Quasi Sasakian manifolds endowed with a 1-conformal cosymplectic structure

M.T. CALAPSO

Alla memoria della cara impareggiabile amica M.A. Sneider sempre viva nei miei ricordi e nel mio cuore

RIASSUNTO – In questo lavoro, che va inquadrato nel vasto campo delle varietà Sasakiane, vengono studiate varietà quasi Sasakiane dotate di una struttura 1-conforme cosimplettica. I risultati ottenuti: diverse proprietà del campo vettoriale di struttura ξ e del tensore di curvatura R di una tale varietà, riguardano – in generale – le strutture cosimplettiche.

ABSTRACT – Let $M(\Omega, \eta, \xi, g)$ be an almost cosymplectic manifold defined by the pairing: $g\Omega \in \Lambda^2 M$, $\eta \in \Lambda^1 M$. If u is a certain closed 1-form and d^u denotes the cohomology operator associated with u, $i \cdot e d^u \alpha = d\alpha + u \wedge d$; $\alpha \in \Lambda M$; then $M(\Omega, \eta, \xi, g)$ is said to be endowed with a 1-conformal cosymplectic structure if Ω and η satisfy

$$d^u\eta=0$$
 , $d\Omega=0$.

In this case differente properties of the structure vector field ξ (ξ : dual of η with respect to g) and of the curvature tensor R of M are discussed.

KEY WORDS — Cohomology operator - Quasi Sasakian manifold - Quasi concircular pairing - Exterior recurrent - Exterior concurrent - Symplectic adjoint - Symplectic harmonic - Anti-invariant - Soldering form.

A.M.S. CLASSIFICATION: 53C25

- Introduction

In the last two decade a series of papers have been devoted to almost cosymplectic manifolds.

Let $M(\Omega, \eta, \xi, g)$ be a (2m+1)-dimensional Riemannian C^{∞} -manifold endowed with an almost cosymplectic structure $1 \times S_p(m; \mathbb{R})$ (the structure 2-form $\Omega \in \Lambda^2 M$ and the structure 1-form $\eta \in \Lambda^1$ satisfy $\Omega^m \wedge \eta \neq 0$).

If d' is the cohomology operator (F. Guedira and A. Lichnerowicz [1]) then if

(a)
$$d^u \eta = 0$$
, $d\Omega = 0$, $u \in \Lambda^1 M$

we say that the pairing (η, Ω) defines a 1-conformal cosymplectic structure (abr. (1-c.c.)-structure). In this case u and it's dual vector field U are called the associated tensor with this structure.

In the present paper we study the case of a quasi Sasakian manifold $M(\Phi, \eta, \xi, g)$ endowed with a (1-c.c.)-structure. We are quoting here the following properties:

- (i) The structure vector fields ξ , and U define a quasi concircular pairing [9] and U defines an infinitesimal conformal transformation of the Reeb vector field ξ (or the structure vector field.
 - (ii) U is a geodesic and ΦU is a parallel vector field.
 - (iii) The Ricci curvatures of ξ and U are $Ric(\xi) = -1$, Ric(U) = +1.
- (iv) The curvature tensor field R of M satisfies $R(Z, Z')W + \Phi R(Z, Z')$ $\Phi W + R(Z, Z')U = 0$ where $Z, Z', W \in xM$ are any vector fields, and the vertical curvature 2-forms of M are exterior recurrent [2].
- (v) The Lie derivatives $L_X \eta$, where X is any infinitesimal automorphism of u, are as η , d^u -closed, i.e. $d^u(L_X \eta) = 0$,
- (vi) Any manifold $M(\Phi, \eta, \xi, g)$ is foliated by geodesic hypersurfaces M_h normal to ξ , and if M_I is any invariant submanifold [3] of M then the immersion $x: M_I \to M$ is minimal. It should be noticed that this property is similar to that of invariant submanifolds immersed in a quasi-Sasakian manifold carrying a cosymplectic structure [4].

1 - Preliminaries

Let $M(\Phi, \eta, \xi, g)$ be an oriented paracontact C^{∞} -manifold with tangent bundle TM and denote by $\Gamma TM = xM$, the set of the sections of TM.

Following W.A. Poor [5] we denote by $b: TM \to T^*M$ the musical isomorphism defined by the metric tensor g and write $A^q(M,TM) = \Gamma Hom(\Lambda^q TM,TM)$. We notice that elements of $A^q(M,TM)$ are vector valued q-forms on M. Next if ∇ is the covariant derivative operator defined by g, then

$$d^{\nabla} : A^q(M,TM) \to A^{q+1}(M,TM)$$

defines the exterior covariant derivative operator with respect to ∇ . Generally $d^{\nabla^2} = d^{\nabla}$ o $d^{\nabla} \neq 0$, and we assume in this paper that ∇ is symmetric. Let $dp \in A^1(M,TM)$ be the soldering form of M [6] (as is known [6] dp is a canonical vector valued 1-form). Since the manifold M we are going to discuss is connected, we shall denote following F. Guedira and A. Lichnerowicz [1], by $d^u = d + e(u)$; e(u): exterior product by the closed 1-form u the cohomology operator.

Any form $\Phi \in \Lambda M$ such that $d^u \Phi = 0$ is said to be d^u -closed.

Let $F = \sum a_A Z_A \otimes \omega^A \in A^1(m, TM)$ $(a_A \in C^{\infty}M, Z_A \in xM, \omega^A \in \Lambda^1M)$ be any vector valued 1-form F. If F satisfies

$$(1.1) d^{\nabla^q} F = \Phi_q \wedge dp \in A^{q+1}(M, TM)$$

for some q-form $\Phi_q \in \Lambda^q M$, then F is defined as q-exterior concurrent (M. Petrovic, R. Rosca, L. Verstraelen [7]).

Let $0_{\Phi} = \text{vect}\{e_a, \Phi e_a = e^a*, e_0 = \xi/a = 1, \dots m; a^* = a + m\}$ be an adapted local field of 0_{Φ} -orthonormal frames on M [3], and let $0_{\Phi}^* = \text{covect}\{\omega^A | A = 0, 1..., 2m\}$ be it's associated coframe. Then Cartan's structure Eqs. written in index less form are

$$(1.2) \nabla e = \theta \otimes e \in A^1(M, TM),$$

$$(1.3) d\omega = -\theta \wedge \omega,$$

$$(1.4) d\theta = -\theta \wedge \theta + \Theta.$$

In this above Eqs. θ (resp. Θ) are the local connection forms in the bundle O(M) (resp. the curvature forms on M).

2 - Quasi Sasakian manifolds endowed with a 1-conformal cosymplectic structure

Let $M(\Phi, \eta, \xi, g)$ be a (2m+1)-dimensional quasi Sasakian manifold. Then the structure tensor fields (Φ, η, ξ, g) satisfy (see also [4])

(2.1)
$$\begin{cases} \Phi^2 = -Id + \eta \otimes \xi, g(Z, Z') - \eta(Z)\eta(Z') = g(\Phi Z, \Phi Z') \\ \eta(Z) = g(\xi, Z), \Phi \xi = 0, \eta(\xi) = 1, \forall Z, Z' \in xM. \end{cases}$$

Following [1] the structure 1-form η is d^u -closed, for some semi-basic unit closed 1-form u iff:

$$(2.2) d^u \eta = d\eta + u \wedge \eta = 0.$$

If we set

(2.3)
$$u = \sum u_{\alpha}\omega^{\alpha}; u_{\alpha} \in C^{\infty}M, \alpha \in \{a, a^{*}\}$$

then by (2.2) and the structure Eqs. (1.3) one gets

$$\theta_0^{\alpha} = u_{\alpha}\eta.$$

Next we denote by $U = b^{-1}u \in xM$ the dual vector field of u. Then by the structure Eqs. (1.2) and by (2.4) the covariant derivative of the structure vector field ξ is expressed by

$$(2.5) \nabla \xi = U \otimes \eta.$$

Next by (2.1) and (2.5) one derives

(2.6)
$$(\nabla \Phi)Z = -g(U, \Phi Z)\xi \otimes \eta - \eta(Z)\Phi U \otimes \eta.$$

Denote now by

$$\Omega = \sum \omega^a \wedge \omega^{a^*}$$

the globally defined 2-form, which defines with η an almost cosymplectic structure $1 \times S_p(m; \mathbb{R})$, i.e.

$$\Omega^m \wedge \eta \neq 0$$
 , $i_{\xi}\Omega = 0$.

By (2.4) and (2.5) and making use of (1.3) one gets by exterior differentiation of (2.7)

$$d\Omega = 0$$

i.e. Ω is a presymplectic form [8].

In the following any quasi Sasakian manifold $M(\Phi, \eta, \xi, g)$ such that Eqs. (2.1), (2.2) and (2.6) hold good, will be called a 1-conformal cosymplectic quasi Sasakian manifold (abr. 1-c.c.q.S).

In addition u (resp. $U = b^{-1}u$) will be called the associated 1-form (resp. associated vector field) of the (1-c.c.)-structure.

Denote by $D_h = \{Z \in xM; \eta(Z) = 0\}$ the 2*m*-distribution annihilated by η (the *horizontal* distribution).

Since the covariant differential ∇U of the unit vector field $U \in D_h$ is self adjoint [3] one finds by (1.2) and (2.4)

$$(2.9) \nabla U = -\xi \otimes \eta.$$

Since ξ and U are two mutually orthogonal sections, then by references to [9], Eqs. (2.5) and (2.9) show that (ξ, U) defines a quasi-concircular pairing. Further one easly derives from (2.5), (2.9)

$$(2.10) [U,\xi] = L_U \xi = \xi$$

which proves that, in the case under consideration, the vector field U defines an infinitesimal conformal transformation i.c.t.) of ξ .

In addition one finds

$$(2.11) \nabla_U U = 0$$

and making use of (2.6) one gets

$$\nabla \Phi U = 0.$$

Hence it follows from the above, that U and ΦU is a geodesic and a parallel vector field respectively.

We shall now give the following

DEFINITION. Any vector field $V \in xM$ such that it's q^{th} covariant derivative is expressed by

$$(2.13) \nabla^{q}V = v \wedge \nabla^{q-1}V$$

for some 1-form v is said to be (q-1)-covariant recurrent.

Since the operator ∇ acts inductively one derives from (2.5) and (2.9)

(2.14)
$$\nabla^2 \xi = (\eta \wedge u) \otimes U = -u \wedge \nabla \xi.$$

and

(2.15)
$$\nabla^2 U = (u \wedge \eta) \otimes \xi = -u \wedge \nabla U.$$

Hence one may say that ξ and U are both 1-covariant recurrent. As a consequence of this property, consider the vector valued 1-form

$$F = \xi \wedge U = \flat(U) \otimes \xi - \flat(\xi) \otimes U = u \otimes \xi - \eta \otimes U \in A^{1}(M, TM).$$

Operating F by d^{∇^2} , one finds by (2.2), (2.14), (2.15) (and taking account of du = 0)

$$d^{\nabla^2}F = \nabla^2\xi \wedge u - \nabla^2U \wedge \eta = 0$$

which shows that F is d^{∇^2} -closed.

Now since in general for any $Z \in xM$ one has

$$\operatorname{div} Z = \operatorname{tr}[\nabla Z], \quad \text{at any} \quad p \in M$$

one derives from (2.5) and (2.9)

$$(2.16) div \xi = 0$$

and

$$\operatorname{div} U = -1$$

Hence one may say that ξ and U defines an infinitesimal automorphism and an infinitesimal homothety respectively, of the volume element of M.

Making use of the general formula of K. Yano (see also [3])

$$\operatorname{div}(\nabla_Z Z) - \operatorname{div}((\operatorname{div} Z)Z) + (\operatorname{div} Z)^2 =$$

$$\operatorname{Ric}(Z) + \sum g(\nabla_{e_A} Z, e_B) g(e_A, \nabla_{e_B} Z); \operatorname{Ric}(Z)$$
: Ricci curvature

one finds by (2.5), (2.9), (2.16) and (2.17)

$$Ric(\xi) = -1$$
 , $Ric(U) = +1$.

We recall also that if $R \in \Gamma$ end ΛTM is the curvature operator on M, one has the general formula

$$\nabla^2 W(Z,Z') = R(Z,Z')W \quad ; \quad \forall Z,Z',W \in xM.$$

Setting in the above W = U one finds on behalf of (2.15)

(2.18)
$$R(Z,Z')U = (g(U,Z)\eta(Z') - g(U,Z')\eta(Z))\xi$$

i.e. R(Z, Z')U is colinear to ξ .

Further since the sectional curvature $K_{Z \wedge U}$ with respect to the 2-plane spaned by any vector field Z and by U is expressed by

$$K_{Z \wedge U} = \frac{\langle R(Z, U)U, Z \rangle}{\|U\|^2 \|Z\|^2 - \langle U, Z \rangle^2}; \langle \rangle : \text{ instead of } g$$

one finds with the help of (2.19)

$$K_{Z \wedge U} = \frac{(\eta(Z))^2}{g(U, Z)^2 - g(Z, Z)^2}.$$

Thus one may say that $K_{Z \wedge U}$ vanishes for all horizontal vector fields $Z \in D_h$.

If δ denotes the *adjoint* operator of d with respect to g, then by (2.16) and (2.17) one has

$$\delta u = 1 \quad , \quad \delta \eta = 0$$

and so by (2.2) and taking account of du = 0, a short calculation gives

$$\Delta \eta = 0$$
 , $\Delta u = 0$.

Hence both forms η and U are harmonic.

Further if ω is a closed 1-form and $\alpha \in \Lambda M$, any form, the differential operator of degree -1, δ^{ω} has been defined in [1]

$$\delta^{\omega}\alpha = \delta\alpha + i_{\mathfrak{b}^{-1}(\omega)}\alpha$$

and the generalized Laplacian Δ^{ω} by

$$\Delta^{\omega} = d^{\omega}\delta^{\omega} + \delta^{\omega}d^{\omega}.$$

Setting in the above Eqs. $\omega = u$ one finds by (2.19)

$$\Delta^u \eta = 0$$
.

Let us now go back to Eq. (2.14). Then by the general formula

$$\Delta^2 Z = Z^A \Theta_A^B \otimes e_B \in A^2(M, TM)$$

one finds

(2.20)
$$\Theta_0^{\alpha} = u_{\alpha} \eta \wedge u \quad ; \quad \alpha \in \{a, a^*\}$$

where Θ_0^{α} may be called the vertical curvature 2-forms.

Since by (2.2) $\eta \wedge u$ is a closed 2-form, one readly derives from (2.20)

$$d\Theta_0^\alpha = d\lg U_\alpha \wedge \Theta_0^\alpha \iff d^{-d\lg U_\alpha}\Theta_0^\alpha = 0$$

which shows that all the forms Θ_0^{α} are exterior recurrent. further since by (2.1) and (2.6) and making use of (1.2) one has

(2.21)
$$\theta_b^a = \theta_b^{a^*} \quad , \quad \theta_b^{a^*} = \theta_a^{b^*}$$

then by (2.4) and the structure Eqs. (1.4) one finds

$$\Theta_b^a = \Theta_b^{a^*} \quad , \quad \Theta_b^{a^*} = \Theta_b^{b^*}.$$

Now by (2.18) and (2.22) one finds the following general formula for the curvature tensor of $M(\Phi, \eta, \xi, g)$

(2.23)
$$R(Z,Z')W + \Phi R(Z,Z')\Phi W + R(Z,Z')U = 0$$

where $W, Z, Z' \in xM$ are any vector fields.

We shall discuss now some properties of the Lie Algebra involving the tensor fields $U \in xM$, $u, \eta \in \Lambda^1M$ and $\Omega \in \Lambda^2M$.

By (2.1), (2.9), (2.7) and (2.8) one has

$$(2.24) i_U \Omega = \flat(\Phi U) , \quad d\flat(\Phi U) = 0 \to L_U \Omega = 0$$

and since by definition du = 0, one also has

$$(2.25) i_{\Phi U}\Omega = -u \to L_{\Phi U}\Omega = 0.$$

Consequently both vector fields U and ΦU define infinitesimal automorphism of the structure 2-form Ω .

In addition, since $U(\Phi U) = g(U, \Phi U) = 0$ one also quickly finds by (2.6)

$$L_{\Phi U}\eta=0.$$

Therefore one may say that ΦU defines an infinitesimal automorphism of the considered (1-c.c)-structure defined by the pairing (η, Ω) .

Next since u is closed, then any vector field $X \in xM$ which defines an infinitesimal automorphism of u is such that

$$(2.26) u(X) = c = const.$$

Take now the Lie derivative of the structure 1-form η with respect to X. One has by (2.2)

$$L_X \eta = d\eta(X) + \eta(X)u - c\eta$$

and by exterior differentiation one gets

$$d^u(L_X\eta)=0.$$

hence $L_X \eta$ is as η , d^u -closed.

THEOREM. Let $M(\Phi, \eta, \xi g)$ be a quasi Sasakian manifold endowed with a (1-c.c)-structure and let $\Omega \in \Lambda^2 M$, $u \in \Lambda^1 M$ and $U = \flat^{-1}(u) \in xM$ be the associated 1-form and vector field with this structure, respectively. One has the following properties:

- (i) The structure vector field ξ and U define a quasi circular pairing, and U defines an infinitesimal conformal transformation of ξ .
 - (ii) U is a geodesic and ΦU is a parallel vector field.
- (iii) ξ and U are both 1-covariant recurrent, and the vector valued 1-form $F = \xi \wedge U$ is d^{∇^2} -closed.
 - (iv) The Ricci curvatures of ξ and U are $Ric(\xi) = -1$, Ric(U) = +1.
 - (v) The curvature tensor field R of M satisfies

$$R(Z,Z')W + \Phi R(Z,Z')\Phi W + R(Z,Z')U = 0$$

where $Z, Z', W \in xM$ are any vector fields, and the vertical curvature 2-forms of M are exterior recurrent.

- (vi) The vector field ΦU defines an infinitesimal automorphism of the (1-c.c.)-structure defined by (η, Ω) .
- (vii) The Lie derivatives $L_X\eta$, where X is any infinitesimal automorphism of u, are as η , d^u -closed.

3 – Submanifolds If $M(\Phi, \eta, \xi, g)$

Obviously by (2.2) the horizontal distribution D_h is involutive. Denote then by M_h the leaf (hypersurface in M) of the 2m-foliation D_h .

Since ξ is the normal vector field of M_h , it follows at once by (2.5) that the second fundamental form $\langle dp, \nabla \xi \rangle$ of the immersion $x \colon M_h \to M$ vanishes. hence M_h is a totally geodesic hypersurface.

It should be noticed on behalf of (2.6), that M_h is a symplectic manifold, and by (2.9) and (2.12) that U and ΦU are parallel vector fields on M_h . Further since the symplectic adjoint $\bar{*}\omega$ of any 1-form ω is expressed by

$$\bar{*}\omega = \omega \wedge \bar{*}\Omega = \omega \wedge \frac{\Omega^{m-1}}{m-1}$$

and the symplectic codifferential by

$$\delta \omega = \bar{*}d\bar{*}\omega$$

we easly deduce (since db(U) = 0, $db(\Phi U) = 0$) that the dual forms b(U), $b(\Phi U)$ of U and ΦU respectively are Ω -harmonic (that is symplectic harmonic). Denote by $\varepsilon_a = \{V : L_V \Omega = 0\} \in D_h$ the vector space of

infinitesimal automorphism of the symplectic vectorial space D_h (we denote the induced elements of M_h by the same letters). Then by (2.24) and (2.25) it follows dim $\varepsilon_a \geq 2$. Finally by reference to (2.22) it is easly seen that if M_h is a space-form then it is necessarly a flat submanifold. Let now $x: M_I \to M(\Phi, \eta, \xi, g)$ be an *invariant* [3] submanifold of M, that is

1° ξ is tangent to M_I everywhere on M.

 $oldsymbol{\Phi} Z$ is tangent to M_I for any tangent vector Z to M_I .

Assume that M_I is of codimension 2ℓ and is defined by

(3.1)
$$\omega^r = 0$$
 , $\omega^{r^*} = 0$, $r = m + 1 - \ell \dots m$; $r^* = r + m$.

Since the soldering form dp_I of M_I is

$$dp_I = \omega^i \otimes e_i + \omega^{i^*} \otimes e_{i^*} + \eta \otimes \xi$$
; $(i = 1, ..., m - \ell; i^* = i + m)$

the mean curvature vector valued $2(m-\ell)$ -form $\textcircled{R} \in A^{2(m-\ell)}$ (M_I, TM_I) is expressed by

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2)$$

$$(3.2$$

If σ_I denotes the volume element of M_I , then applying the operator d^{∇} to B one has

$$(3.3) d^{\nabla} (\mathcal{H}) = (2(m-\ell)+1)\sigma_I \otimes H$$

where $H \in T_{p_I}^{\perp} M_I$ means the mean curvature vector field associated with $x: M_I \to M$.

With the help of the structure Eqs. and of (2.21), one gets

$$d^{\nabla}(\mathcal{P}) = 0 \to H = 0$$

which expresses that any invariant submanifold M_I of M is minimal.

It should be noticed that this property is similar to that of invariant submanifolds of almost cosymplectic manifolds endowed with a quasi-Sasakian structure [4]. We shall close this section with the following consideration. Let $x: M_A \to M(\Phi, \eta, \xi, g)$ be the immersion of an anti-invariant [3] submanifold M_A of M, normal to the structure vector field ξ , and let $T_{P_A}(M_A)$ (resp. $T_{P_A}^{\perp}(M_A)$) be the tangent space (resp. the normal space) at each point $p_A \in M_A$. By definition one has $\Phi T_{P_A}(M_A) \subset T_{P_A}^{\perp}(M_A)$. If we assume that M_A is defined by

$$\omega^{a^{\bullet}}=0$$
 $\eta=0$

(i.e. dim $M_A = m$) and we suppose that the normal connection ∇^{\perp} is flat, one has $\Theta_b^{a,b} = 0$. This yiealds

$$\Theta_{\lambda}^{a}=0$$

which proves that M_A is a flat submanifold. It is easly seen that the converse is also true.

THEOREM. Any (1-c.c.)-quasi Sasakian manifold $M(\Phi, \eta, \xi, g)$ is foliated by geodesic hypersurfaces M_h normal to the structure vector field ξ and any M_h is endowed with a symplectic structure $S_p(m; \mathbb{R})$. If ε_a is the vector space of infinitesimal automorphism associated with $S_p(m; \mathbb{R})$, then dim $\varepsilon_a \geq 2$, and if M_h is a space-form then necessarly it is a flat hypersurface. Further if M_I is an invariant submanifold of M, then the immersion $x: M_I \to M$ is minimal and if M_A is an anti-invariant submanifold of M, then the necessary and sufficient condition in order that M_A be flat is that the normal connection ∇^\perp associated with $x: M_A \to M$, be flat.

REFERENCES

- [1] F. GUEDIRA A. LICHNEROWICZ: Géometrie des Algébres de Lie Locales de Kirilov, J. Math. Pures et Appl. 63, (1984) 409-484
- [2] D.K. DATTA: Exterior Recurrent Forms On a Manifold, Tensor n.5, 36 (1982) 115-120.

- [3] K. YANO M. KON: CR-Submanifolds Of Kaelerian and Sasakian Manifolds, Birkhäuser Verlag, Boston (1983).
- [4] H. ENDO: Remarks on Invariant Submanifolds In an Almost Cosymplectic Manifold, Tensor N.S. Vol. 42 (1983) 165-167.
- [5] W.A. POOR: Differential Geometric Structure, Mc Graw Hill Book' C. (1981).
- [6] J. DIEUDONNE: Elements d'Analyse 4, Fsc. XXX IV, Gauthier Villars Paris (1971).
- [7] M. PETROVIC R. ROSCA L. VERSTRAELEN: Exterior Concurrent Vector Fields on Riemannian Manifolds, Soochowy Journal of Mathematics, vol. 15 n.2 (1989) 179-187, Taiwan.
- [8] J. M. SOURIAU: Structure des Systèmes Dynamiques, Dunod, Paris (1970).
- K. BUCHNER R. ROSCA: Coisotropic Submanifolds of a para-coKählerian manifold with concircular structure; vector field, Journal of Geometry, vol. 25 (1985), 164-177.

Lavoro pervenuto alla redazione il 29 maggio 1990 ed accettato per la pubblicazione il 8 giugno 1990 su parere favorevole di P. Benvenuti e di P.E. Ricci