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Enjoying dinners together
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Stationary Hamilton-Jacobi equations

▶ Introduction to Photometric 3D Reconstruction

▶ Orthographic Shape-from-Shading (SfS)

▶ Orthographic Photometric-Stereo SfS

Time dependent Hamilton-Jacobi equations

▶ Image Segmentation via Level-Set equation

▶ Adaptive filtered schemes

▶ Numerical experiments
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Introduction to Photometric 3D Reconstruction Introduction to Shape-from-X Problems

Introduction - Shape-from-X Problems
Goal: Reconstruction of the shape of an object starting from some kind of data.

Geometric techniques aim at identifying and analysing features
Photometric techniques aim at inverting a physics-based image formation
model.
J.-D. Durou, M. Falcone, Y. Quéau, and S. Tozza (Eds.), Advances in Photometric
3D-Reconstruction, Advances in Computer Vision and Pattern Recognition, Springer
2020.
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Introduction to Photometric 3D Reconstruction Introduction to Shape-from-X Problems

Introduction - Shape-from-X Problems

Goal: Reconstruction of the shape of an object starting from some kind of data.

Shape-from-Shading
Data: The gray-level measured in an image of the object

Surface        Photo Find surface(s) that
give the same image(s)

              Problem
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Introduction to Photometric 3D Reconstruction Shape-from-Shading (SfS)

Introduction - Shape from Shading (SfS) Problem

Modeling of Shape from Shading:

1 Reflectance Model

2 Camera Model

3 Lighting Model
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Orthographic Shape-from-Shading (SfS)

Orthographic SfS Problem

Modeling of Shape from Shading:

1 Reflectance Model

2 Camera Model ⇒ Orthographic Projection

3 Lighting Model ⇒ One light source located at infinity
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Orthographic Shape-from-Shading (SfS)

Introduction - Shape from Shading (SfS) Problem

The SfS problem is described by the following irradiance equation:

R(N(x, y)) = I(x, y) (1)

where

R(N(x, y)) is the reflectance function

N(x, y) is the unit normal to the surface at point (x, y, u(x, y))

I(x, y) is the graylevel measured in the image at point (x, y)

I : Ω → [0, 1], with Ω compact domain (Ω ⊂ R2 open subset).

Silvia Tozza (Dept. Mathematics, Univ. of Bologna) A trip into Image Processing with Maurizio 14 / 62



Orthographic Shape-from-Shading (SfS)

Lambertian reflectance model (L–model)
Idea: The surface is Lambertian, i.e. the intensity reflected by a point of the
surface is equal from all points of view.

Goal: Finding u : Ω → R s. t. satisfies the following equation:

I(x, y) = γDN(x, y) · ω, ∀ (x, y) ∈ Ω (2)

where
γD is the albedo
N(x, y) = n(x,y)

|n(x,y)| = 1√
1+|∇u(x,y)|2

(−∇u(x, y), 1)

ω = (ω1, ω2, ω3) = (ω̃, ω3) (general light direction)

Hamilton-Jacobi equation associated to (2):

I(x, y)
√

1 + |∇u(x, y)|2 + ω̃ · ∇u(x, y) − ω3 = 0, in Ω.
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Orthographic Shape-from-Shading (SfS)

Lambertian model: concave/convex ambiguity
Particular case: Vertical light source ω = (0, 0, 1)
The HJ equation in the variable u becomes the so-called “eikonal equation”

|∇u(x, y)| = f(x, y) for (x, y) ∈ Ω, (3)

where f(x, y) =
√

1
I(x,y)2 − 1.

Concave/convex ambiguity
The model is ill-posed, there is not uniqueness of solution (both in the context of
classical and Lipschitz solutions).
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Orthographic Shape-from-Shading (SfS)

Lambertian model: concave/convex ambiguity

Concave/convex ambiguity: example

Eikonal equation (3) + Dirichlet BC zero

(a) maximal solution and (b) a.e. solutions that gives
the same image.
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Orthographic Shape-from-Shading (SfS)

Lambertian model: concave/convex ambiguity

Possible solutions of the concave/convex problem:

Fix the height value u at each point at maximum brightness
(Lions-Rouy-Tourin, 1993)

Choosing as a solution the maximal one, which is shown to be unique
(Camilli-Siconolfi,1999)

Using more general reflectance model?

Non-Lambertian reflectance models do not solve the ambiguity for the
orthographic SfS [T.-Falcone, JMIV 2016]

S. Tozza, M. Falcone, Analysis and approximation of some Shape–from-Shading
models for non-Lambertian surfaces, JMIV, 55(2):153-178, 2016.
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Orthographic Shape-from-Shading (SfS)

L–model ON–model PH–model

Figure: Synthetic vase under vertical light source (ω = (0, 0, 1)): example of concave/convex ambiguity
solved by using correct Dirichlet BC. From left to right: L–model, ON–model with σ = 0.2, PH–model with
kS = 0.4.
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Orthographic Photometric-Stereo SfS PS-SfS with 2 light sources

Well-posed Orthographic problem (L–model)

Photometric Stereo SfS with two light sources plus Boundary Conditions
γD(x, y)−∇u(x, y) · ω̃′ + ω′

3√
1 + ||∇u(x, y)||2

= D1(x, y), ∀(x, y) ∈ Ω

γD(x, y)−∇u(x, y) · ω̃′′ + ω′′
3√

1 + ||∇u(x, y)||2
= D2(x, y), ∀(x, y) ∈ Ω

with u(x, y) = g(x, y) known for all (x, y) ∈ ∂Ω.

By eliminating the non-linearity we arrive to{
bD(x, y) · ∇u(x, y) = fD(x, y), a.e. (x, y) ∈ Ω
u(x, y) = g(x, y), ∀(x, y) ∈ ∂Ω (4)

R. Mecca and M. Falcone, Uniqueness and Approximation of a Photometric
Shape-from-Shading Model, SIAM J. Imaging Sciences, 6(1):616-659, 2013
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Orthographic Photometric-Stereo SfS PS-SfS with 2 light sources

Standard PS-SfS
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Figure: The top row shows three images of a painted ceramic cup. The bottom row shows the normal map
where artifacts have been highlighted and the 3D shape reconstruction using traditional PS [R. J. Woodham
(1980)]. Bottom images show artifacts due to specular reflections.
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Orthographic Photometric-Stereo SfS PS-SfS with 2 light sources

Specular model - Blinn-Phong model (Blinn, 1977)

The Blinn-Phong Specular model

Si(x, y) = γS(x, y)(Hi · N(x, y))c

where
γS(x, y) is the specular albedo,

Hi = V+ωi

|V+ωi| = hi

|hi| = ( hi
1

|hi| ,
hi

2
|hi| ,

hi
3

|hi| ), (V3 > 0, ω3 > 0)
c > 0 measures the shininess of the surface.
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Orthographic Photometric-Stereo SfS PS-SfS with 2 light sources

Specular model - Blinn-Phong model
By using the technique of the image ratios:

Equation for S2︷ ︸︸ ︷
n(x, y) · h′

|h′|(S1(x, y)) 1
c

= |n(x, y)|
(γS(x, y)) 1

c︸ ︷︷ ︸
Equation for S1

= n(x, y) · h′′

|h′′|(S2(x, y)) 1
c

we arrive to the following

Specular Differential problem (Cf. with the diffuse one (4)){
bS(x, y) · ∇u(x, y) = fS(x, y) a.e. (x, y) ∈ Ω,
u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω, (5)

with the same boundary conditions and

(bS , fS) = |h′′|(S2(x, y)) 1
c h′ − |h′|(S1(x, y)) 1

c h′′.

Also the specular problem is albedo independent!
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Orthographic Photometric-Stereo SfS PS-SfS with 2 light sources

Well-posed Orthographic problem (L–model+BP–model)

We combine the diffuse and specular equations with a weight α(x, y) ∈ {0, 1} as
follows: {

b(x, y) · ∇u(x, y) = f(x, y) a.e. (x, y) ∈ Ω,
u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω, (6)

where b(x, y) = α(x, y)bD(x, y) + (1 − α(x, y))bS(x, y)

f(x, y) = α(x, y)fD(x, y) + (1 − α(x, y))fS(x, y).

α is a given coefficient, provided by the separation procedure between specular
and diffuse components.

We show that the problem (6) is well-posed!

S. Tozza, R. Mecca, M. Duocastella, A. Del Bue, Direct Differential Photometric
Stereo Shape Recovery of Diffuse and Specular Surfaces, Journal of Mathematical
Imaging and Vision, 56(1):57-76, 2016.
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Orthographic Photometric-Stereo SfS PS-SfS with 2 light sources

Numerical Examples [Tozza et al., JMIV 2016]

Figure: Reconstructions of a cup (top) and of a human face (bottom). From left to right: traditional PS
approach with global diffuse reflection, our method.
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Orthographic Photometric-Stereo SfS PS-SfS with 3 light sources

Well-posed Orthographic problem (L–model)
Using three images (obtained by three not coplanar light sources) we can solve the
PS-SfS problem without boundary conditions [Mecca-T., 2013] through the
following system of hyperbolic equations:

b(1,2)(x, y) · ∇u(x, y) = f (1,2)(x, y), a.e. (x, y) ∈ Ω
b(1,3)(x, y) · ∇u(x, y) = f (1,3)(x, y), a.e. (x, y) ∈ Ω
b(2,3)(x, y) · ∇u(x, y) = f (2,3)(x, y), a.e. (x, y) ∈ Ω

(7)

where

b(h,k)(x, y) = (Ik(x, y)ωh
1 − Ih(x, y)ωk

1 , Ik(x, y)ωh
2 − Ik(x, y)ωk

2 )

and
f(x, y)(h,k) = Ik(x, y)ωh

3 − Ih(x, y)ωk
3

If the surface has some symmetries, we can solve the problem with 2 or only 1
input image.

R. Mecca and S. Tozza, Shape Reconstruction of Symmetric Surfaces using
Photometric Stereo, In: Innovations for Shape Analysis: Models and Algorithms,
pp. 219-243, Springer Edition, 2013.
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Orthographic Photometric-Stereo SfS PS-SfS with 3 light sources

PS-SfS Numerical Scheme
Idea
Integrating the solution along the characteristics.

∇ρ(x,y)u(x, y) = f(x, y)
||b(x, y)|| , ∀(x, y) ∈ Ω

with ρ(x, y) = b(x,y)
||b(x,y)|| .

The following approximation holds:
u(x + hρ1(x, y), y + hρ2(x, y)) − u(x, y)

h
≃ f(x, y)

||b(x, y)|| , ∀(x, y) ∈ Ω.

from which we can derive

The backward Semi-Lagrangian (SL) Scheme

un+1
i,j = un(xi + hρ1(xi, yj), yj + hρ2(xi, yj)) − fi,j

||bi,j ||
h, ∀(xi, yj) ∈ Ωd.

Analogously, we can obtain the Forward SL Scheme.
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Orthographic Photometric-Stereo SfS PS-SfS with 3 light sources

PS-SfS Numerical Test: Real Beethoven

Ireal
1 Ireal

2 Ireal
3

Angles:
θ1 = −0.305, φ1 = 0.263 per Ireal

1 ;
θ2 = 3.226, φ2 = 0.2 per Ireal

2 ;
θ3 = 3.502, φ3 = 0.281 per Ireal

3 .
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Orthographic Photometric-Stereo SfS PS-SfS with 3 light sources

PS-SfS Numerical Test: Real Beethoven

R. Mecca and S. Tozza, Shape Reconstruction of Symmetric Surfaces using
Photometric Stereo, In: Innovations for Shape Analysis: Models and Algorithms,
pp. 219-243, Springer Edition, 2013.
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Perspective Shape-from-Shading (SfS)

Perspective SfS Problem
Modeling of Shape from Shading:

1 Reflectance Model

2 Camera Model ⇒ Perspective Projection

3 Lighting Model ⇒ One light source located at the optical center of the
camera

→ Adding an attenuation term of the illumination due to the distance between
the surface and the light source is possible to get well-posedness.

F. Camilli and S. Tozza, A Unified Approach to the Well-Posedness of Some
Non-Lambertian Models in Shape-from-Shading Theory, SIAM J. Imaging Sci. ,
10:26–46, 2017.

S. Tozza, Perspective Shape-from-Shading Problem: A Unified Convergence Result
for Several Non-Lambertian Models, J. Imaging. 8, 36, 2022.
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From 3D Vision to 3D Printing

From 3D Vision to 3D Printing
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Mathematical Methods for Objects Reconstruction
From 3D Vision to 3D Printing

The volume collects several contributions to the INDAM workshop Mathematical Methods 

for Objects Reconstruction: from 3D Vision to 3D Printing held in Rome, February, 2021.

The goal of the workshop was to discuss new methods and conceptual structures for 

managing these challenging problems. The chapters reflect this goal and the authors 

are academic researchers and some experts from industry working in the areas of 3D 

modeling, computer vision, 3D printing and/or developing new mathematical methods 

for these problems. The contributions present methodologies and challenges raised by 

the emergence of large-scale 3D reconstruction applications and low-cost 3D printers. 

The volume collects complementary knowledges from different areas of mathematics, 

computer science and engineering on research topics related to 3D printing, which are, 

so far, widely unexplored.

Young researchers and future scientific leaders in the field of 3D data acquisition, 3D 

scene reconstruction, and 3D printing software development will find an excellent 

introduction to these problems and to the mathematical techniques necessary to solve 

them.
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Introduction - Evolutive Part Evolutive HJ equations

Introduction - Evolutive Part

Time dependent HJ equation
We are interested in computing the approximation of viscosity solution of
Hamilton-Jacobi (HJ) equation:{

∂tv + H(x, ∇v) = 0, (t, x) ∈ (0, T ) × Rd,

v(0, x) = v0(x), x ∈ Rd.
(8)

(H1) H(x, p) is Lipschitz continuous w.r.t. all variables
(H2) v0(x) is Lipschitz continuous.

• Under these assumptions we have existence and uniqueness of the viscosity
solution for (8).
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Introduction - Evolutive Part Evolutive HJ equations

Challenges and motivations

In general, the solution is not classical (v ∈ C1) and can develop singularities
in finite time

We need to have a good resolution of the solution even at kinks

High-order schemes allow the use of coarser grids

Few convergence results for high-order schemes in literature

Several interesting applications: computer vision, optimal control, front
propagation, differential games...

GOAL: Construct convergent schemes to the viscosity solution v of (8) with the
property to be of high-order in the region of regularity.

Silvia Tozza (Dept. Mathematics, Univ. of Bologna) A trip into Image Processing with Maurizio 33 / 62



Introduction - Evolutive Part Evolutive HJ equations

Challenges and motivations

In general, the solution is not classical (v ∈ C1) and can develop singularities
in finite time

We need to have a good resolution of the solution even at kinks

High-order schemes allow the use of coarser grids

Few convergence results for high-order schemes in literature

Several interesting applications: computer vision, optimal control, front
propagation, differential games...

GOAL: Construct convergent schemes to the viscosity solution v of (8) with the
property to be of high-order in the region of regularity.

Silvia Tozza (Dept. Mathematics, Univ. of Bologna) A trip into Image Processing with Maurizio 33 / 62



Image Segmentation via Level-Set equation Level-Set Method

The Level-Set (LS) equation (Sethian ’85, ’99, Osher-Sethian ’88)

The model equation corresponding to the LS method is{
∂t v(t, x, y) + c(x, y)|∇v(t, x, y)| = 0, (t, x, y) ∈ [0, T ] × R2,
v(0, x, y) = v0(x, y), (x, y) ∈ R2.

The unknown is a "representation" function v : [0, T ] × R2 → R of the
interface
The position of the interface Γt at time t is given by the 0-level set of v(t, .),
i.e. Γt = {(x, y) : v(t, x, y) = 0}

v0 must be a representation function for the initial front ∂Ω0 where Ω0 ⊂ R2

is an open and bounded set, i.e.
v0(x, y) > 0 in Ω0,
v0(x, y) = 0 on ∂Ω0 := Γ0,
v0(x, y) < 0 in R2 \ Ω0.

c(x, y) is the velocity of the front in the normal direction
η(t, x, y) = ∇v(t,x,y)

|∇v(t,x,y)| .
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Image Segmentation via Level-Set equation Level-Set Method

The Level-Set (LS) equation

Figure: Illustration of the LS idea.
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Image Segmentation via Level-Set equation Image Segmentation problem

Image Segmentation problem

Goal
Detect the boundaries of objects represented in a picture.

A very popular method for segmentation is based on the level set method, this
application is often called “Active contour" since the segmentation is obtained
following the evolution of a simple curve (a circle for example) in its normal
direction.

Key idea behind LS
The boundaries of a specific object inside a given image, described by the intensity
function I(x, y), are characterized by an abrupt change of the values of I, so that
the magnitude of |∇I| can be used as an indication of the edges.

In order to make use of this intuition, we have to define the velocity c(x, y)
accordingly.
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Image Segmentation via Level-Set equation Choices of the velocity function

Possible choices of the velocity function

Two different definitions proposed in Malladi-Sethian-Vemuri (1993):

c1(x, y) = 1
(1 + |∇(G ∗ I)|µ) , µ ≥ 1

c2(x, y) = 1 − |∇(G ∗ I(x, y))| − M2

M1 − M2
,

where M1 and M2 are the maximum and minimum values of |∇(G ∗ I(x, y))|.

Common properties
Both velocities take values in [0, 1]
close to 0 if there is a rapid change in the values of I (or if the magnitude of
the image gradient is close to its maximal value).
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Image Segmentation via Level-Set equation Choices of the velocity function

Possible choices of the velocity function
Two different definitions proposed in Malladi-Sethian-Vemuri (1993):

c1(x, y) = 1
(1 + |∇(G ∗ I)|µ) , µ ≥ 1

c2(x, y) = 1 − |∇(G ∗ I(x, y))| − M2

M1 − M2
,

where M1 and M2 are the maximum and minimum values of |∇(G ∗ I(x, y))|.

Different features
c1 depends more heavily on the changes in the magnitude of the gradient.
⇒ Easier detection of the edges but can produce false edges inside the object
(e.g. in presence of specularities).
c2 is smoother inside the objects, being less dependent on the relative
changes in the gradient.
⇒ Possible problems in the detection of all the edges if at least one is “more
marked".
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Image Segmentation via Level-Set equation Choices of the velocity function

Possible choices of the velocity function

Considering

v0(x, y) = dist{(x, y), Γ0}

then by construction all the C-level set are at a distance C from the 0-level set.

If we consider a generic point (xc, yc) on a C-level set, then it is reasonable to
assume that the closest point on Γ0 should be

(x0, y0) = (xc, yc) − v(t, xc, yc) ∇v(t, xc, yc)
|∇v(t, xc, yc)| .
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Image Segmentation via Level-Set equation Choices of the velocity function

Possible choices of the velocity function

Therefore, it seems natural to define the extended velocity c̃(x, y) as

c̃(x, y, v, vx, vy) = c

(
x − v

vx

|∇v|
, y − v

vy

|∇v|

)
, (9)

which coincides with c(x, y) on the 0-level set, as it is needed.

Since the idea behind the modification of the velocity c(x, y) into c̃ is to follow
the evolution of the 0-level set and then to define accordingly the evolution on the
other level sets, we can see the new definition, in some sense, as a characteristic
based velocity.
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Image Segmentation via Level-Set equation Choices for initial conditions

Initial conditions: expansion and shrinking cases

Figure: Initial fronts for the two cases tested.
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Adaptive filtered schemes

Filtered schemes

We look for non-monotone schemes since we want to get a high-order scheme

We want to find a convergent scheme that approximates the viscosity
solution of (8)

We start from the results in Bokanowski, Falcone and Sahu (2016) and by
Oberman and Salvador (2015) and we extend them introducing an adaptive
choice of the parameter controlling the filter.
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Adaptive filtered schemes

Adaptive Filtered Scheme

The proposed adaptive scheme is

un+1
i,j = SAF (un)i,j := SM (un)i,j + ϕn

i,jεn∆tF

(
SA(un)i,j − SM (un)i,j

εn∆t

)
,

(10)
starting from the initial condition u0

i,j .

εn = εn(∆t, ∆x, ∆y) > 0 is the switching parameter that will satisfy

lim
(∆t,∆x,∆y)→0

εn = 0

F : R → R is the filter function
ϕn

i,j is the smoothness indicator function at the node (xj , yi) and time tn, based on
the 2D-smoothness indicators defined in (Falcone-Paolucci-T., JCP, 2020).
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Adaptive filtered schemes

Assumptions on SM

The scheme is consistent, monotone and can be written in differenced form

un+1
i,j = SM (un)i,j := un

i,j − ∆t hM
(
xj , yi, D−

x un
i,j , D+

x un
i,j ; D−

y un
i,j , D+

y un
i,j

)
for a Lipschitz continuous function hM (x, y, p−, p+; q−, q+), with
D±

x un
i,j := ± un

i,j±1−un
i,j

∆x and D±
y un

i,j := ± un
i±1,j−un

i,j

∆y .

Assumptions on SA

SA has a high-order consistency and can be written in differenced form

un+1
i,j = SA(un)i,j:= un

i,j −∆thA
(

xj , yi, D−
k,xui,j , . . . , D−

x un
i,j , D+

x un
i,j , . . . , D+

k,xun
i,j ,

D−
k,yui,j , . . . , D−

y un
i,j , D+

y un
i,j , . . . , D+

k,yun
i,j

)
,

for a Lipschitz continuous function hA(x, y, p−, p+, q−, q+) (in short), with
D±

k,xun
i,j := ± un

i,j±k−un
i,j

k∆x and D±
k,yun

i,j := ± un
i±k,j−un

i,j

k∆y .
No assumptions on the stability of the high-order scheme are made.
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Adaptive filtered schemes

Filter function
In our approach the filter function F must satisfy

F (r) ≈ r for |r| ≤ 1 so that if |SA − SM | ≤ ∆tεn and ϕn
i,j = 1 ⇒ SAF ≈ SA

F (r) = 0 for |r| > 1 so that if |SA − SM | > ∆tεn or ϕn
i,j = 0 ⇒ SAF = SM

⇒ Several choices for F , different for regularity properties.

Figure: Possible choices for the filter function F .
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Adaptive filtered schemes

Tuning of the parameter εn

If we want our scheme

un+1
i,j = SAF (un)i,j := SM (un)i,j + ϕn

i,jεn∆tF

(
SA(un)i,j − SM (un)i,j

εn∆t

)
,

to switch to the high-order scheme when some regularity is detected, we have to
choose εn such that∣∣∣∣SA(vn)i,j − SM (vn)i,j

εn∆t

∣∣∣∣ =
∣∣∣∣hA(·, ·) − hM (·, ·)

εn

∣∣∣∣ ≤ 1, (11)

for (∆t, ∆x, ∆y) → 0,

in the region of regularity at time tn

Rn :=
{

(xj , yi) : ϕn
i,j = 1

}
.
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Adaptive filtered schemes

Smoothness indicator function
For the definition of a function ϕ, needed to detect the region Rn, we require

ϕn
i,j = ϕ(ωn

i,j) :=
{

1 if the solution un is regular in Ii,j ,
0 if Ii,j contains a point of singularity,

where Ii,j = [xj−1, xj+1] × [yi−1, yi+1], ωn
j is the smoothness indicator at the

node xj .

Remark
For εn ≡ ε∆x, with ε > 0 and ϕn

i,j ≡ 1, we get the Basic Filtered Schemes of
Bokanowski-Falcone-Sahu (2016), so we are generalizing that approach to exploit
more carefully the local regularity of the solution at every time tn and cell Ii,j .

⇒ Under all these assumptions, the AF Scheme is convergent (See
Falcone-Paolucci-T., Numerische Mathematik (2020), for details on the
convergence theorem).
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Adaptive filtered schemes

Summary of Features/Advantages of the AF Scheme

Several choices for F , different for regularity properties

Several possible definition of the smoothness indicator function ϕi,j

Different coupling monotone/high-order schemes can be chosen (under some
assumptions)
No assumptions on the stability of the high-order scheme are required!

The AF scheme is convergent
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Implementation details

Implementation details
We use the 2D version of the scheme SAF by using Lax-Wendroff for SA and
Local Lax-Friedrichs for SM .

Stopping Criterion: The iterations stop when the 0-level, or more precisely a
neighborhood θδ of Γt of radius δ = max{∆x, ∆y}, ceases to move.

E∞ := ||un+1 − un||L∞(θδ) = max
i,j

|F n
i,j − F n−1

i,j | < tol,

where tol > 0 is the prescribed tolerance. Another possible choice:

E1 := ||un+1 − un||L1(θδ) = ∆x∆y
∑
i,j

|F n
i,j − F n−1

i,j | < tol(∆x, ∆y),

where now the tolerance tol > 0 depends also on the discretization parameters.
Error Formulas:

P -errrel = |Ne − Na|
Ne

, P -err1 = |Ne − Na|∆x∆y

where
Ne = # pixels of the exact object
Na = # pixels of the approximated object via the chosen scheme.
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Numerical experiments Synthetic Tests

Synthetic Rhombus - Expansion case

Figure: Plots of the final front obtained by the Monotone scheme (top) and the AF-LW
scheme (bottom) with tol = 0.0005, µ = 2, Kreg = 0, and velocity c̃.
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Numerical experiments Synthetic Tests

Synthetic Rhombus - Expansion case

Table: Errors and number of iterations using L∞ norm varying #Nodes. tol = 0.0005, µ = 2, Kreg = 0.

c Monotone AF-LW WENO
#Nodes Ni P -Errrel P -Err1 Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

102 84 0.1025 0.2321 213 X X 217 X X
202 152 0.0526 0.1172 394 X X 399 X X
402 288 0.0265 0.0593 745 X X 669 X X

Table: Errors and number of iterations using L∞ norm varying #Nodes. tol = 0.0005, µ = 2, Kreg = 0.

c̃ Monotone AF-LW WENO
#Nodes Ni P -Errrel P -Err1 Ni P -Errrel P -Err1 Ni P -Errrel P -Err1

102 50 0.0748 0.1694 48 0.0693 0.1568 47 0.0886 0.2008
202 100 0.0427 0.0950 96 0.0363 0.0808 96 0.0469 0.1045
402 199 0.0208 0.0466 196 0.0203 0.0454 196 0.0240 0.0537

Silvia Tozza (Dept. Mathematics, Univ. of Bologna) A trip into Image Processing with Maurizio 51 / 62



Numerical experiments Synthetic Tests

Geometric Shapes - Shrinking case

Figure: Initial front for the shrinking case.
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Numerical experiments Synthetic Tests

Geometric Shapes - Shrinking case

Figure: Plots of the final front using the monotone scheme (top), and the AF-LW scheme
(bottom) varying the tolerance (tol = 0.0005, 0.0001, 0.00005) with µ = 4, Kreg = 1,
and velocity c̃.
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Numerical experiments Real Tests

Real Brain - Expansion case

Figure: Plots of the final front using the monotone scheme, Ni = 376 (left), and the AF-LW scheme,
Ni = 407 (right), all using L1 norm in the stopping criterion and tol = 0.00001, µ = 4 and Kreg = 5, and
velocity c̃.
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Numerical experiments Real Tests

Real Brain - Shrinking case

Figure: Plots of the final front using the monotone scheme (left) and the AF-LW scheme (right) with velocity
c̃.

c̃, L1 Monotone AF-LW
Image size Ni (sec.) P -Errrel P -Err1 Ni (sec.) P -Errrel P -Err1
170 × 170 83 0.80 0.0465 0.2436 87 3.75 0.0439 0.2300
340 × 340 228 8.39 0.0118 0.2476 262 46.07 0.0078 0.1628
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Numerical experiments Real Tests

Real foot fracture - Shrinking case

Figure: Plots of the final front using the monotone scheme (Ni = 156), and the AF-LW scheme (Ni = 243),
with L1 norm and tol = 0.00005, µ = 4, Kreg = 5, ∆x = 0.02 and velocity c̃.
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Numerical experiments Real Tests

Real Pneumonia - Expansion case

Figure: Plots of the final front using the monotone scheme (Ni = 185), and the AF-LW
scheme (Ni = 194), with L1 norm and tol = 0.00001, µ = 4, Kreg = 5, and velocity c̃.
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Conclusions

Conclusions - Stationary Part

1 We approximate viscosity solutions

2 Well-posedness of the Orthographic PS-SfS problem using 2 images + BCs or
3 images without boundary conditions for a generic surface

3 We need only one or two input images for some special cases (4 or 1 axes of
simmetry, respectively)

4 Non-Lambertian reflectance models do not solve the ambiguity, but can
improve results
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Conclusions

Conclusions - Evolutive Part

1 We presented a rather simple way to construct convergent schemes, which
are of high-order in regions of regularity.

2 Our procedure is able to stabilize an otherwise unstable (high-order) scheme,
still preserving its accuracy.

3 We define new 2D smoothness indicators, applying them in the construction
of AF schemes.

4 The adaptive filtered scheme can be used efficacily and in a easily way to
solve the image segmentation problem.

5 We noticed that the new velocity function c̃ introduced in the LS model can
improve a lot the results, especially for biomedical images.
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Ciao Maurizio, Thanks for all! We miss you very much...
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