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Enjoying trips (April 2019, Toulouse-Cabrerets)
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Enjoying dinners together
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Working together always with a smile and fun
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@ Stationary Hamilton-Jacobi equations

> Introduction to Photometric 3D Reconstruction
» Orthographic Shape-from-Shading (SfS)

» Orthographic Photometric-Stereo SfS

@ Time dependent Hamilton-Jacobi equations

> Image Segmentation via Level-Set equation
» Adaptive filtered schemes

> Numerical experiments
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Introduction to Photometric 3D Reconstruction ERLIEY Ml RERELESIEN B QLI E

Introduction - Shape-from-X Problems
Goal: Reconstruction of the shape of an object starting from some kind of data.

Geometric techniques Photometric techniques

Single image Structured light Shape-from-shading (StS)

Shape-from-shadows

Shape-from-contours

Shape-from-texture

Shape-from-template

Multi-images Structure-from-motion Photometric stereo (PS)

Stereopsis Shape-from-polarisation (S{P)

Shape-from-silhouettes

Shape-from-focus

@ Geometric techniques aim at identifying and analysing features

@ Photometric techniques aim at inverting a physics-based image formation
model.

@ J.-D. Durou, M. Falcone, Y. Quéau, and S. Tozza (Eds.), Advances in Photometric
3D-Reconstruction, Advances in Computer Vision and Pattern Recognition, Springer
2020.
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Introduction to Photometric 3D Reconstruction [ELIEZL SR ERS ELER TN QA

Introduction - Shape-from-X Problems

Goal: Reconstruction of the shape of an object starting from some kind of data.

Shape-from-Shading

Data: The gray-level measured in an image of the object

Surface Photo Find surface(s) that
give the same image(s)

Silvia Tozza (Dept. Mathematics, Univ. of Bologna)
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Introduction - Shape from Shading (SfS) Problem

Modeling of Shape from Shading:

@ Reflectance Model

@ Camera Model

@ Lighting Model
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Orthographic SfS Problem

Modeling of Shape from Shading:

@ Reflectance Model

@ Camera Model = Orthographic Projection

@ Lighting Model = One light source located at infinity
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Introduction - Shape from Shading (SfS) Problem

The SfS problem is described by the following irradiance equation:

R(N(z,y)) = I(z,y) (1)

where
@ R(N(z,y)) is the reflectance function
e N(xz,y) is the unit normal to the surface at point (z,y, u(z,y))
o I(z,y) is the graylevel measured in the image at point (z,y)

I:Q —[0,1], with Q compact domain (2 C R? open subset).
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Lambertian reflectance model (L-model)

Idea: The surface is Lambertian, i.e. the intensity reflected by a point of the
surface is equal from all points of view.

Goal: Finding u: Q — R s. t. satisfies the following equation:

I(z,y) =vpN(z,y) - w, V(z,y) € (2)

where
@ vp is the albedo

_ n(@y) _ 1 _
e N(z,y) = @) — \/1+|Vu(m,y)|2( Vu(z,y),1)

0 w = (wy,ws,w3) = (@,ws) (general light direction)

Hamilton-Jacobi equation associated to (2):

I(z,y)vV1+ |Vu(z,y)|?> + @ - Vu(z,y) —ws =0, in Q.
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Orthographic Shape-from-Shading (SfS)

Lambertian model: concave/convex ambiguity

Particular case: Vertical light source w = (0,0, 1)
The HJ equation in the variable u becomes the so-called “eikonal equation”
IVu(z,y)| = f(z,y) for (z,y) €, ®3)
_ 1
where f(z,y) = Teo? — L
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Orthographic Shape-from-Shading (SfS)

Lambertian model: concave/convex ambiguity
Particular case: Vertical light source w = (0,0, 1)
The HJ equation in the variable u becomes the so-called “eikonal equation”

[Vu(z,y)| = f(z,y) for (x,y) €, (3)

where f(a:,y) = W - L

Concave/convex ambiguity

The model is ill-posed, there is not uniqueness of solution (both in the context of
classical and Lipschitz solutions).

Silvia Tozza (Dept. Mathematics, Univ. of Bologna) A trip into Image Processing with Maurizio 16 / 62



Lambertian model: concave/convex ambiguity
Concave/convex ambiguity: example
Eikonal equation (3) + Dirichlet BC zero

a b RS

(a) maximal solution and  (b) a.e. solutions that gives
the same image.
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Orthographic Shape-from-Shading (SfS)

Lambertian model: concave/convex ambiguity
Possible solutions of the concave/convex problem:

@ Fix the height value u at each point at maximum brightness
(Lions-Rouy-Tourin, 1993)

@ Choosing as a solution the maximal one, which is shown to be unique
(Camilli-Siconolfi, 1999)
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Orthographic Shape-from-Shading (SfS)

Lambertian model: concave/convex ambiguity
Possible solutions of the concave/convex problem:

@ Fix the height value u at each point at maximum brightness
(Lions-Rouy-Tourin, 1993)

@ Choosing as a solution the maximal one, which is shown to be unique
(Camilli-Siconolfi, 1999)

@ Using more general reflectance model?

Non-Lambertian reflectance models do not solve the ambiguity for the
orthographic SfS [T.-Falcone, JMIV 2016] J
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Orthographic Shape-from-Shading (SfS)

Lambertian model: concave/convex ambiguity
Possible solutions of the concave/convex problem:

@ Fix the height value u at each point at maximum brightness
(Lions-Rouy-Tourin, 1993)

@ Choosing as a solution the maximal one, which is shown to be unique
(Camilli-Siconolfi, 1999)

@ Using more general reflectance model?

Non-Lambertian reflectance models do not solve the ambiguity for the
orthographic SfS [T.-Falcone, JMIV 2016] J

ﬁ S. Tozza, M. Falcone, Analysis and approximation of some Shape—from-Shading
models for non-Lambertian surfaces, JMIV, 55(2):153-178, 2016.
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Orthographic Shape-from-Shading (SfS)

L—-model ON-model PH-model

AR R
Lee

Figure: Synthetic vase under vertical light source (w = (0, 0, 1)): example of concave/convex ambiguity
solved by using correct Dirichlet BC. From left to right: L-model, ON-model with o = 0.2, PH-model with
ks = 0.4.
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Well-posed Orthographic problem (L-model)

@ Photometric Stereo SfS with two light sources plus Boundary Conditions

—Vu(r,y) @ +wh

Yo(z,y = Di(z,y), V(z,y) €Q
D e e e

~Vu(z,y) - &" + wy

L+ [[Vu(z,y)[|?

= DQ(x’y)v V(l’,y) €N

Yo (z,y)

with u(z,y) = g(x,y) known for all (z,y) € 9.

By eliminating the non-linearity we arrive to

{ bp(z,y) - Vu(z,y) = fp(z,v), ae. (z,y)€Q )
u(x,y) = g(x’y)7 V(x,y) € 0N

ﬁ R. Mecca and M. Falcone, Uniqueness and Approximation of a Photometric
Shape-from-Shading Model, SIAM J. Imaging Sciences, 6(1):616-659, 2013
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Standard PS-SfS

Reconstruction

Figure: The top row shows three images of a painted ceramic cup. The bottom row shows the normal map
where artifacts have been highlighted and the 3D shape reconstruction using traditional PS [R. J. Woodham
(1980)]. Bottom images show artifacts due to specular reflections.

into Image Processing with Maurizi



Specular model - Blinn-Phong model (Blinn, 1977)

@y

The Blinn-Phong Specular model

Si(xay) = /YS(xay)(Hi : N('Tay»c
where

@ vs(x,y) is the specular albedo,

i_ V4w' _ b _ by hy
o H' = [V+w? = n?| — (|hz‘7 Thi|’ |h1 ) (Vg > 0,ws >0)

@ ¢ > 0 measures the shininess of the surface.
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Orthographic Photometric-Stereo SfS  IEEES SRV I [T LT

Specular model - Blinn-Phong model
By using the technique of the image ratios:

Equation for S»

n(x,y) -h’ _ \n(x,y)| _ n(x7y) -h”
W|(Si(z,9)e  (ys(@y)F  [07[(Sa(z,y))¢

Equation for Sy

we arrive to the following

Specular Differential problem (Cf. with the diffuse one (4))

{ bs(z,y) - Vu(z,y) = fs(z,y) ae. (z,y) €Q, (5)
u(z,y) = g(z,y) V(z,y) € 0C,

with the same boundary conditions and
(bs. fs) = [0”|(S2(z,y)) b’ — [b'|(S1(,y)) *h".

Also the specular problem is albedo independent!
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OIS TSRS Rl PS-SfS with 2 light sources

Well-posed Orthographic problem (L-model+BP-model)

We combine the diffuse and specular equations with a weight a(z,y) € {0,1} as

follows:
{ b(l‘,y) : Vu(:r,y) = f(way) a.e. (xvy) €, (6)
u(z,y) = g(z,y) V(z,y) € 09,
where b(z,y) = a(z,y)bp () + (1 — a(z,9))bs(, )

f(xay) = OL(.’E,y)fD(SC,y) + (1 - Oé(fll,y))fs(.’t,y)

« is a given coefficient, provided by the separation procedure between specular
and diffuse components. J

We show that the problem (6) is well-posed! )

ﬁ S. Tozza, R. Mecca, M. Duocastella, A. Del Bue, Direct Differential Photometric
Stereo Shape Recovery of Diffuse and Specular Surfaces, Journal of Mathematical
Imaging and Vision, 56(1):57-76, 2016.
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Numerical Examples [Tozza et al., JMIV 2016]

Figure: Reconstructions of a cup (top) and of a human face (bottom). From left to right: traditional PS
approach with global diffuse reflection, our method.
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(ST T T-ET IR IS IR RS Sl PS-SfS with 3 light sources

Well-posed Orthographic problem (L-model)

Using three images (obtained by three not coplanar light sources) we can solve the
PS-SfS problem without boundary conditions [Mecca-T., 2013] through the
following system of hyperbolic equations:

b2 (2, y) - Vulz,y) = fOD (x,y), ae (z,y) €Q
0 (@,y) - Vu(w,y) = fO0 (2,y),  ae (z,y) €Q (7)
b(213) (I,y) . VU($7y) = f(2’3) ((E,y), a.e. (l',y) € Q

where

b(h)k:) (l',y) = (Ik(x7y)w{b - Ih(may)w,f’ Ik(xay)wg - Ik(m7y)w§)
and
f(xay)(h’k) = Ik(xay)wg - Ih(xa Z/)W:]Jf

If the surface has some symmetries, we can solve the problem with 2 or only 1
input image.
ﬁ R. Mecca and S. Tozza, Shape Reconstruction of Symmetric Surfaces using

Photometric Stereo, In: Innovations for Shape Analysis: Models and Algorithms,
pp. 219-243, Springer Edition, 2013.
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PS-SfS Numerical Scheme

Idea
Integrating the solution along the characteristics. J
f(z,y)
V@@, y) = 70—, V(z,y) €Q
o) oz )]l

. b(x,
with p(z,y) = %

The following approximation holds:
u(@ + hp1(2,y),y + hpa(z,y)) —ulz,y)  flz,y)
h |b(z, y)[|”

V(z,y) € Q.

from which we can derive

The backward Semi-Lagrangian (SL) Scheme

LY
104,11

Analogously, we can obtain the Forward SL Scheme.

nJ'rl

up T =u (@i + hp1 (26, Y5), Y5 + hoa(zi, y5))

h, V(aci,yj) € Qq.
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Orthographic Photometric-Stereo SfS

PS-SfS Numerical Test: Real Beethoven

VLY

I'real Ireal Ireal

Angles:
6, = —0.305, ¢ = 0.263 per I7°%;
0y = 3.226, 3 = 0.2 per Iml :

63 = 3.502, @3 = 0.281 per ;¢
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PS-SfS Numerical Test: Real Beethoven

Schema semi lagrangiano in avanti Schema semi lagrangiano all'indietro

40 .- 474
20 .

20
200

U

R. Mecca and S. Tozza, Shape Reconstruction of Symmetric Surfaces using
Photometric Stereo, In: Innovations for Shape Analysis: Models and Algorithms,
pp. 219-243, Springer Edition, 2013.
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Perspective SfS Problem
Modeling of Shape from Shading:

@ Reflectance Model

@ Camera Model = Perspective Projection

@ Lighting Model = One light source located at the optical center of the
camera

Silvia Tozza (Dept. Mathematics, Univ. of Bologna)
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Perspective SfS Problem
Modeling of Shape from Shading:
@ Reflectance Model
@ Camera Model = Perspective Projection

@ Lighting Model = One light source located at the optical center of the
camera

— Adding an attenuation term of the illumination due to the distance between
the surface and the light source is possible to get well-posedness.

ﬁ F. Camilli and S. Tozza, A Unified Approach to the Well-Posedness of Some
Non-Lambertian Models in Shape-from-Shading Theory, SIAM J. Imaging Sci. ,
10:26-46, 2017.

@ S. Tozza, Perspective Shape-from-Shading Problem: A Unified Convergence Result
for Several Non-Lambertian Models, J. Imaging. 8, 36, 2022.
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Introduction - Evolutive Part Evolutive HJ equations

Introduction - Evolutive Part

Time dependent HJ equation

We are interested in computing the approximation of viscosity solution of
Hamilton-Jacobi (HJ) equation:

Ow + H(x,Vv) =0, (t,z) € (0,T) x RY,
v(0,2) = vo(z), xe€RY,

(H1) H(x,p) is Lipschitz continuous w.r.t. all variables
(H2) vo(x) is Lipschitz continuous.

(8)

e Under these assumptions we have existence and uniqueness of the viscosity
solution for (8).
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QUL ST R SVEITIVERE il Evolutive HJ equations

Challenges and motivations

@ In general, the solution is not classical (v € C'') and can develop singularities
in finite time
@ We need to have a good resolution of the solution even at kinks

High-order schemes allow the use of coarser grids

@ Few convergence results for high-order schemes in literature

@ Several interesting applications: computer vision, optimal control, front
propagation, differential games...
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QUL ST R SVEITIVERE il Evolutive HJ equations

Challenges and motivations

@ In general, the solution is not classical (v € C'') and can develop singularities
in finite time

@ We need to have a good resolution of the solution even at kinks
@ High-order schemes allow the use of coarser grids
@ Few convergence results for high-order schemes in literature

@ Several interesting applications: computer vision, optimal control, front
propagation, differential games...

GOAL: Construct convergent schemes to the viscosity solution v of (8) with the
property to be of high-order in the region of regularity.
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Image Segmentation via Level-Set equation Level-Set Method

The Level—Set (LS) equation (Sethian '85, '99, Osher-Sethian '88)

The model equation corresponding to the LS method is

{ vtz y) +c(z,y)|Volt,z,y)| =0, (t,z,y) € [0,T] x R?,
v(O,x,y)zvo(m,y), (-T,y) eRz'

@ The unknown is a "representation" function v : [0, 7] x R? — R of the
interface

@ The position of the interface I'; at time ¢ is given by the O-level set of v(¢,.),
i.e. Ft = {(-T,y) : U(t,.’t,y) = O}

@ vy must be a representation function for the initial front 9Qy where g C R?
is an open and bounded set, i.e.

wole,y) >0 in Dy,
vo(z,y) =0 on 390:_: I,
vo(z,y) <0 in R2\ Q.

@ ¢(x,y) is the velocity of the front in the normal direction

Vo(t,x,
n(t,x,y)ZM'
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The Level-Set (LS) equation

Y IK

LA A

Figure: lllustration of the LS idea.
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Image Segmentation via Level-Set equation Image Segmentation problem

Image Segmentation problem

Goal
Detect the boundaries of objects represented in a picture. J

A very popular method for segmentation is based on the level set method, this
application is often called "Active contour" since the segmentation is obtained
following the evolution of a simple curve (a circle for example) in its normal
direction.

Key idea behind LS

The boundaries of a specific object inside a given image, described by the intensity
function I(z,y), are characterized by an abrupt change of the values of I, so that
the magnitude of |VI| can be used as an indication of the edges.

In order to make use of this intuition, we have to define the velocity ¢(x, y)
accordingly.
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Image Segmentation via Level-Set equation Choices of the velocity function

Possible choices of the velocity function

Two different definitions proposed in Malladi-Sethian-Vemuri (1993):

1
a@y) = arwee  ME!

V(G + I(x,y))| — Ma
M, — M, ’

where M7 and My are the maximum and minimum values of |V(G x I(z,y))|.

CQ(x)y) =1-

Common properties
@ Both velocities take values in [0, 1]

o close to 0 if there is a rapid change in the values of I (or if the magnitude of
the image gradient is close to its maximal value).
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Possible choices of the velocity function
Two different definitions proposed in Malladi-Sethian-Vemuri (1993):

1
I+ V(G D))’

cl(x7y): ( /1’21

_ V(G I(z,y))| = My
My — M, ’

where M7 and My are the maximum and minimum values of |V(G  I(z,y))|.

C2(x7y) =1

Different features

@ c; depends more heavily on the changes in the magnitude of the gradient.
= Easier detection of the edges but can produce false edges inside the object
(e.g. in presence of specularities).

@ co is smoother inside the objects, being less dependent on the relative
changes in the gradient.
= Possible problems in the detection of all the edges if at least one is “more
marked".
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Image Segmentation via Level-Set equation Choices of the velocity function

Possible choices of the velocity function

Considering

’Ug(ﬂf,y) = dZSt{(ZB,y), FO}

then by construction all the C-level set are at a distance C' from the 0-level set.

If we consider a generic point (x.,y.) on a C-level set, then it is reasonable to
assume that the closest point on T’y should be

V’U(t, L, yc)

- cyYe) — t’ I T+ 0 )|
(0, y0) = (e, ye) —v(t, @ y)|vv(taxcay6)|
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Image Segmentation via Level-Set equation Choices of the velocity function

Possible choices of the velocity function

Therefore, it seems natural to define the extended velocity ¢(x,y) as

6(m,y,v,vz,vy)zc(x—v|;—$1)|,y—v|$’;)|> , 9)

which coincides with ¢(z,y) on the O-level set, as it is needed.

Since the idea behind the modification of the velocity ¢(x,y) into ¢ is to follow
the evolution of the 0O-level set and then to define accordingly the evolution on the
other level sets, we can see the new definition, in some sense, as a characteristic
based velocity.
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Image Segmentation via Level-Set equation Choices for initial conditions

Initial conditions: expansion and shrinking cases

Initial front

Initial front

Figure: Initial fronts for the two cases tested.
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Adaptive filtered schemes

Filtered schemes

@ We look for non-monotone schemes since we want to get a high-order scheme

@ We want to find a convergent scheme that approximates the viscosity
solution of (8)

We start from the results in Bokanowski, Falcone and Sahu (2016) and by
Oberman and Salvador (2015) and we extend them introducing an adaptive
choice of the parameter controlling the filter.
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L Adeptie ered schemes
Adaptive Filtered Scheme

The proposed adaptive scheme is

SAig = SM (Wi

n A n A n n _n 2, 2,

uijl = S F(u )i,j = SM(U )i,j =+ (vbi,js AtF < ?;‘"At ]> y
(10)

0

starting from the initial condition W -

Silvia Tozza (Dept. Mathematics, Univ. of Bologna) A trip into Image Processing with Maurizio 43 / 62



Adaptive Filtered Scheme

The proposed adaptive scheme is

n n n n n SAuni'_SMuni‘
wPtt = §AF (), 5 = SM(u™)i ; + @7 e ALF < - JgﬂAt = 7]> ’
(10)

0

starting from the initial condition u; ;.

0 " =¢c"(At, Az, Ay) > 0 is the switching parameter that will satisfy

lim e" =0
(At,Axz,Ay)—0

@ F :R — R is the filter function

@ ¢7; is the smoothness indicator function at the node (z;,y:) and time t,, based on
the 2D-smoothness indicators defined in (Falcone-Paolucci-T., JCP, 2020).
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Adaptive filtered schemes

Assumptions on SM

The scheme is consistent, monotone and can be written in differenced form

ultt = SM(u™); ;= ult; — At BM (3,45, Dy ul;, Diul ;s Dy u?

,J 1,57 lJ’ 1,57

for a Llpschltz contlnuous function h™ (z, y p ,p 5q7,qT), with

:I:n . 1211 z :I:n — 1.5 z
DI ui; ===+ Az and Djfug; := = Ay

Dy uf;)

Assumptions on S4

S4 has a high-order consistency and can be written in differenced form

ul Tl = S4(u ")i = up—Ath (xj,yi,Dk_’zui’j,.. D_u?

7.7 1,57 1,57

s +on
Dy yuigs -, Dyuis, Dy

+
igr Dy Uigy -+ Dy yu
for a Llpschltz contlnuous function h4(z,y, P ,pT 14754 q*) (in short), with
D = j:—”i’g "5 and Diy up; = j:—li’jc'”A Ll
No assumptlons on the stability of the high-order scheme are made.

+ n
D uy ...,Dk’wu

n
4.3 )0
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Adaptive filtered schemes

Filter function

In our approach the filter function F must satisfy
o F(r)~r for |r| <1 sothatif |[S4—SM| < Ate™ and ot =1= SAF ~ 54
o F(r) =0 for [r| > 1 so that if [S4 — SM| > Ate™ or ¢}, = 0 = S4F = §M

= Several choices for F', different for regularity properties.

-25 -1.5 -0.5 0.5 1.5 25

Figure: Possible choices for the filter function F.
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Tuning of the parameter £"

If we want our scheme

SA n = SM n 4
upft = S48 ()i = SM ()i + @7ye " ALF ( = EY = ) ’

to switch to the high-order scheme when some regularity is detected, we have to
choose €” such that

SA(’Un)i,j _ SM(’Un)i,j
en At

_ ‘hA(.7 ) — hM(.’ )

<1 11
e Lt

for (At, Az, Ay) — 0,

in the region of regularity at time ¢,

R* = {(zj,y:) : ¢}, =1} .

Silvia Tozza (Dept. Mathematics, Univ. of Bologna)

A trip into Image Processing with Maurizio



Adaptive filtered schemes

Smoothness indicator function

For the definition of a function ¢, needed to detect the region R"™, we require

or . = Pwh,) = 1  if the solution u™ is regular in I; ;,
ij 4377 0 if I; ; contains a point of singularity,

where I; ; = [xj_1,@j41] X [Yi—1, Yit1) w} is the smoothness indicator at the
node ;.
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Adaptive filtered schemes

Smoothness indicator function
For the definition of a function ¢, needed to detect the region R"™, we require

no () = 1  if the solution u™ is regular in I; ;,
b T PRI 0 if I contains a point of singularity,

where I; ; = [xj_1,@j41] X [Yi—1, Yit1) w} is the smoothness indicator at the
node ;.

Remark

For e™ = eAx, withe > 0 and ¢;'; = 1, we get the Basic Filtered Schemes of
Bokanowski-Falcone-Sahu (2016), so we are generalizing that approach to exploit
more carefully the local regularity of the solution at every time t,, and cell I; ;.
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Adaptive filtered schemes

Smoothness indicator function
For the definition of a function ¢, needed to detect the region R"™, we require

o = P(wi,) = 1 if the solution u™ is regular in I ;,
ij 4377 0 if I; ; contains a point of singularity,

where I; ; = [xj_1,@j41] X [Yi—1, Yit1) w} is the smoothness indicator at the
node ;.

Remark

For e™ = eAx, withe > 0 and ¢;'; = 1, we get the Basic Filtered Schemes of
Bokanowski-Falcone-Sahu (2016), so we are generalizing that approach to exploit
more carefully the local regularity of the solution at every time t,, and cell I; ;.

= Under all these assumptions, the AF Scheme is convergent (See
Falcone-Paolucci-T., Numerische Mathematik (2020), for details on the
convergence theorem).

Silvia Tozza (Dept. Mathematics, Univ. of Bologna) A trip into Image Processing with Maurizio 47 / 62



Summary of Features/Advantages of the AF Scheme

@ Several choices for F, different for regularity properties
@ Several possible definition of the smoothness indicator function ¢; ;

o Different coupling monotone/high-order schemes can be chosen (under some
assumptions)
No assumptions on the stability of the high-order scheme are required!

@ The AF scheme is convergent
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Implementation details

We use the 2D version of the scheme S4¥" by using Lax-Wendroff for S4 and
Local Lax-Friedrichs for S J

Stopping Criterion: The iterations stop when the O-level, or more precisely a
neighborhood s of T'; of radius 6 = max{Az, Ay}, ceases to move.

1 -1
Ey = ||un+ _un||L°°(95) :IT%E;,X|FZZIJ _F:] | <tOl7
where tol > 0 is the prescribed tolerance. Another possible choice:

By = [[u" = u|pag,) = AxAy Y |F]; - Fl Y| < tol(Az, Ay),
,J

where now the tolerance tol > 0 depends also on the discretization parameters.

Error Formulas:

|Ne B Na|
)

P-errpe = N
€

P-erry = |N, — Ny|AzAy

where
N, = # pixels of the exact object

N, = # pixels of the approximated object via the chosen scheme.
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Synthetic Rhombus - Expansion case

Monotone. Monotone

Monotane
2 2 2
15 - 15 15
' 1 '
05 05 o5
o o o
as as o5
' a .
15 15 15
2 2 2
2 as a4 95 o0 05 1 15 2 2 as a5 o 05 1 15 2 2 A T @5 o 05 1 s 2
AF-LW scheme
2 AF-LW scheme 2 AF-LW scheme
15
1 =
' '
o2 os 05
o . N
s s a5
a4 y '
15 15 15
2 2
2 45 1 45 o 05 1 15 2 2 s a4 05 o o5 1 15 2 2 s a4 05 o 05 1 15 2

Figure: Plots of the final front obtained by the Monotone scheme (top) and the AF-LW
scheme (bottom) with tol = 0.0005, i = 2, K,eqy = 0, and velocity ¢.
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Synthetic Rhombus - Expansion case

Table: Errors and number of iterations using L norm varying # Nodes. tol = 0.0005, p = 2, Kyeg = 0.

c | Monotone AF-LW WENO
#Nodes | N; P-Errpe P-Erri N; P-Errye; P-Err N; P-Err,e; P-Err,
102 84 0.1025 0.2321 213 X X 217 X X
202 152 0.0526  0.1172 | 394 X X 399 X X
402 288 0.0265 0.0593 | 745 X X 669 X X

Table: Errors and number of iterations using L°° norm varying # Nodes. tol = 0.0005, p = 2, Kyeg = 0.

¢ | Monotone AF-LW WENO

# Nodes N; P-Err.e; P-Err, N; P-Errye; P-Err N; P-Err,e; P-Err,
102 50 0.0748 0.1694 48  0.0693  0.1568 47  0.0886 0.2008
202 100 0.0427  0.0950 96 0.0363  0.0808 96 0.0469  0.1045
402 199 0.0208  0.0466 196 0.0203 0.0454 196 0.0240 0.0537
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Numerical experiments

Geometric Shapes - Shrinking case

Initial front

Figure: Initial front for the shrinking case.
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Numerical experiments

Geometric Shapes - Shrinking case

Monotone scheme. Monotone scheme Monotone scheme
te , (-

AF-LW scheme AF-LW scheme AF-LW scheme

Figure: Plots of the final front using the monotone scheme (top), and the AF-LW scheme
(bottom) varying the tolerance (tol = 0.0005,0.0001,0.00005) with =4, Kyeq = 1,
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Numerical experiments Real Tests

Real Brain - Expansion case

Monotone scheme AF-LW scheme

Figure: Plots of the final front using the monotone scheme, N; = 376 (left), and the AF-LW scheme,
N; = 407 (right), all using L' norm in the stopping criterion and tol = 0.00001, pn=4and K ey =5, and

velocity c.
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Numerical experiments Real Tests

Real Brain - Shrinking case

Monotone scheme

AF-LW scheme

Figure: Plots of the final front using the monotone scheme (left) and the AF-LW scheme (right) with velocity
c.

¢ Lt Monotone AF-LW
Image size | N; (sec.) P-Err. P-Erry | N; (sec.) P-Errp., P-Err
170 x 170 | 83 0.80 0.0465 0.2436 87 3.75 0.0439 0.2300
340 x 340 | 228 8.39 0.0118 0.2476 | 262 46.07 0.0078 0.1628
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Numerical experiments Real Tests

Real foot fracture - Shrinking case

Monotone scheme AF-LW scheme

Figure: Plots of the final front using the monotone scheme (IN; = 156), and the AF-LW scheme (N; = 243),
with L' norm and tol = 0.00005, p = 4, Kyreg =5, Az = 0.02 and velocity c.
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Numerical experiments Real Tests

Real Pneumonia - Expansion case

Initial front

Figure: Plots of the final front using the monotone scheme (N; = 185), and the AF-LW
scheme (N; = 194), with L' norm and tol = 0.00001, p = 4, K,cy = 5, and velocity c.
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Conclusions

Conclusions - Stationary Part
@ We approximate viscosity solutions

@ Well-posedness of the Orthographic PS-SfS problem using 2 images + BCs or
3 images without boundary conditions for a generic surface

@ We need only one or two input images for some special cases (4 or 1 axes of
simmetry, respectively)

© Non-Lambertian reflectance models do not solve the ambiguity, but can
improve results
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Conclusions

Conclusions - Evolutive Part

@ We presented a rather simple way to construct convergent schemes, which
are of high-order in regions of regularity.

@ Our procedure is able to stabilize an otherwise unstable (high-order) scheme,
still preserving its accuracy.

© We define new 2D smoothness indicators, applying them in the construction
of AF schemes.

@ The adaptive filtered scheme can be used efficacily and in a easily way to
solve the image segmentation problem.

@ We noticed that the new velocity function ¢ introduced in the LS model can
improve a lot the results, especially for biomedical images.
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Ciao Maurizio, Thanks for alll We miss you very much...
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