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Setting

We consider nonlinear control systems in continuous time

ẋ(t) :=
d

dt
x(t) = f(x(t), u(t)), x(0) = x0,

or in discrete time

x+(t) := x(t+ 1) = f(x(t), u(t)), x(0) = x0,

where f : Rn × U → Rn is a controlled vector field or map

Objective:

minimize
u∈U

J(x0, u) :=

∫ ∞

0

ℓ(x(t), u(t)) dt or J(x0, u) :=
∞∑
t=0

ℓ(x(t), u(t))
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Objective

minimize
u∈U

J(x0, u) :=

∫ ∞

0

ℓ(x(t), u(t)) dt or J(x0, u) :=
∞∑
t=0

ℓ(x(t), u(t))

For this problem, an (approximately) optimal feedback control can be computed
from (an approximation of) the optimal value function

V (x0) := inf
u∈U

J(x0, u)

via the associated Hamilton-Jacobi-Bellman equation

sup
u∈U

{−DV (x)f(x, u)− ℓ(x, u)} = 0

or the Bellman equation

sup
u∈U

{V (x)− V (f(x, u))− ℓ(x, u)} = 0
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Curse of Dimensionality

Challenge: Common numerical methods suffer from the curse of
dimensionality, i.e., an exponential growth of the computational effort in the
state dimension

Known fact: Deep Neural Networks (DNNs) are capable of overcoming the
curse of dimensionality for functions with certain beneficial structures

Goal: Detect and exploit such structures for approximating control Lyapunov
functions and optimal value functions
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Simplified setting

Instead of looking for solutions of the equations

sup
u∈U

{−DV (x)f(x, u)−ℓ(x, u)} = 0 or sup
u∈U

{V (x)−V (f(x, u))−ℓ(x, u)} = 0

we start by computing supersolutions

sup
u∈U

{−DV (x)f(x, u)−ℓ(x, u)} ≥ 0 or sup
u∈U

{V (x)−V (f(x, u))−ℓ(x, u)} ≥ 0

These are interesting in their own right, because they describe control Lyapunov
functions and, in addition, upper bounds for the value functions
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Lyapunov functions



Lyapunov functions
We consider autonomous ordinary differential equations (ODEs)

ẋ(t) = f(x(t)), x(0) = x0

with f : Rn → Rn

Assume x∗ = 0 is an equilibrium, i.e., f(0) = 0

A continuously differentiable V : Rn → R+
0 is a Lyapunov function, if there are

functions α1, α2, α3 ∈ K∞ such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)

DV (x)f(x) ≤ −α3(∥x∥) = −ℓ(x, u)
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Lyapunov functions
We consider autonomous ordinary differential equations (ODEs)

ẋ(t) = f(x(t)), x(0) = x0

with f : Rn → Rn

Assume x∗ = 0 is an equilibrium, i.e., f(0) = 0

α ∈ K∞: α : R+
0 → R+

0 , continuous,
strictly increasing, α(0) = 0,
unbounded r(0, 0)

rα( )
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Example: Mathematical Pendulum

m

α x1 = α = angle

x2 = angular velocity

⇝ ordinary differential equation

ẋ1 = x2

ẋ2 = −g sin(x1)−
k

m
x2
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Pendulum solution and Lyapunov function
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Solution of pendulum equation
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Pendulum solution and Lyapunov function

Lyapunov function V (x) = x22/2 + g(1− cosx1) + 0.1x2 sin(x1)

Lars Grüne, Dante Kalise, Luca Saluzzi, Mario Sperl, Decaying sensitivity and separable optimal value functions, p. 8/29



Pendulum solution and Lyapunov function

Lyapunov function with solution superimposed
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Pendulum solution and Lyapunov function

Lyapunov function with solution superimposed
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Numerical computation of Lyapunov functions

Various numerical approaches for computing (control) Lyapunov functions have
been developed over the years:

Series expansion [Kirin et al. ’82]

Semi-Lagrangian schemes [Camilli/Gr./Wirth ’00, Falcone/Gr./Wirth ’00]

Finite elements and linear programming [Hafstein ’02ff]

Sum-of-squares methods [Papachristodoulou/Prajna ’02]

Radial Basis functions [Giesl ’04ff, Giesl/Wendland ’07ff]

All these methods suffer from the curse of dimensionality

Can deep neural networks do better?

Lars Grüne, Dante Kalise, Luca Saluzzi, Mario Sperl, Decaying sensitivity and separable optimal value functions, p. 9/29



Numerical computation of Lyapunov functions

Various numerical approaches for computing (control) Lyapunov functions have
been developed over the years:

Series expansion [Kirin et al. ’82]

Semi-Lagrangian schemes [Camilli/Gr./Wirth ’00, Falcone/Gr./Wirth ’00]

Finite elements and linear programming [Hafstein ’02ff]

Sum-of-squares methods [Papachristodoulou/Prajna ’02]

Radial Basis functions [Giesl ’04ff, Giesl/Wendland ’07ff]

All these methods suffer from the curse of dimensionality

Can deep neural networks do better?
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Deep neural networks



Deep neural network with 2 hidden layers

output

inputx1 x2
xn

y21 y22 y2N2

y11 y12 y1N1
ℓ = 1

ℓ = 2

W (x; θ) W (x; θ) = a · y2k + c

y2k = σ2(w2
k · y1 + b2k)

y1k = σ1(w1
k · x+ b1k)

w1
k, w

2
k, a = vectors of weights, “ · ” = scalar product

b1k, b
2
k, c = scalar parameters, σ1, σ2 : R → R = activation functions

Examples: σ(r) = r, σ(r) = max{r, 0}, σ(r) = ln(er + 1)

θ = vector of all parameters (wℓ
k, b

ℓ
k, a, c)

W (x; θ∗) ≈ V (x) approx. Lyapunov function for “trained” θ∗
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Universal approximation theorem

Known: Every continuous function can be approximated arbitrarily good by a
DNN (“Universal approximation theorem” [Cybenko ’89, Mhaskar ’96])

— but the
number of neurons needed grows exponentially with the dimensions n

⇝ Curse of dimensionality applies also here

But: For functions with beneficial structures this approximation works with only
polynomial effort

Functions with a high degree of smoothness and suitable
form of the Fourier transformation (e.g., Barron functions)

These were recently exploited for 2nd order HJB equations by Darbon, E,
Han, Hutzenthaler, Jentzen, Kruse, and others

⇝ Unlikely to work for deterministic problems
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Beneficial structures

Compositional functions, cf. e.g. [Poggio/Mhaskar/Rosasco/Miranda/Liao ’17,

Kang/Gong ’22, Dahmen ’23]

. These are functions of the form

g(x) = g1(g2(xi1 , xi2), g3(xi3) + g4(g5(g6(xi4 , xi5))) + . . .

where each component function gi depends only on a number of arguments
m that is independent of n

A particular example are separable functions

V (x) =
s∑

j=1

Vj(zj), zj =

 xij,1
...

xij,dj


with m bounded independent of n and s ≤ n
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Why are separable functions beneficial?

Separable function: V (x) =
∑s

j=1 Vj(zj), zj =

 xij,1
...

xij,dj



We can approximate the individual Vj
by the grey blocks

When the dimension n grows, the
number of blocks grows linearly

If the dj’s are constant or grow only
slowly with n, the number of neurons
in each block also grows slowly

⇝ no curse of dimensionality

output

inputx1 x2
xd

y11 y1M ys1 ysM

xi1,1 z1 xi1,d1

xis,1

zs xis,ds ℓ = 1

ℓ = 2
V1

Vs

W (x; θ)

In the first layer we can even implement more complex transformations than
merely splitting up x into the zj
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Nonlinear small-gain theory
For Lyapunov functions, nonlinear small gain theory provides existence results for
separable Lyapunov functions

It assumes that the system can be decomposed into subsystems

żi = fi(zi, z−i), i = 1, . . . , s,

where the interconnection structure is expressed by a directed graph

The influence of subsystem i on subsystem j is expressed by a gain function γij

If in each cycle in the graph the concatenation of the γij satisfies

γi1i2 ◦ γi2i3 ◦ . . . ◦ γimi1 < id,

then a separable Lyapunov function V (x) =
∑s

j=1 Vj(zj) exists

[Dashkovskiy/Rüffer/Wirth ’10, Dashkovskiy/Ito/Wirth ’11]

See also [Jiang/Teel/Praly ’94, Jiang/Mareels/Wang ’96, Rüffer ’07ff, . . . ]
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żi = fi(zi, z−i), i = 1, . . . , s,

where the interconnection structure is expressed by a directed graph

The influence of subsystem i on subsystem j is expressed by a gain function γij

If in each cycle in the graph the concatenation of the γij satisfies

γi1i2 ◦ γi2i3 ◦ . . . ◦ γimi1 < id,

then a separable Lyapunov function V (x) =
∑s

j=1 Vj(zj) exists
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Complexity theorem

Theorem [Gr. 21]: Lyapunov functions V (x) =
∑s

j=1 Vj(Tjx) with
dj = rankTj ≤ dmax independent of n can be approximated with any accuracy
ε > 0 with a number of neurons growing only polynomially in n

Note: The small-gain theory guarantees the existence of a compositional
Lyapunov functions, but for using this result with DNNs, neither the zj nor the
Vj need to be known in advance

Using an appropriate training algorithm, the network will “learn” this structure
during the training process
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10d Numerical Example

ẋ(t) = T−1f̂(x)(Tx)

with

f̂(x) =
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

We perform the training with a network with 5 sublayers with dimension
dmax = 2 (⇝ 2 671 parameters), and m = 400 000 test points
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10d Example

Computation time: 266s
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10d Example – Evaluation along trajectories

Initial value x0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T

Lars Grüne, Dante Kalise, Luca Saluzzi, Mario Sperl, Decaying sensitivity and separable optimal value functions, p. 18/29



Control Lyapunov functions



Control Lyapunov functions
If we assume smoothness, a control Lyapunov function (clf) is characterised by

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)

inf
u∈U

DV (x)f(x, u) ≤ −α3(∥x∥)

Question: When can we employ small gain techniques here?

Recall the sufficient condition

γi1i2 ◦ γi2i3 ◦ . . . ◦ γimi1 < id for each cycle in the graph

This implies:

If in each cycle of the graph there is at least one subsystem for which the γij can
be made arbitrarily “flat” (“active nodes”), then there exists a clf of the
separable form V (x) =

∑s
j=1 Vj(zj) [Chen/Astolfi ’20]
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Lars Grüne, Dante Kalise, Luca Saluzzi, Mario Sperl, Decaying sensitivity and separable optimal value functions, p. 19/29



Control Lyapunov functions
If we assume smoothness, a control Lyapunov function (clf) is characterised by

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)

inf
u∈U

DV (x)f(x, u) ≤ −α3(∥x∥)

Question: When can we employ small gain techniques here?

Recall the sufficient condition

γi1i2 ◦ γi2i3 ◦ . . . ◦ γimi1 < id for each cycle in the graph

This implies:

If in each cycle of the graph there is at least one subsystem for which the γij can
be made arbitrarily “flat” (“active nodes”), then there exists a clf of the
separable form V (x) =

∑s
j=1 Vj(zj) [Chen/Astolfi ’20]
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Example for a suitable graph structure

z1

z2

z3

z4

z5

z6 z7

z8
z9

z10 z11

z12 z13z14

z15

⇝ V (x) =
15∑
j=1

Vj(zj)
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Computation with DNN

Example:

ẋ1 = x3 + u
ẋ2 = x1 − x2 + x21
ẋ3 = x2 − x3
ẋ4 = x3 − x4
ẋ5 = x4 − x5
ẋ6 = x5 − x6

⇝ V (x) =
6∑

j=1

V (xj)

Computation time: 820s
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ẋ1 = x3 + u
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(Approximately) Optimal Value Functions



Optimal Value Functions
In optimal control, we want to solve

sup
u∈U

{−DV (x)f(x, u)− ℓ(x, u)} = 0

in continuous time or

sup
u∈U

{V (x)− V (f(x, u))− ℓ(x, u)} = 0

in discrete time

Assuming that an optimal value function V or an approximation thereof has a
separable structure may be too demanding, even after coordinate transformations

Seperable supersolutions are also likely to be very suboptimal

This is because optimisation usually exploits the interaction between subsystems

Remedy: Overlapping decompositions offer more flexibility
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Decaying sensitivity
Consider, as before, a decomposition of x into subvectors zj corresponding to
subsystems connected via a graph

. Assume the Lipschitz constant of the map

zk 7→ V (z1, . . . , zl−1, zl, zl+1, . . . , zs)− V (z1, . . . , zl−1, 0, zl+1, . . . , zs) (∗)

decreases to 0 with the distance of the k-th and the l-th subsystem in the graph

Then V can be approximated by a sum of functions, each with a bounded
number of arguments zj (details in a minute) [Sperl/Saluzzi/Gr./Kalise ’23]

Note: The same zj may appear in several of the functions in the sum

If V is separable, (∗) has Lipschitz constant 0 for all k ̸= l

If V (x) = xTPx is quadratic, the assumption on (∗) requires the
sub-matrices Pkl to decrease with the distance of the k-th and
the l-th subsystem in the graph

Related to [Shin/Anitescu/Zavala ’22, Zhang/Li/Li ’22]
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Decaying sensitivity

Note: decaying sensitivity is a property of optimal solutions, not of any solution

Example: convoy of vehicles

It is known that a perturbation in the first vehicle (e.g., a braking manoeuvre)
may amplify while propagating through the convoy

However, the perturbation will decrease quickly, if the vehicles are controlled
optimally

Lars Grüne, Dante Kalise, Luca Saluzzi, Mario Sperl, Decaying sensitivity and separable optimal value functions, p. 24/29
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Decaying sensitivity: Example

Consider a convoy of i = 1, . . . , N vehicles on a road with state zi = (xi, vi)
T

and dynamics
ẋi = vi, v̇i = ui

We compute a control that minimizes the functional∫ ∞

0
(x1(t)− xref (t))

2 +
N−1∑
i=1

(xi+1(t)− xi(t)− L)2 + γ∥v(t)− Ivref∥22 + δ∥u(t)∥22dt

In the simulation: N = 100, shown i = 1, . . . , 5, xref ≡ 0, vref ≡ 0
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Decaying sensitivity: Example
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For discrete-time LQ problems, we could prove exponential decay of sensitivity,
based on [Shin/Anitescu/Zavala ’22]

It is not clear whether this also holds in this continuous-timeexample

Lars Grüne, Dante Kalise, Luca Saluzzi, Mario Sperl, Decaying sensitivity and separable optimal value functions, p. 26/29



Decaying sensitivity: Example

0 1 2 3 4 5 6 7 8 9 10

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

For discrete-time LQ problems, we could prove exponential decay of sensitivity,
based on [Shin/Anitescu/Zavala ’22]

It is not clear whether this also holds in this continuous-timeexample
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Construction of overlapping approximation
Assume for sake of a simple presentation that the distance between zi and zj
equals |i− j|

. Then the assumption on

zk 7→ V (z1, . . . , zl−1, zl, zl+1, . . . , zs)− V (z1, . . . , zl−1, 0, zl+1, . . . , zs) (∗)
implies

(∗) ≈ V (0, . . . , 0, zj, zj+1, . . . , zj+l, 0, . . . , 0)−V (0, . . . , 0, 0, zj+1, . . . , zj+l, 0, . . . , 0)

Then

V (x) ≈ V (0) +
s∑

j=1

Ψj
l (zj, . . . , zj+l)

Concrete estimates in [Sperl/Saluzzi/Gr./Kalise ’23] using exponentially decaying
sensitivity, i.e., |(∗)− ψj

l | ≤ cρj for some ρ ∈ (0, 1), yield∣∣∣∣∣V (x)− V (0)−
s∑

j=1

Ψj
l (zj, . . . , zj+l)

∣∣∣∣∣ ≤ c(s− 1)ρj
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Conclusions

Deep neural networks can be used for computing Lyapunov functions,
control Lyapunov functions, and approximations of optimal value function

(this is not a new finding!)

The method can overcome the curse of dimensionality if the approximated
function has a compositional or — more specifically — separable structure

In this case we can handle dimensions that are far beyond those feasible for
grid based methods

Small-gain theory describes situations in which a compositional (control)
Lyapunov function exists
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