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The multiscale &

* The real goal of these models
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A crop of the full chip
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Figure: Crop of the microfluid chip after 72 hours

De Ninno A., Bertani F.R., Gerardino A., Schiavoni G., Musella M., Galassi C., Matteil F., Sistigu A.,
Businaro L. Microfluidic Co-Culture Models for Dissecting the Immune Response in in vitro Tumor
Microenvironments. J. Vis. Exp. 170, e61895, doi:10.3791/61895, 2021
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e it Experiments (see Vacchelli et al: Science.
Ay i (2015), Businaro et al: Lab on Chip rep.(2014))

Tumour and KT/WT-type immune cells
i KO-type: uncorrelated random walk
, R migration T4 7 WT spleen cells * WT-type: strongly directed movement = Chemotaxis
i1 1 microchannels ! |© &/ center chamber e Tumour cells local sources of chemoattractan
TPP— g * WT-type: Generation of tumour killing agent
chamber P KO spleen cells « cvtokine
= a3 - S center chamber y i ] ]
, z e Chemical diffusion

Available Data:
* Tumour and immune cell trajectories
 No information about chemical distribution

microchannels | &8

S J-_f:

Cell trajectories performed by WT-cells and KO-type cells

)



The time-lapse of the

* 1702um x 1361um

* Duration: 48h-72h

* Cell movement: Diffusion and
Chemotaxis

* Micro-channels allow only one cell
to move through each.
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A first macroscopic model
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Figure: Numerical domain

o, .1 Braun E.C., Bretti G., Natalini R. Mass-
Preserving Approximation of a Chemotaxis
Multi-Domain Transmission Model for
Microfluidic Chips. Mathematics, 9(6)688, 1-34,
2021
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A first macroscop
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Implicit Crank-Nicolson method for diffusion term
and source term

Explicit central discretization for chemotactical
convection term

Articial viscosity for improved stability in presence
of high Péclet numbers

Asymptotic Higher Order schemes(AHO) for the
hyperbolic partial dierential equation.

Numerical boundary conditions that preserve the
mass (for no-ux BC).

Trasmission condition of Kedem-Katchalski type
(jump for density at interface)



A first macrosc
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Back to the experimental

(a) (b)
Figure: left: Tracked cell . Right: Artificially created cells.
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Beyond Keller-Segel: a mic
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Gabriella Bretti, Adele De Ninno, Roberto Natalini, Daniele Peri and Nicole Roselli, Estimation Algorithm
for a Hybrid PDE-ODE Model Inspired by Immunocompetent Cancer-on-Chip Experiment, Axioms 2021,
10(4), 243
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A hybrid model

Xi(t) : position of the i-th cell
@(x, t) : concentration of the chemoattractant

acceleration i-th cell chemotaxis immune fcancer  attraction frepulsion da mpirg:ith noise
¥ - - ~ m—— —— . N
X; =GR @V + X Y) +  FaX) - u(Xi—ov)
4
chemo rate in time diffusion  preduction cancer  molecular degradation
LES P
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A basic discrete model wi

. L; Position at time t of the i-th cell

. V; Velocity at time t of the i-th cell

. Concentration of a chemoattractant produced by the cells
. fy(v, aj) Interaction function among the cells

f (CE, X ) Production of chemoattractant
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 Study of the mascroscopic behavior of the dynamical system
 Kinetic approach (Vlasov-type model): density of particles

* Hydrodynamic limit (Euler-type model): density of cells + velocity field:
a numerical study

e without chemotaxis

e with chemotaxis

NONLINEAR PARTIAL DIFFERENTIA

A conference in memory of Maurizi



The Cucker-Smale model (n

Ly — Uy,
N
2! 1
Uy = N Z (vj R U,,;)
* E Cucker & S. Smale, leee T. Automat. Contr (2007) time-asymptotic flocking
*S.Y. Ha & J.G. Liu, Commun Math Sci (2009) N
. 2
- im ) veu®)? =0
1€1I°
(&) =1+ 7% )
R sup Z |25(t) — zem(®)||* < +oo

0<t<+o0 i—1
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The flow

Ly = Vg,
N
The system (2) . 1
0 = 57 > (i — w5) (v — vy)
J=1
Generates a flow (I)twhich is, given the initial data (z*"*,v"") = (1", ..., zx, 01", ..., U

(2™, v"™) = (z(t), v(t))
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A first mean field approach: t

Given a solution (x(t), v(t)) to system (2). The so-called empirical measure
N
1
I, (z,v) = ~ D 0@ — ()5 (v — v(t))
1=1

IS a special solution to the Vlasov equation:
(3)0up (2.0) + v~ Vapl (2, 0) + V- (pt<x,v> [ ota—n- w)pt<y,w>dydw) -
2d

* S.-Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,
Kinet. Relat. Models 1 (2008) 415-435

* Carrillo, José A.; Choi, Young-Pil Mean-field limits: from particle descriptions to macroscopic
equations. Arch. Ration. Mech. Anal. 24 (3) (2021) 1529-1573.
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The mean field limit: the empiri

: - mn : W (IT¢ my __
Theorem: given an initial measure 0 such that ]\;Im ( K}", P ) =0
— 00

: : : t
then there exist a unique solution 0 to

Oip" (z,v) +v - Vep'(z,v) + V, - ( T,V / Y(x —y)(v— )pt(y,w)dydw) =0

this solution belongs to L°° ([O OO) P(Red )

and
limy oo sup W (II4, p") =0
te[0,00)
Seung-Yeal Ha,Jeongho Kim,Xiongtao Zhang, Kinetic & Related Models (2018)
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A different approach: Mean field

Idea: considering the movement of a generic particle solution to the Liouville
equation associated to an Hamiltonian system

Consider the pushforward by the flow (I)t of a compactly supparted (symmetric by
permutations of the variables N-particles) probability density ,03\7;’ on the phase space

t m .t
QPN = PN
which is the solution to the Liouville’s equations associated to the system

N
675:03\[ + V- VX:OI.;V + Z vvz(Gng\f) = 0, IOTJj\?O = PN
=1

N
1
with G = 2 v(@i — ) (v; — vi)
j=1
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Mean field limit by

To describe the movement of a “generic” particle in the limit of diverging
number of particles, we want to perform an average on the N particles but one.
Then, we take the first marginal to the solution to the Liouville equation

p’}v;l(:c,f) ‘= / o (T, €, 20,60, ... N, EN)dTads . . . drydén

R2(d—1)N

The marginal approaches the solution to the Vlasov eq.

:05\7;1(337 ‘S) -2 pt
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A mean field limit with estim

Theorem 1. R.N. - T. Paul, DCDS-B (2022)

Let ®' be the flow generated by the system (2), ¢ bounded positive
nonincreasing Lipschitz continuous, and let p* be the solution to the Vlasov
equation (3) with an initial condition p™ € L'(R??) compactly supported.
Let moreover ply; be the first marginal of ply := D'#/(p™)®".

Then, for all N > 1, t > 0,

~ in et — 1?2 -1
Walohya, o) < A1 (215] + [supply n)( ) N~

with
L = 2(1+ 8[| 0] puppipiny) a0l 7 = / op"dado

where [|v|| 2o (supplpin) = sup  [v].
(z.v)Esupp[p'™]
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Comparison bet

Flocking case (Simulation by Marta Menci)
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FIGURE 1. Testl: Numerical simulation of Cucker-Smale model with § = 0.05, at particle level (first
line) and kinetic (second line) level.




(Simulation by Marta Menci)
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FIGURE 2. Test2: Numerical simulation

line) and kinetic (second line) level.
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Come back to chemotea

i = Uy,
1 N
(1) o= (vi —vj, i — x5) + NV
j=1
. Ovp = DAp — ko + f(z, X (1))

* Non local space-time interaction in the Force field
* The associated solution is no more a flow!
« ply = ®%#p does not satisfy a closed equation (pseudo-Liouville eq.)
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The nonlinear nonlocal Vlasov e

[ Oip' + v Vapt = Vo(u(t,z,v)p), p° = p" € P(R¥)
I—*’(t?i‘?ﬂ) =q* pt(m?v) + nVth(I) + FEIt(I)i

Os*(z) = DA — k) + g(x, p*), ' = ™.

L 9(z, p%) = x * p(x).
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The main convergence theo

Natalini, Roberto; Paul, Thierry The mean-field limit for hybrid models of collective motions with chemotaxis.
SIAM J. Math. Anal. 55, No. 2, 900-928 (2023)

Theorem 2.1. Let p™ be a compactly supported probability on R*™N, let @' be the
mapping generated by the particles system (3,4,5,6) as defined by (7), and let 7 be
the function defined in formula (41) below.

Then, for anyt > 0,

) N3 d=1
Wa (#(p™) N v, p')” < Ty (t) N—§1c.gN d=2
N~a d > 2

Moreover, let us denote by ¢',.. the chemical density solution of (3,4, 5,6) with initial
data (Z™, ™) and by T»f):,m the one solution of (14, 15,16, 17) with initial data (p™, ™).

Then
N-z d=1
/ IV = Vi 2 (p™) N (dZ™) < 7o(t)§ N7zlog N d =2
RN N-7 d>2
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https://zbmath.org/authors/natalini.roberto
https://zbmath.org/authors/paul.thierry
https://zbmath.org/7683254
https://zbmath.org/serials/1638
https://zbmath.org/?q=in%3A495491

Comparison bet

Non flocking case (Simulation by Marta Menci)
gﬂ%

F1GURE 3. Test3: Numerical simulation of Cucker-Smale model with chemotaxis at particle level (first
line) and kinetic (second line) level, with 8 = 0.95 and n = 1.4.




The monokinetic situation

Assume now the initial density is monokinetic 2" (z,v) = p" (x)5(v — u"(x))
Theorem 6.1. Let pu!, u', 1" be a solution to the following system
(O’ + V(u'p') =0
On(pu') + V(' (') %) = p' [4( =y, u' () = u'(y))p' (y)dy + np' V' + p'F
Ostp” = DAY — kg + x x pt°, s € [0, 1],
where p',u' € C([0,t]; H*) N CY([0,T|; H*7Y), @' € C([0,4]; H) N CH([0,T]: H**) N
LE(D,T; Hﬁ+1) 3.
Then p'(x,v) := p'(2)d(v — u'(x)) solves the following system
( Sfﬁt + v V.Lpt - vv(y(tv Iﬂ U)pt)ﬂ
v(t,z,v) = y(x,v) *x p' + V0" (z) + Fop(),
0s0°(2) = DAY — k1) + g(z,p%), V' = 0™,
A, v) = ()60 — u(z)

.
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Looking for a good mac

Marta Menci, Roberto Natalini, Thierry Paul, MICROSCOPIC, KINETIC AND HYDRODYNAMIC
HYBRID MODELS OF COLLECTIVE MOTIONS WITH CHEMOTAXIS: A NUMERICAL STUDY, preprint 2023

y axis
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Comparison between Vlasov and the H

Nonlocal Valsov equation:

( Oup" +00pp" = 0y (v(t,x,v)p"), Compare the momenta to the hydrodynamic
omw t quantities
) V(t,x,’l)) = . (1 N |.’E _ y|2)ﬁp (yaw)dydw + 773.70¢ (.’E) - av, , , ,
@) = [ o, )d = u'(2)
0.0°(w) = DO~ v+ | / y)dyd,
Our nonlocal hydrodinamic equation: V{ (x) — /fpt (:c, ﬁ)df ~ Mt (x)ut (:13)
(Ot + Op(ulpt) =0

O (p'u’) + 0 (' (u*)?) = p* [A(- —y,u'(-) — u"(y))p* (y)dy + np*pbt — aptul

z+R

0s9° = DOZtp — kb +/ 1 (y)dy, s €[0,t].

r—R
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Comparison between

1 —(:D—:BO)2_|_—(U—UO)2
The monokinetic case with initial data: po (CE, ?J) — e 293 203
20 Oy
Vlasov phase space v§ and p' vi and Q'
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No chemotaxis, no damping, t=
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Comparison betwee

The monokinetic case with initial

25 =2
3tk
2
25
1.5
2L
15
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1k
B 05+
05 o
-13 -1 05 o 0.3 1 1.5 ¥
X

data: IOO(CU, fu) —

5 -4 -3 -2 -1 ] 1 2

3

chemotaxis, no damping, t=2: no longer monokinetic
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Comparison between Ve

The monokinetic case with initial data: pO (aj, U) — e

—(:10—:130)2 —(v—v0)2
20% 20%

L3 3

0.6

02

chemotaxis, damping, t=2: dissipation of energy
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Comparison between Vlasov and the H

The non-monokinetic case with initial data:

0 1 sop [ =letpor =(e=ro)” 0
p(x,v):2 ez e 2% +e 2% — u (x) =0
TO 0O g
No chemotaxis 2 * |
No damping ) No convergence
t=3 .

chemotaxis 2 | i Convergence for
No damping ” | A ’ large times (not
t=7 | | ] for all data)
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The Hydrodynamic model with a small

Our nonlocal hydrodinamic equation with a small pressure (to avoid blow-up)
( Oyt + Op(utpt) =0

O (piul) + 0p (ut (uh)? +eP(ph)) = p* [ (- —y,u'(-) — u'(y))p' (y)dy + nuOptp* — ot u?
r+R

aﬂﬁ=0%w—mwy/ W (y)dy, s € [0, 1),

r—R

\

Compare with the Preziosi-Euler model for chemotaxis in vasculogenesis
(Ot + Oy (utpt) =0

\

O (p'u') 4 O (' (u')? + P(p')) = +np' 09" — aptu’

| 0u1® = DO — ki) +
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Comparison between Vlasov and the Hydrot
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Comparison between Vlasov and the Hydroc

T 1.5
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chemotaxis, damping, t=4
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Conclusions

* The Vlasov model gives a reliable approximation of the microscopic case

* The Hydrodynamic non local model is a good approximation in the monokinetic
case before blow-up (pressureless gas). And in general the Vlasov remains
monokinetic only for short times

* Adding a (small) pressure, in the spirit of Preziosi, takes into account for the neglected
momenta, but only for certain values of epsilon.

* Damping, which is a natural ingredient in these models even at the microscopic scale,
helps a lot in keeping the hydrodynamics near the kinetic.

NONLINEAR PARTIAL DIFFERENTIAL E

A conference in memory of Maurizio



Some refere

Di Costanzo E., Natalini R., Preziosi L. A hybrid mathematical model for self-organizing tissue migration
in the zebrafish lateral line, Journal of Mathematical Biology, 71(1):171-214, 2015

Braun E.C., Bretti G., Natalini R. Mass-Preserving Approximation of a Chemotaxis Multi-Domain
Transmission Model for Microfluidic Chips. Mathematics, 9(6)688, 1-34, 2021

Gabriella Bretti, Adele De Ninno, Roberto Natalini, Daniele Peri and Nicole Roselli, Estimation Algorithm
for a Hybrid PDE-ODE Model Inspired by Immunocompetent Cancer-on-Chip Experiment, Axioms 2021,
10(4), 243

Elishan C. Braun, Gabriella Bretti, Roberto Natalini, Parameter estimation techniques for a chemotaxis
model inspired by Cancer-on-Chip (COC) experiments, International Journal of Non-Linear Mechanics,
Volume 140, April 2022, 103895 https://doi.org/10.1016/j.ijnonlinmec.2021.103895

Roberto Natalini, Thierry Paul, On The Mean Field limit for Cucker-Smale models, Discrete & Continuous
Dynamical Systems — B, 2022, 27(5): 2873-2889. doi: 10.3934/dcdsb.2021164

Roberto Natalini, Thierry Paul, The Mean-Field limit for hybrid models of collective motions with
chemotaxis, SIAM J. Math. Anal. 55, No. 2, 900-928 (2023)

Marta Menci, Roberto Natalini, Thierry Paul, MICROSCOPIC, KINETIC AND HYDRODYNAMIC

HYBRID MODELS OF COLLECTIVE MOTIONS WITH CHEMOTAXIS: A NUMERICAL STUDY, preprint
2023

NONLINEAR F
r A conference



NONLINEAR PARTIAL DIFFE
A conference in memory of




	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28
	Slide: 29
	Slide: 30
	Slide: 31
	Slide: 32
	Slide: 33
	Slide: 34
	Slide: 35
	Slide: 36
	Slide: 37
	Slide: 38
	Slide: 39
	Slide: 40
	Slide: 41

