

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

ML and common noise price models Diogo A. Gomes

with Y. Ashrafyan, J. Gutierrez, M. Lauriére, J. Saude, and R. Ribeiro

Outline

Intro

Finitely many agents

Binomial tree approximation

Machine learning approach - finitely many agents

Stochastic potential

Machine learning framework - potential approximation

Conclusions

Overview

We consider the following price model:

- The model involves numerous agents trading a commodity (such as energy stored in batteries) continuously.
- ► Agents aim to maximize profit by trading at price \u03c0(t), determined by supply-demand balance.
- the supply, $\mathbf{Q}(t)$, is exogenous (and possibly stochastic).

Related references

- Basar and Srikant revenue maximizing Stackelberg games
- Kizilkale and Malhamé load adaptive pricing (see also Alasseur, Ben Taher, and Matoussi)
- Fujii and Takahashi market clearing conditions with common noise
- Shrivats, Firoozi and Jaimungal equilibrium pricing in solar renewable energy certificates

Deterministic Framework

The model involves three key variables:

- ▶ a price $\varpi \in C([0, T])$
- ▶ a value function $u \in C(\mathbb{R} \times [0, T])$
- ► a path describing the statistical distribution of the agents, m ∈ C([0, T], P).

NOTE: \mathcal{P} is the set of probabilities on \mathbb{R} with finite second-moment endowed with the 1-Wasserstein distance.

Deterministic problem

Given $\epsilon \geq 0$, $H \in C^{\infty}$, a supply rate $\mathbf{Q} : [0, T] \rightarrow \mathbb{R}$, $\mathbf{Q} \in C^{\infty}$, solve

$$\begin{cases} -u_t + H(x, \varpi(t) + u_x) = \epsilon u_{xx} \\ m_t - (D_p H(x, \varpi(t) + u_x)m)_x = \epsilon m_{xx} \\ \int_{\Omega} D_p H(x, \varpi(t) + u_x) dm = -\mathbf{Q}(t), \end{cases}$$

with the initial-terminal conditions

$$\begin{cases} u(x, T) = \bar{u}(x), \\ m(x, 0) = \bar{m}(x), \end{cases}$$

where where \bar{u} , \bar{m} are smooth, and \bar{m} is a probability.

ヘロト ヘロト ヘヨト ヘヨト

Main Result - deterministic case

Theorem (G. and Saúde)

Under natural assumptions, there exists a solution (u, m, ϖ) :

- u is a viscosity solution, Lipschitz and semiconcave in x, and differentiable almost everywhere with respect to m
- $\blacktriangleright m \in C([0, T], \mathcal{P})$
- ϖ is Lipschitz continuous on [0, T].

If $\epsilon > 0$ or if $\epsilon = 0$, under additional convexity assumptions, the solution is unique.

A stochastic PDE for common noise

Let $\boldsymbol{\Omega}$ be a probability space and consider the supply

$$\begin{cases} \mathrm{d}Q(t) = b^{\mathsf{S}}(Q(t), t) \mathrm{d}t + \sigma^{\mathsf{S}}(Q(t), t) \mathrm{d}W(t), \\ Q(0) = q_0. \end{cases}$$

Find $m: [0, T] \times \mathbb{R} \to \mathbb{R}$, $u, Z: [0, T] \times \mathbb{R} \times \Omega \to \mathbb{R}$, and $\varpi: [0, T] \times \Omega \to \mathbb{R}$ progressively measurable, satisfying $m \ge 0$ and

$$\begin{cases} -\mathrm{d}u + H(x, \varpi + u_x)\mathrm{d}t = Z(t, x)\mathrm{d}W(t) \\ u(T, x) = u_T(x), \\ m_t - (H_p(x, \varpi + u_x)m)_x = 0, \\ m(0, x) = m_0(x), \\ -\int_{\mathbb{R}} H_p(x, \varpi + u_x)m\mathrm{d}x = Q(t). \end{cases}$$

The model - deterministic case

To simplify, we set $\epsilon = 0$.

- Each consumer has a storage device connected to the network.
- Consumers trade electricity, charging the batteries when price is low and selling electricity when price is high.
- Consumers take into account price and battery wear.

The control problem

Each agent battery's charge x(t) changes according to

$$\dot{\mathbf{x}}(t) = lpha(t).$$

• Each agent selects α to minimize the cost

$$J(\mathbf{x}, t, \alpha) = \int_{t}^{T} \ell(\mathbf{x}(t), \alpha(s), t) ds + \bar{u}(\mathbf{x}(T)),$$

where the Lagrangian is

$$\ell(x, \alpha, t) = \ell_0(x, \alpha) + \varpi(t)\alpha(t).$$

and the terminal cost, \bar{u} is given.

Running cost as a price impact

For example, if

$$\ell_0(x,\alpha,t)=\frac{c}{2}\alpha^2(t)+V(x).$$

the running term $\frac{c}{2}\alpha^2(t)$ can also be seen as a (temporary) price impact:

• Agents trading at a rate α pay an effective price

$$\varpi + \frac{c}{2}\alpha.$$

Value function

The value function, u, is the infimum of J over all bounded measurable controls:

$$u(x,t) = \inf_{\alpha} J(x,t,\alpha).$$

The corresponding Hamiltonian, H, is

$$H(x,p) = \sup_{a \in \mathbb{R}} \left(-pa - \ell_0(x,a)\right).$$

The Hamilton–Jacobi equation

Then, u is a viscosity solution of

$$\begin{cases} -u_t + H(x, \varpi(t) + u_x) = 0\\ u(x, T) = \bar{u}(x). \end{cases}$$

At points of differentiability of u,

$$\alpha^*(t) = -D_p H(\mathbf{x}(t), \varpi(t) + u_x(\mathbf{x}(t), t)).$$

The transport equation

The associated transport equation is:

$$\begin{cases} m_t - (D_p H(x, u_x + \varpi(t))m)_x = 0, \\ m(x, 0) = \bar{m}(x), \end{cases}$$

where \bar{m} is the initial distribution of the agents.

Balance condition

We require that demand matches the energy production function $\mathbf{Q}(t)$:

$$\int_{\mathbb{R}} \alpha^*(t) m(x,t) dx = \mathbf{Q}(t);$$

that is,

$$\int_{\mathbb{R}} D_{\rho} H(x, u_x + \varpi(t)) m(x, t) dx = -\mathbf{Q}(t).$$

This constraint determines the price, $\varpi(t)$.

Linear-quadratic model - deterministic

Let
$$\ell(t, \alpha) = \frac{c}{2}\alpha^2 + \alpha \varpi(t)$$
. Then

$$\begin{cases}
-u_t + \frac{(\varpi(t) + u_x)^2}{2c} = 0 \\
m_t - \frac{1}{c}(m(\varpi(t) + u_x))_x = 0 \\
\frac{1}{c}\int_{\mathbb{R}}(\varpi(t) + u_x)mdx = -\mathbf{Q}(t).
\end{cases}$$

The preceding system implies the linear price-supply relation

$$\varpi = \Theta - c \mathbf{Q}(t).$$

Outline

Intro

Finitely many agents

Binomial tree approximation

Machine learning approach - finitely many agents

Stochastic potential

Machine learning framework - potential approximation

Conclusions

Finitely many agents

- ▶ Let Q, be an L² adapted stochastic process with respect to a filtration F
- Each agent controls their trading rate according to

$$dX_t = v_t dt, \ t \in [0, T],$$

where $v \in \mathbb{H}_{\mathbb{F}}$

■ H_F is the set of processes v : [0, T] × Ω → ℝ, that are measurable and adapted w.r.t. F, and satisfy ||v||²_{H_F} < ∞, where

$$\langle v, w \rangle_{\mathbb{H}_{\mathbb{F}}} := \mathbb{E}\left[\int_{0}^{T} v_{t} w_{t} dt\right], \quad \|v\|_{\mathbb{H}_{\mathbb{F}}}^{2} := \langle v, v \rangle_{\mathbb{H}_{\mathbb{F}}}$$

Problem formulation

Find a price ϖ and control v^i , all adapted to \mathbb{F} , such that for $1 \leq i \leq N$, X^i solves $dX_t^i = v_t^i dt$, with $X_0^i = x_0^i$, and minimizes the

$$\mathbb{E}\left[\int_0^T L(X_t^i, v_t^i) + \varpi_t v_t^i dt + \bar{u}(X_T^i)\right],$$

subject to

$$\frac{1}{N}\sum_{i=1}^N v_t^i = Q_t, \quad \text{ for } 0 \leqslant t \leqslant T.$$

Here, ϖ is the Lagrange multiplier for this balance constraint.

Existence of a price

Theorem

Under natural growth and convexity assumptions:

- There exists a unique minimizer $v^* \in \mathbb{H}_{\mathbb{F}}^N$
- consider the corresponding trajectory X*. For 1 ≤ i ≤ N, let Pⁱ, Zⁱ ∈ H_F solve, on [0, T],

$$\begin{cases} dP_t^i = -L_x(X_t^{*i}, v_t^{*i})dt + Z_t^i dW_t \\ P_T^i = \bar{u}'(X_T^{*i}). \end{cases}$$

• There exists a unique $\Pi \in \mathbb{H}_{\mathbb{F}}$ such that

$$\Pi = P^i + L_v(X^{*i}, v^{*i}) \quad \text{for } 1 \leqslant i \leqslant N.$$

Further, $\varpi = -\Pi$.

Outline

Intro

Finitely many agents

Binomial tree approximation

Machine learning approach - finitely many agents

Stochastic potential

Machine learning framework - potential approximation

Conclusions

Numerical approximations

- Except for quadratic problems, there are no other known solutions.
- Numerical methods are needed and a binomial tree is perhaps one of the easiest ways to do so.

Binomial aproximation

To obtain numerical approximations, we consider a binomial discretization of the driving Brownian motion.

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of realizations of the noise (right).

Fig. Binomial Tree diagram for M = 2 time steps (left) and list of realizations of the supply (right).

- ▶ At time t_k , the discrete price process ϖ takes the value ϖ_k , and the measurability condition w.r.t. \mathcal{F}_k means that $\varpi_k \in \{\varpi_{1,k}, \ldots, \varpi_{2^k,k}\}$, where the values $\varpi_{j,k}$ are unknown
- The controls for each player are also a function of the tree
- At each node, we imposed the balance condition constraint
- We discretize the objective functional in the natural way

Fig. Binomial Tree and Hamilton-Jacobi approximations for $\eta = 0$ and 3, 5, 7, and 9 time steps.

(日)

æ

Fig. Sample path of the supply and the corresponding Binomial Tree and Hamilton-Jacobi approximations of the price for M = 9 time steps. The L^2 distance between price approximations is $9.16618 * 10^{-2}$.

Outline

Intro

Finitely many agents

Binomial tree approximation

Machine learning approach - finitely many agents

Stochastic potential

Machine learning framework - potential approximation

Conclusions

Motivation for ML approaches

- Stochastic supply price can be approximated numerically by a binomial tree
- Good agreement between numerical results and exact solutions
- However, dimensionality curse limits accuracy.
- Machine learning can improve resolution as we show here.

RNN architecture - trading rate

Fig. Iteration of the RNN for v^* , RNN_v, with supply history dependence

RNN price

Fig. Iteration of the RNN for ϖ , RNN_{ϖ} , with supply history dependence

(日本)(同本)(日本)(日本)(日本)

Loss function

We consider the adversarial loss function

$$\begin{split} \mathcal{L}\left(\Theta_{\nu},\Theta_{\varpi}\right) &= \frac{1}{N}\sum_{i=1}^{N}\left(\sum_{k=0}^{M-1}h\Big(L(X^{(i)\langle k\rangle},\mathbf{v}^{(i)\langle k\rangle}(\Theta_{\nu}))\right. \\ &+ \varpi^{\langle k\rangle}(\Theta_{\varpi})\left(\mathbf{v}^{(i)\langle k\rangle}(\Theta_{\nu}) - Q^{\langle k\rangle}\right)\Big) \\ &+ u_{T}(X^{(i)\langle M\rangle})\Big). \end{split}$$

Using \mathcal{L}_{r} we train NN_{ν} and NN_{ϖ} using an adversarial approach.

Arrow-Hurwicz-Uzawa like iteration

Key idea:

- ▶ Perform a descent step in Θ_v
- Perform a ascent step in Θ_{ϖ} .

<ロト <回ト < 回ト < 回ト

э

Fig. Analytical solutions for $\overline{Q} = 7e^{-t}\sin(3\pi t)$

Results

Fig. Approximation errors for ϖ and v^* using RNN_{ϖ} and RNN_{v} , respectively, for $\overline{Q}(t) = 7e^{-t}\sin(3\pi t)$

Common noise RRN training

- We discretize the SDE for the price.
- The loss functional is identical to the deterministic setting.
- To train the RNN, we use a new sample for Q at each SGD step.
- The RNN preserves progressive measurability.

Common noise - approximate optimality conditions

In general, the ML framework returns an approximate solution of the optimality conditions

$$\begin{cases} \mathrm{d}\tilde{P}^{n}(t) = \left(H_{x}(\tilde{X}^{n}(t),\tilde{P}^{n}(t) + \varpi^{N}(t)) + \epsilon^{n}(t)\right) \mathrm{d}t \\ + \tilde{Z}^{n}(t) \mathrm{d}W(t), \\ \tilde{P}^{n}(T) = u_{T}'(\tilde{X}^{n}(T)) - \epsilon_{T}^{n}, \\ \mathrm{d}\tilde{X}^{n}(t) = -H_{p}(\tilde{X}^{n}(t),\tilde{P}^{n}(t) + \tilde{\varpi}^{N}(t)) \mathrm{d}t, \\ \tilde{X}^{n}(0) = x_{0}^{n}, \\ \frac{1}{N} \sum_{n=1}^{N} -H_{p}(\tilde{X}^{n}(t),\tilde{P}^{n}(t) + \tilde{\varpi}^{N}(t)) = Q(t) + \epsilon_{B}(t), \end{cases}$$

A D > A P > A B > A B >

A posteriori estimates - common noise

Theorem

Let H be uniformly concave-convex in (x, p), separable, with Lipschitz continuous derivatives, u_T is convex with Du_T Lipschitz. Let (\mathbf{X}, \mathbf{P}) and ϖ^N solve the N-player price problem with a common noise. Let $(\mathbf{\tilde{X}}, \mathbf{\tilde{P}})$ and $\tilde{\varpi}^N$ be a corresponding approximate solution. Then

$$\|\varpi^{N} - \tilde{\varpi}^{N}\| \leq C \Big(\|\epsilon_{H}\| + \|\epsilon_{B}\| \Big).$$

Fig. Exact price and RNN approximation. The grey window highlights the times where noise operates.

Outline

Intro

Finitely many agents

Binomial tree approximation

Machine learning approach - finitely many agents

Stochastic potential

Machine learning framework - potential approximation

Conclusions

Integrating the transport equation

- Let (u, m, ϖ) solve the price problem.
- The transport equation can be written as div_(t,x) (m, −H_p(x, ∞ + u_x)m) = 0.
- Hence, by Poincaré lemma, there exists φ such that

$$m = \varphi_x, \quad H_p(x, \varpi + u_x)m = \varphi_t.$$

Perspective function

Consider the perspective function of L

$$F(x, j, m) = \begin{cases} L\left(x, \frac{j}{m}\right)m, & m > 0 \\ +\infty, & j \neq 0, \ m = 0 \\ 0, & j = 0, \ m = 0. \end{cases}$$

Deterministic potential problem

Find φ minimizing

$$\int F(x,-\varphi_t,\varphi_x)-u'_T(x)\varphi_t\,\,\mathrm{d} x\mathrm{d} t,$$

over φ s.t. $\varphi(0, x) = \int_{-\infty}^{x} m_0(y) dy$, and, for all $t \in [0, T]$, $\varphi_x(t, \cdot) \in \mathcal{P}(\mathbb{R})$ and

$$\int_{\mathbb{R}} \varphi(t,x) - \varphi(0,x) \mathrm{d}x = -\int_0^t Q(s) \mathrm{d}s.$$

The Euler-Lagrange equations for

$$\int F(x,-\varphi_t,\varphi_x)-\varpi\left(\varphi_t+Q\varphi_x\right)-u_T'\varphi_t\,\,\mathrm{d}x\mathrm{d}t.$$

are equivalent to the Hamilton-Jacobi equation

$$(-u_x)_t + (H(x,\varpi+u_x))_x = 0.$$

Stochastic potential problem

Find a progressively measurable function φ minimizing

$$E\int F(x,-\varphi_t,\varphi_x)-\varpi\left(\varphi_t+Q\varphi_x\right)-u_T'\varphi_t\,\mathrm{d}x\mathrm{d}t$$

over the set of PMP φ such that $\varphi(0, x) = \int_{-\infty}^{x} m_0(y) dy$, and for all $t \in [0, T]$ satisfy $\varphi_x(t, \cdot) \in \mathcal{P}(\mathbb{R})$ and

$$\int_{\mathbb{R}} \varphi(t,x) - \varphi(0,x) \mathrm{d}x = -\int_0^t Q(s) \mathrm{d}s.$$

The optimality conditions for this problem are also equivalent to HJ equations.

Outline

Intro

Finitely many agents

Binomial tree approximation

Machine learning approach - finitely many agents

Stochastic potential

Machine learning framework - potential approximation

Conclusions

Machine learning framework

- To approximate φ, we consider a RNN.
- A hidden state, h, carries information about the path history. Thus, the outputs of this architecture depend on the path history and this guarantees their progressive measurability.
- Following several numerical experiments, we select a RNN with a hidden layer and three dense layers, all layers with dimension 32.

$$\varphi(t^{\langle k \rangle}, x^{(i)}) = z^{[3]}$$

$$\downarrow z^{[3]} = W^{[3]}z^{[2]} + b^{[3]}$$

$$z^{[2]} = S(W^{[2]}z^{[1]} + b^{[2]})$$

$$z^{[1]} = S(W^{[1]}(x^{(i)}, h^{\langle k \rangle}) + b^{[1]})$$

$$\downarrow h^{\langle k \rangle} = \tanh(W_h y^{\langle k \rangle} + b_h)$$

$$\downarrow h^{\langle k \rangle}$$

$$(x^{(i)}, y^{\langle k \rangle})$$

$$y^{\langle k \rangle} = (t^{\langle k \rangle}, Q^{\langle k \rangle}, h^{\langle k-1 \rangle})$$

$$\downarrow \dots$$

Fig. RNN cell computation at time k. S is the sigmoid function, W denotes a weight matrix, and b denotes a bias.

Loss components

$$\begin{split} \mathcal{L}_{\mathcal{V}}(\varphi_{\tau}) &= h_{x}h_{t}\sum_{k=1}^{M_{t}}\sum_{i=1}^{M_{x}}\left\{F\left(x^{(i)}, -\partial_{t}\varphi_{\tau}^{\langle k \rangle \langle i \rangle}, \partial_{x}\varphi_{\tau}^{\langle k \rangle \langle i \rangle}\right)\right. \\ &\left. -u_{T}'(x^{(i)})\partial_{t}\varphi_{\tau}^{\langle k \rangle \langle i \rangle}\right\}, \\ \mathcal{L}_{0}(\varphi_{\tau}) &= \sum_{k=1}^{M_{t}}\sum_{i=1}^{M_{x}}\max\left\{-\partial_{x}\varphi_{\tau}^{\langle k \rangle \langle i \rangle}, 0\right\}, \\ \mathcal{L}_{\mathcal{B}}(\varphi_{\tau}) &= \sum_{k=1}^{M_{t}}\left(h_{x}\sum_{i=1}^{M_{x}}\partial_{t}\varphi_{\tau}^{\langle k \rangle \langle i \rangle} + Q^{\langle k \rangle}\right)^{2}, \\ \mathcal{L}_{M_{0}}(\varphi_{\tau}) &= \sum_{i=1}^{M_{t}}\left(\varphi_{\tau}^{\langle 0 \rangle \langle i \rangle} - M_{0}(x^{\langle i \rangle})\right)^{2}, \\ \mathcal{L}_{\mathcal{P}}(\varphi_{\tau}) &= \sum_{k=1}^{M_{t}}\left(1 - h_{x}\sum_{i=1}^{M_{x}}\partial_{x}\varphi_{\tau}^{\langle k \rangle \langle i \rangle}\right)^{2}. \end{split}$$

 $\mathcal{L}_{\mathcal{V}}$ corresponds to the discretization of the variational functional. Deviations from the balance constraint are penalized by $\mathcal{L}_{\mathcal{B}}$, and the initial condition is enforced in $\mathcal{L}_{\mathcal{M}_0}$. Moreover, \mathcal{L}_0 and $\mathcal{L}_{\mathcal{P}}$ guarantee that $\varphi_x(t, \cdot)$ is density function.

イロト 不得 トイヨト イヨト

ж

Consider the loss function that aggregates the terms

$$\mathcal{L} = \mathcal{L}_{\mathcal{V}} + \mathcal{L}_0 + \mathcal{L}_{\mathcal{B}} + \mathcal{L}_{M_0} + \mathcal{L}_{\mathcal{P}}.$$

Table Stochastic training step *j*.

	Input: M_0 , dQ , $ au^{j-1}$.
1	compute sample Q_j
2	for $k=1,\ldots,M_t$ do
3	compute $\mathrm{h}^{\langle k angle}$
4	for $i = 1, \ldots, M_x$ do
5	compute $arphi_{ au^{j-1}}(t^{\langle k angle}, x^{(i)})$
6	compute $\mathcal{L}(arphi_{ au^{j-1}})$
7	compute $ au^j$ by gradient descend
	Output: $ au^j$

Stochastic examples

We consider a mean-reverting supply

$$dQ(t) = \theta \left(\overline{Q} - Q(t)\right) dt + \sigma dW(t),$$

on [0, T], where Q(0) = -0.5, $\theta = 2$, $\overline{Q} = 1$, and $\sigma = 0.2$. The theoretical formula for the price is

$$d\varpi = -dQ$$

Fig. Stochastic price approx. (3 samples)

Outline

Intro

Finitely many agents

Binomial tree approximation

Machine learning approach - finitely many agents

Stochastic potential

Machine learning framework - potential approximation

Conclusions

<ロト <回ト < 注ト < 注ト

Conclusions and future work

- We developed two variational approaches to price formation with common noise.
- Our formulations, combined with machine learning techniques, provide a way for solving certain infinite-dimensional MFGs without using the master equation.
- Future work should identify better network architectures and convergence results.

The end

Thanks a lot for your attention! Questions?

