[1]
h

(
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[1]
h y

⟨M⟩
h + b

[1]
h

)

y[2] = σ[2]
(
W[2]y[1] + b[2]
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y[3] = W[3]y[2] + b[3]

ϖ⟨M⟩ = y[3]

Fig. Iteration of the RNN for ϖ, RNNϖ, with supply history dependence



Machine learning approach - finitely many agents

Loss function

We consider the adversarial loss function

L (Θv ,Θϖ) =
1

N

N∑
i=1

(
M−1∑
k=0

h
(
L(X (i)⟨k⟩, v(i)⟨k⟩(Θv ))

+ϖ⟨k⟩(Θϖ)
(
v(i)⟨k⟩(Θv )− Q⟨k⟩

))
+ uT (X

(i)⟨M⟩)

)
.

Using L, we train NNv and NNϖ using an adversarial approach.



Machine learning approach - finitely many agents

Arrow-Hurwicz-Uzawa like iteration

Key idea:

▶ Perform a descent step in Θv

▶ Perform a ascent step in Θϖ.



Machine learning approach - finitely many agents

(a) Supply and price (b) Optimal feedback v∗ (c) m and characteristics

Fig. Analytical solutions for Q = 7e−t sin(3πt)



Machine learning approach - finitely many agents

Results

(a) Absolute error
(ϖ)

(b) Absolute error
(v∗)

(c) m-weighted
error (v∗)

Fig. Approximation errors for ϖ and v∗ using RNNϖ and RNNv ,
respectively, for Q(t) = 7e−t sin(3πt)



Machine learning approach - finitely many agents

Common noise RRN training

▶ We discretize the SDE for the price.

▶ The loss functional is identical to the deterministic setting.

▶ To train the RNN, we use a new sample for Q at each SGD
step.

▶ The RNN preserves progressive measurability.



Machine learning approach - finitely many agents

Common noise - approximate optimality conditions

In general, the ML framework returns an approximate solution of
the optimality conditions

dP̃n(t) =
(
Hx(X̃

n(t), P̃n(t) +ϖN(t)) + ϵn(t)
)
dt

+Z̃n(t)dW (t),

P̃n(T ) = u′T (X̃
n(T ))− ϵnT ,

dX̃ n(t) = −Hp(X̃
n(t), P̃n(t) + ϖ̃N(t))dt,

X̃ n(0) = xn0 ,

1
N

N∑
n=1

−Hp(X̃
n(t), P̃n(t) + ϖ̃N(t)) = Q(t) + ϵB(t),



Machine learning approach - finitely many agents

A posteriori estimates - common noise

Theorem
Let H be uniformly concave-convex in (x , p), separable, with
Lipschitz continuous derivatives, uT is convex with DuT Lipschitz.
Let (X,P) and ϖN solve the N-player price problem with a
common noise. Let (X̃, P̃) and ϖ̃N be a corresponding
approximate solution. Then

∥ϖN − ϖ̃N∥ ⩽ C

(
∥ϵH∥+ ∥ϵB∥

)
.



Machine learning approach - finitely many agents

(a) Price realization (b) Price realization.

Fig. Exact price and RNN approximation. The grey window highlights
the times where noise operates.
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Stochastic potential

Integrating the transport equation

▶ Let (u,m, ϖ) solve the price problem.

▶ The transport equation can be written as
div(t,x) (m,−Hp(x , ϖ + ux)m) = 0.

▶ Hence, by Poincaré lemma, there exists φ such that

m = φx , Hp(x , ϖ + ux)m = φt .



Stochastic potential

Perspective function

▶ Consider the perspective function of L

F (x , j ,m) =


L
(
x , j

m

)
m, m > 0

+∞, j ̸= 0, m = 0

0, j = 0, m = 0.



Stochastic potential

Deterministic potential problem

Find φ minimizing∫
F (x ,−φt , φx)− u′T (x)φt dxdt,

over φ s.t. φ(0, x) =
∫ x
−∞m0(y)dy , and, for all t ∈ [0,T ],

φx(t, ·) ∈ P(R) and∫
R
φ(t, x)− φ(0, x)dx = −

∫ t

0
Q(s)ds.



Stochastic potential

The Euler-Lagrange equations for∫
F (x ,−φt , φx)−ϖ (φt + Qφx)− u′Tφt dxdt.

are equivalent to the Hamilton-Jacobi equation

(−ux)t + (H(x , ϖ + ux))x = 0.



Stochastic potential

Stochastic potential problem

Find a progressively measurable function φ minimizing

E

∫
F (x ,−φt , φx)−ϖ (φt + Qφx)− u′Tφt dxdt

over the set of PMP φ such that φ(0, x) =
∫ x
−∞m0(y)dy , and for

all t ∈ [0,T ] satisfy φx(t, ·) ∈ P(R) and∫
R
φ(t, x)− φ(0, x)dx = −

∫ t

0
Q(s)ds.

The optimality conditions for this problem are also equivalent to
HJ equations.
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Machine learning framework - potential approximation

Machine learning framework

▶ To approximate φ, we consider a RNN.

▶ A hidden state, h, carries information about the path history.
Thus, the outputs of this architecture depend on the path
history and this guarantees their progressive measurability.

▶ Following several numerical experiments, we select a RNN
with a hidden layer and three dense layers, all layers with
dimension 32.



Machine learning framework - potential approximation

. . . h⟨k−1⟩

(
x (i), y⟨k⟩

)
y⟨k⟩ =

(
t⟨k⟩,Q⟨k⟩, h⟨k−1⟩)

h⟨k⟩ = tanh
(
Why

⟨k⟩ + bh
)

z[3] = W[3]z[2] + b[3]

z[2] = S(W[2]z[1] + b[2])

z[1] = S(W[1]
(
x (i),h⟨k⟩

)
+ b[1])

φ(t⟨k⟩, x (i)) = z[3]

h⟨k⟩

. . .

Fig. RNN cell computation at time k . S is the sigmoid function, W
denotes a weight matrix, and b denotes a bias.



Machine learning framework - potential approximation

Loss components

LV (φτ ) = hxht

Mt∑
k=1

Mx∑
i=1

{
F
(
x(i),−∂tφ

⟨k⟩(i)
τ , ∂xφ

⟨k⟩(i)
τ

)
−u′T (x(i))∂tφ

⟨k⟩(i)
τ

}
,

L0(φτ ) =

Mt∑
k=1

Mx∑
i=1

max
{
−∂xφ

⟨k⟩(i)
τ , 0

}
,

LB(φτ ) =

Mt∑
k=1

hx

Mx∑
i=1

∂tφ
⟨k⟩(i)
τ + Q⟨k⟩

2

,

LM0
(φτ ) =

Mx∑
i=1

(
φ
⟨0⟩(i)
τ − M0(x

(i))
)2

,

LP (φτ ) =

Mt∑
k=1

1 − hx

Mx∑
i=1

∂xφ
⟨k⟩(i)
τ

2

.

LV corresponds to the discretization of the variational functional. Deviations from the balance constraint are
penalized by LB , and the initial condition is enforced in LM0

. Moreover, L0 and LP guarantee that φx (t, ·) is a

density function.



Machine learning framework - potential approximation

Consider the loss function that aggregates the terms

L = LV + L0 + LB + LM0 + LP .



Machine learning framework - potential approximation

Table Stochastic training step j .

Input: M0, dQ, τ j−1.

1 compute sample Qj

2 for k = 1, . . . ,Mt do

3 compute h⟨k⟩

4 for i = 1, . . . ,Mx do

5 compute φτ j−1(t⟨k⟩, x (i))
6 compute L(φτ j−1)
7 compute τ j by gradient descend

Output: τ j



Machine learning framework - potential approximation

Stochastic examples

▶ We consider a mean-reverting supply

dQ(t) = θ
(
Q − Q(t)

)
dt + σdW (t),

on [0,T ], where Q(0) = −0.5, θ = 2, Q = 1, and σ = 0.2.

▶ The theoretical formula for the price is

dϖ = −dQ



Machine learning framework - potential approximation

Fig. Stochastic price approx. (3 samples)
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Conclusions

Conclusions and future work

▶ We developed two variational approaches to price formation
with common noise.

▶ Our formulations, combined with machine learning techniques,
provide a way for solving certain infinite-dimensional MFGs
without using the master equation.

▶ Future work should identify better network architectures and
convergence results.



Conclusions

The end

Thanks a lot for your attention! Questions?
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