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Some Results on the Homogeneous Riemannian
Structures of Class 7; @ 7,

A.M. PASTORE - F. VERROCA®)

RIASSUNTO - Si studiano le strutture Riemanniane omogenee appartenents alla
classe T, ® Tz della classificazione di Tricerri e Vanhecke, ed aventi 1-forma fondamen-
tale chiusa.

ABSTRACT ~ We study homogeneous Riemannian structures of class T, @z whose
foundamental 1-form is closed.
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— Introduction

Let (M,g) be a connected Riemannian manifold of dimension n. A
homogeneous Riemannian structure on (M, g) is a tensor field T" of type
(1,2) satisfying the following equations of Ambrose and Singer:

i) g(TXYs Z) + g(TX27 Y) =0
(A-S){ ii) (VxR)yz = [Tx,Ryz] - Rryyz — Ryry2
iil) (VxT)y = [Tx,Ty] - Trey

(*YWork partially supported by MURST
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for any X,Y, Z € H(M), 1], [9).
Here, H(M) denotes the Lie algebra of the tangent vector fields on M, V
is the Riemannian connection with the curvature tensor field R defined

by
R(X,Y)=[Vx,Vy] - Vixy).

It is well-known that, putting V = V - T, an equivalent formulation of
(A - S) is given by:

i)Vg=0
(A-8y{ ii)VR=0
iii) VT = 0.
Furthermore, the curvature tensor fields R and R verify the relation:

(1) R(X,Y) = R(X,Y) + [Tx, Tr] + T ey, -

where £ denotes the torsion tensor field of V.
Now, we recall that among the eight classes founded by F. Tricerri and
L. Vanhecke, the class 7; @ 7 is characterized by the condition

(2) 5,91x,¥),2)=0

where T(X,Y) = TxY and 6 denotes the ciclic sum over X,Y, Z.
Furthermore, the class 7; is charactenzed by (2) and ¢,2(T) = 0, where,
by definition, ¢,2(T)(Z) = ):g(T(E.,E), Z), with Z € H(M) and

(Eyy. .-, Ey) local orthonorma.l ﬁelds
Finally, putting

3) =— ZT(E., E;)

l-l

for a structure T' € T; & T3, we have:

(4) T(X,Y) = g(X,Y)¢ - g(Y,£)X + x(X,Y),
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where 7 is a tensor field of type (1,2).
Since, £ = 0 implies T € T2, and = = 0 implies T € T;, [9], we say that
T € T, ® T; is a proper structure if £ # 0 and 7 # 0.

For such a structure, we denote by w the foundamental 1-form i.e.
the 1-form which is dual of £ with respect to the metric g.

There exist examples of proper structures T € 7; @ T; in dimension
n = 3,4, [9, p. 85, 93]. In each case, an easy computation shows that
dw = 0.
In dimension n > 4, many examples can be obtained, taking:

a) the direct product of two structures in 7; whose 1-form is always
closed, as easily follows from Lemma 5.3 in [9]. In the simply-
connected case, the underlying Riemannian manifold is a product
of two hyperbolic spaces, [9, Th. 5.2].

b) the direct product of two proper structures of class 7,7, with closed
foundamental 1-forms;

¢) the direct product of a structure in 7; and a structure T € 7, & T,
having a closed, possibly vanishing, foundamental 1-form.

Namely, consider two manifolds (M;,g,) and (M,,g,) of dimension
n > 2, m > 2 and structures T;, T, respectively. Obviously the prod-
uct structure T is homogeneous, Riemannian on (M; x M2, g1 X g2) and
TeT, 9T, whenT), T €T, ® T

Now, suppose T}, ¢ 7,. Then, we have £ = af, + b6, & # 0,
a = 2=l 4 0. By a direct computation, we obtain m(X3,£) =
al[¢, "2X2 for any X, € H(M;) and then T is proper, since £ # 0 and
7 # 0. Finally, for any Z, orthogonally decomposed as Z, + Z,, we have
w(Z) = aw,(Z,) + bwy(2,) and w is closed if w, and w; are closed. Now,
a), b), c) follow easily.
We do not know any example satisfying dw # 0.

In this paper, we study proper structures of class 7, ®7; with dw = 0.
In the simply-connected case, we prove that the underlying Rieman-
nian manifold (M,g) is foliated by an isoparametric family of (r — 1)-
dimensional submanifolds carrying a homogeneous structure of class 75.
Furthermore, M is the total space of a Riemannian submersion with base
IR, the mixed sectional curvatures are non-positive and at least one of
them is negative.

We discuss the case of warped products, proving that, in this hy-
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pothesis, (M, g) has to be isometric to the hyperbolic space H", n > 6,
of constant negative curvature K = —||¢||2.

Finally, as we will see in the last section, the existence of such a
homogeneous structure on IH", n > 6, depends on the existence of a
parallel, non-vanishing, homogeneous structure of class 7; on R*~.

1 - General properties of homogeneous Riemannian structures
of class 7, @ 7, with closed foundamental 1-form

Let (M,g) be an n-dimensional connected Riemannian manifold
equipped with a proper homogeneous structure T € 7; @ T2.
Since, in dimension n = 2, there exist only structures of class 7;, we have
to suppose n > 3. Observe that there exist examples in dimension n = 3,
[9]. It is also well-known that M is not compact, since £ # 0, [10].

From the conditions (2), (3), (4) and (A — §)' iii) it follows that:

VeE=0, Vw=0, V1 =0, ¢5(r) =0, xeyizg(x(x,)'),Z) =0.

Furthermore, it is easy to see that = is neither symmetric nor alternating,

and

(5) g(x(XsY)’Z)'*'g(”(X’Z)’Y) =0,

so that we have g(7(X,¢), £ =0. '
On the other hand, V& = 0 implies [|£]| = ¢, ¢ constant. Hence £ is
bounded and complete, [9]. Moreover, £ is not conformally Killing, (10,

th.4.3]. .
Finally, the torsion tensor of V is given by:

FX,Y) = g(¥, €)X — o(X, €)Y +7(Y,X) - x(X,Y).

LEMMA 1. The following conditions are equivalent.
a) w is closed,
b) woX =0,
c) me=n(£ )=0.
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From the relation (dw)(X,Y) = (Vw)(¥,X) ~ (Vw)(X,Y) +
(wo I)(X,Y), where dw is defined without the factor 1, using (5) and

V€ = 0, we have
(dw)(X,Y) = (wo E)(X,Y) = g(x(Y,X),£) — g(x(X,Y),£) =
=, 8. 9(x(Y,X),6) + 9(x(¢, X),Y) = g((£, X),¥)

since the ciclic sum vanishes.
Note that dw = 0 implies:

(6) 9(7(X,€),Y) = g(x(Y,£), X).

From now on, we suppose dw = 0 and we denote by D the distribution
orthogonal to £. Since 7, vanishes, V& = 0 implies V£ = 0 so that the
integral curves of £ are geodesics.

ProposITION 1.1. Let (M,g) be a Riemannian manifold equipped
with a proper homogeneous structure T € T, ® T, such that dw = 0. Then
the distribution D orthogonal to £ is integrable and each integral manifold

carries a structure T € T;.

The integrability of D follows immediately from the hypothesis
dw = 0. Now, let N be a maximal integral manifold of D. For any
X,Y € H(N) we have Vxg(Y,€) = 0 and Vg = 0, V&€ = 0 imply
g(VxY £) = 0ie VxY € H(N) and so N is autoparallel with respect

to V.
Applying the theorem 2.1 and 2.8 in [10], we have that the induced

structure T on N belongs to the class 7, ® T, and T(X,Y) = T(X,Y) -
a(X,Y). Here a is the second foundamental form of N in M, defined
by the Gauss equation VxY = V4Y + a(X,Y) for each X,Y € H(N),
where V' is the Riemannian connection on N. Using the Gauss equation,
for any X,Y € H(N), we have:

a(X,¥) = 6(X.Y)E+ 5o(x(X, V)06, ¢ =il
It follows:

(7) T(X,¥) = (X, Y) - 9(x(X,Y),6)
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Finally, if (E,...,E,.,) is a local orthonormal basis of N, putting
n= m we have 7(n,7n) = 0 and for each Z € H(N),

n-1

a(TN2) = Y o(T(E, E.), Z) =

i=1

= 3 o(n(E:, B, 2) = en(r)(2) = 0.

i=1

Hence T belongs to 7;.

REMARK 1. Obviously, it may happen that the structure T € T3
induced by T on N is trivial. In this case, N is locally symmetric and
for any X,Y € H(N) we have T(X,Y) = o(X,Y), and T(X,Y) =
9(X,Y)e+n(X,Y), using (4) and g(Y,€) = 0. As a special case, suppose
that n = 3. Then each integral manifold is locally symmetric, since, in
dimension 2, T € 7; implies T = 0.

REMARK 2. Let N be a maximal integral manifold of D. It is easy
to verify that for any X € H(N ), we have:

(8) Vxé = -cX +x(X,§).

Hence, the Weingarten operator determined by the unique normal unit
vector field 7, is given by:

9) A X =cX —n(X,n).
Let us denote by B the tensor field of type (1,1) on M defined by
(10) B(X)=n(X,n) X e H(M).

PROPOSITION 1.2. B is diagonizable and trace-free. Furthermore,
0 is one of its eigenvalues.
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Using (6), we have g(B(X),Y) = g(x(X,n),Y) = g(x(¥,n),X) =
g(X,B(Y)) for any X, Y € H(M), so that B is symmetric with respect
to the metric g and it can be diagonalized. Since B(5) = x(n,7) =0, 9
is eigenvector with eigenvalue 0.

Finally

tr(B) = 3 o(B(E), ) + g(B(),1) = —exa(x)(n) = 0

=1
where (E,,...,E,_;) is a local orthonormal basis of D.

REMARK 3. Since B(£) = 0 and g(B(X),£) = 0, B induces a tensor
field of type (1,1) on every integral manifold of D. Such a tensor will be
denoted with the same letter B.

PRrROPOSITION 1.3. The eigenvalues of B are constant on M and
the integral manifolds are isoparametric hypersurfaces.

The existence of a homogeneous structure on M, implies that M is
locally homogeneous. Now, fixed p,q € M, there exist neighboords U of p
and V of ¢ and an isometry ¢: U — V such that ¢(p) = q. ¢ is an affine
transformation of ¥ and we have in U: ¢,(T(X,Y)) = T(¢.(X),$.(Y)).
It follows ¢,£ = £ and ¢,(B(X)) = B(¢.(X)).

Now, suppose that X is an eigenvector of B in p with eigenvalue p.
We have:

B,(:(X)) = $up(Bp(X)) = up(uX) = pé1p(X)

i.e. §.,(X) is eigenvector of B in ¢ with eigenvalue u.
Hence the eigenvalues of B are constant on M.

Let N be an integral manifold of D. From (9) we have A4, X =
¢X —B(X), and the principal curvatures A; = ¢—y;, where y; is eigenvalue
of B, are constant on N and they do not depend on the integral manifold.
It follows that the mean curvature of each integral manifold is constant
and equal to c.

ProPosITION 1.4. Let p € M. IfY is an eigenvector of B,,
with eigenvalue p, and orthogonal to &, then Y is eigenvector in p with
eigenvalue (u — ¢)? for the curvature operator R(n, )n.
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Since V) = 0 implies R(n,Y)n =0, from (1) we have:
R(fh Y)’? = [TmTY](n) + TE(,,_y)”‘
Now, £(,Y) = T(Y, ) -T(nY), T, = x, =0 and (4) give:

R(n,Y)n =T(T(Y,n)n) = (b - c)'Y .

ProrosiTION 1.5.

The Ricci curvature Ricc(n,n) is a constant
negative function on M.

Let N be the maximal integral manifold of D throught a fixed point

p € M and (E,,...,E,_,) an orthonormal basis of T,(N) given by eigen-
vectors of A,.

The proposition 1.4 implies:

Rice (m,1)(p) = = 3 9(Ber B(n E)n) = — 3 e = i) < 0

i=1 i=1
and the equality does not hold, since B is trace-free and ¢ # 0. Obviously,

that means that for any p € M there is a 2-plane o; spanned by (E;, n)
with sectional curvature K(o;) < 0.

As corollaries, we have:

ProprosITiON 1.6.  The Euclidean space R" does not admit any

proper homogeneous Riemannian structure T € T80T, vith closed founda-
mental 1-form.

PROPOSITION 1.7. Any manifold (M,g) with sectional curvature
K > 0 does not admit any proper homogeneous Riemannian struclure
T € T, ® T, with closed foundamental I-form.
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Finally, we have the following result:

ProprosiTION 1.8. The following properties hold:

1)V, T=0,V,r=0,Vw=0,V,R=0.

2) Vw is a 2-covariant symmeltric tensor field. Furthermore, if M is
simply-connected, then w = df and Vw is the Hessian of f.

3) For any X,Y,Z € H(M), we have:

(Vxm)Y,2Z) = [rx,7v])(Z) — ®ex.v)Z + 9(X, 7 (Y, Z))6+
- g(’(yv Z)7 f)X + g(y,f)‘ll’(x, Z) - g(Xl Z)I(Y, £)+
+9(2,£)x(Y, X).

4) V,B =0 and L,B =0, where L denotes the Lie differentiation.

Since 7, = 0, we have T, = 0 and V7 = 0. Then, obviously, V,w =0
and (A — §) iii) implies V,T = 0. Hence V,7 = V,T = 0.

Furthermore, V,R = 0 follows from (A — §) ii). A direct compu-
tation gives 2) and 3). For 4), V,B = 0 follows from 3). Finally, we
have (L,B)(n) = 0 and for each X € D, (L,B)}(X) = [4,, B](X) =
[cK — B,B](X) = 0, since A, = cK — B, where K is the Kronecker
tensor field.

The Frobenius theorem implies that M is locally isometric to the
product IR x N, where N is a maximal integral manifold of D, with a
suitable metric.

For such a metric, we are giving the local expression.

Consider p € N. By the Frobenius theorem, there exists a neighboord
U Ofél in M, with coordinates (t,z,...,z""') centered at p such that
E= % and {—3917}&1,...,"-1 generate the distribution D in U.

We have, in U:

8 0\ e
9 (go3r) =lell =

a & .
g(-a?,a)—o fori=1,...,n—-1.
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It follows that

n-1

g=cd? + Y gi;(t, z)dz'dz’

1.j=1

where
o 0
g;,-(t,z):g(a-'.—,a—ﬁ-) fori,j=1,...,.n-1.

Using (8) and Vi = 0, a direct computation (as in [9, p.52-53]) gives:

dy(t,2) = 3a5(t,2) = ~2%a5(8,2) =20 (x (2 5 ) €) (o).

Since
a o , 0
o (v (527 37) €) =9 (ir + i) =
we obtain the differential equation gj; = —2¢?g;; ~ 2¢?x{;, and so

t
%;(t, z)e?*t = —2¢? / r?,(s,z)e"z'ds +h.
0

Now, t = 0 implies h = ¢;;(0,z) where g;;(0,z) is the metric induced on
U NN, hence

1
gii(t,z) = e *'g;5(0,2) — 2c%e2 / 73, (s,z)e* *ds .
0

2 — Homogeneous Riemannian structures of class 7; & 72 with
dw = 0 on simply-connected manifolds

Let (M,g) be a connected, simply-connected Riemannian manifold
equipped with a proper homogeneous Riemannian structure T € 7; ® Ty,
with dw = 0. Obviously, there exists a function f: M — R such that
w = df and £ = grad f. The results of section 1 imply that f is an
isoparametric function and the maximal integral manifolds of D are the
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level hypersurfaces of f. Since £ is nowhere zero, the level hypersurfaces
are regular so that there are not focal varieties of f, [7]. The existence
of f allows us to consider the manifold (M, g) under two points of view:
as a manifold foliated by the level sets of f as well as the total space of
a Riemannian submersion.

From the first point of view, the foliation is a Riemannian folia-
tion with bundle-like metric g [8]. It is not harmonic, since its leaves
are submanifolds with non-zero constant mean curvature ¢ = |[|§||, by
proposition 1.3. Using the theorem 2 in [4], we obtain that the leaves,
obviously closed, are simply-connected. Moreover the remark 1 implies
that such leaves are symmetric spaces, if M has dimension n = 3. On
the other hand, the map f: (M,g) — (IR,go) with go = ¢~%dt?, ¢ coor-
dinate in IR, is 2 Riemannian submersion. Namely, since grad f = { is
nowhere zero, for any p € M the tangent map f, is surjective and then
f is a submersion. Its fibres are the level sets of f so that the vertical
distribution V coincides with D, whereas the horizontal distribution H
is spanned by £. Furthermore, each fibre is not totally geodesic, since
its mean curvature is a non-zero constant. Finally, for any p € M, we
have (go);(s)(fubps fubp) = ¢~ Hwp(§))? = 9p(&, &), s0 that f, induces an
isometry from H, to Ty)IR. Thus f is a Riemannian submersion.

Let Q and A be the two tensor invariants of the Riemannian submer-
sion, both immersed in tensor fields on M, [2]. The invariant A vanishes,
since the distribution H is integrable.

The other invariant Q is defined by Q(X,Y)=HVyxVY +VVyxHY,
for any X,Y € H(M). Observe that, for X,Y € D, we have Q(X,Y) =
HV Y, hence, on each fibre, Q is the second foundamental form.

Since (M,g) is complete, by the theorem of Ehresmann and Her-
mann, (2, 9.40, 9.42}, f is a locally trivial fibration with diffeomorphic
fibres. Furthermore, the distribution H is an Ehresmann-connection i.e.
Ehresmann-complete with trivial holonomy group @, at ¢t € IR. Namely,
®, is the group of all diffeomorphisms of the fibre over ¢ corresponding
to closed paths in IR starting at ¢.

Now, a theorem of J.A. Wolf, [2, 9.48], implies that &, is the struc-
tural group of f and, since it reduces to the identity, M is diffeomorphic
to the product IR x N where N is the standard fibre and f is the pro-
Jjection on the first factor. Since A vanishes, M is locally isometric to
the product IR x N with 2 Riemannian metric ¢ = g, + g, whose value
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at (t,p) € R x N is given by g(t,p) = f*(9o(t)) + h*(g,(p)), where h is
the projection on the second factor and g, is the metric induced by g on
N = f7({1}).

Using the O’Neill formulas for the curvature, we obtain the results
of proposition 1.5 and the following one.

PROPOSITION 2.1. The mized sectional curvalures are non-positive.

Letbepe M, X € D, || X|| = 1 and o the 2-plane generated by 7 and
X at p. Then, we have, [2,9.29b): K (o) = g((V,Q)xX,n) — [|Q(X,n)|I.
Since V,7 = 0 and g(»(X,Y),n) = g(x(Y, X),n) (see the proof of Lemma
1): we obtain K(O’) = _”Q(Xa 77)"2 = —” -cX+ ”(Xv 7’)“2 <o

Observe that K (o) = 0 if and only if #(X,7) = ¢X. Hence the
mixed sectional curvatures at p can not vanish simultaneously, since B is
trace-free.

As a special case of Riemannian submersion we can consider the
warped product of two manifolds (M, g,) and (M2, g,) by means of a pos-
itive function ¢: M; — RR. Therefore, we can ask is a simply-connected
Riemannian manifold (M, g) equipped with a proper homogeneous Rie-
mannian structure T € T; & T2 such that dw = 0, can be a warped
product.

From [2, 9.104] we already know that a Riemannian submersion is
locally a warped product if and only if the invariant A vanishes, the vector
field (n — 1)H, (H mean curvature vector) is basic and the “trace-free”

part Q° of the invariant Q, vanishes.

PROPOSITION 2.2. Let (M,g) be an n-dimensional, connected,
simply-connected Riemannian manifold with a proper homogeneous siruc-
ture T € T, & T, having closed foundamental 1-form. If (M, g) is a warped
product, then M is isometric to the hyperbolic space H" of constant cur-

vature —||€||* and n > 6.

We already know that A vanishes. Obviously, (n — 1)H is basic.
Thus, the hypothesis of warped product reduces to the condition Q° = 0.
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Since, by definition, we have:
Q°(X,Y)=Q(X,Y)-g(X,Y)H
Q"(X,n) =Q(X,n) +9(H,n)X X, YeD
Q(mX)=0
the condition Q° = 0 is equivalent to :
a(X,Y)=g(X,Y)H
{MX=amwX
which can be rewritten as
9(x(X,Y),7) =0
{W(X 1) =0

and these conditions reduce to B = 0.
Consequently, the tensor T verifies the relations:

{T(X, €) = g(X, )¢ - llelI*X
T(6,X)=0

for any X € H(M). Now, the theorem 6.2 in [10] implies that (M, g) is
isometric to the hyperbolic space H” with K = —||¢[|>. Following the
proof of theorem 6.2 in [10] we have that the integral manifolds of D
are flat and isometric to R*~'. Proposition 1.1 implies that R"! has
to carry a homogeneous induced structure T of class 7;. Now, suppose
n < 6. Since the classification given in [6] excludes the Euclidean spaces
IR® and IR*, it follows that T = 0 on IR"~" and so we have: )

7(X,¥) = S9(r(X, ), = —g(x(X,7),¥)n =0
for any X,Y € D.

Since 7(X,n) = x(n, X) = 0, we conclude r = 0 and T € Tj, a contradic-
tion.
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3 — The hyperbolic space H",n > 6.

In this section, we discuss the existence of a proper homogeneous
Riemannian structure of class 7; ® 7; with closed foundamental 1-form,
on H", n > 6.

PROPOSITION 3.1. The hyperbolic space H", n > 6, admits a proper
structure T € T, ® T, with dw = 0 if and only if the Euclidean space R~}
admits a parallel, non-vanishing, homogeneous structure T € T.

Suppose that T € 7; @ T, is a proper homogeneous Riemannian
structure on H", n > 6, with dw = 0. Since H® = IR Xz R"" is a
warped product, the proposition 2.2 implies x(X,#) = 0 for any X € D.

Observe that the same result can be achieved using the results ob-
tained by E.CARTAN, [3]. Namely, putting w = df, the level hypersurfaces
of f give a family of isoparametric hypersurfaces. Furthermore, since IH"
has negative constant curvature K, either the principal curvatures coin-
cide, or there exist two principal curvatures A # X. In the first case, the
eigenvalues of B = x( ,7) coincide and vanish, since B is trace-free.

In the last case, the relation d\; = (K + A)dt, i = 1,...,m — 1, in
[3] and the proposition 1.3 imply K + A? =0 and K + X =0.

But, since AX + K = 0, we have A = X so that we reduce to the first
case.

Now, each integral manifold of the distribution D orthogonal to £
is isometric to R""*, [10], and by proposition 1.1 the induced structure
T € T, on R™! is given by T(X,Y) = n(X,Y) for any X,Y € D.
Obviously T # 0, otherwise we have r =0 and T € 7;.

Since IH” has constant negative curvature K = —||¢||?, T(§, ) = 0
and T(X,£) = —||€]|>X for any X € D, the condition (1) implies:

R(X,6)Z = -||¢|*r(X,2) forany X,Z€D.

On the other hand R(X,£)€=0= —||¢|[*x(X,£) so that we have R(X,§)=

—|i€||*xx for any X € D. i . _
Now, it is easy to verify that R(X,£)-g = 0 and R(X,6)-2 =0

imply IZ(X,E) .x=0and mx -7 =0.

It follows [rx,7y](Z) — ®exv)Z = [xx,7z}(Y) — Tu(x,z)Y for any

X,Y,Z € D. Since 7 is a homogeneous structure on R""!, using (A—S)
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iii) the above relation becomes (Dx7)yZ = (Dxx)zY where D is the
Levi-Civita connection on R"~*.

Hence Dy is a symmetric tensor field on R"~}. By covariant deriva-
tion of x@z 9(x(X,Y),2) = 0 with respect to an arbitrary W € D, we

have x§z 9((Dwr)(X,Y),Z) = 0 and the symmetry of Dwx together

with its skew-symmetry with respect to g, give Dywx = 0.

Conversely, given a parallel, non-vanishing homogeneous Riemannian
structure T € T,on lR"", n 2> 6, we can construct a proper homogeneous
Riemannian structure T € 7,  7; on H", having dw = 0.

Let us consider the Poincaré half-space H® = R} x R"™, n > 6,

with the metric g given by ds? = r?(y')~? f:(dy‘)’, r > 0, and the global
i=1

y' 8 v o
orthogonal fields £, E,,..., E, defined by £ = ey and E; = gl

t=2,...,n

Now, since the dual form of £ isw = (y‘)-ldy‘, we have £ = grad f,
with f: H® — IR, given by f(3!,...,¥") = logy!. Obviously, the dis-
tribution D orthogonal to £ is integrable, with maximal integral mani-
folds isometric to R"™" and given by {a} x R*"!, a € R, Namely, they

are the level sets of f with induced metric g, = r?a~2 f:(dy" )%. Let
ji=2

N = {a} x R}, a > 0 be a fixed maximal integral manifold of P and
denote by T a parallel, non vanishing homogeneous structure of class 7,
on IR"! and hence on N. Consider the extension of T to a tensor field x
on H" defined as follows. Fix p = (a,y) = (a,%?...,y") € R} x R"".
Since any vector X, € T,(IR} x IR""') can be written as X, = pbp + X,
with p € IR and X, € T,(N), we define 7,(X,,Y,) = Tp(X,,Y,) and
we denote by 7’ the tensor field uniquely determined on IR} x R""! by
parallel transport of 7, with respect to the Levi-Civita connection on the
flat space IR} x R"~'. Obviously, we have x'(£,X) = 0, (X, £) = 0 for
any vector field X and 7y = T.

Now, put n(X,Y) = %x’(X,Y) for any X,Y € H(H").

It is easy to verify that my = T and

(11) (¢ )=0, x(,§)=0, g(x(X,Y),{)=0
for any X,Y € H(IH").
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Finally, for any X,Y € H(IH") we define
T(X,Y)=g(X,Y)¢ - 9(Y,£)X + n(X,Y)

and we consider the connection V = V — T, where V is the Riemannian
connection on JH".
Using the construction of x and the condition (2) for T, we have

(12) x'(éz 9(T(X,Y),2) = xg‘;} 9(r(X,Y),2) = 0.

Now, the condition (A — ) i) for T, i.e. Vg = 0 follows from (11) and
the analogous condition for T.

Obviously, we have VR = 0, where R is the Riemannian curvature of H".
Finally, to obtain T € 7; & T; we have to prove that VT = 0. Since
Ti(X,Y) = g(X,Y)€ — g(Y,£)X determines a structure of class 7; on
H", [9], we have V,£ =0, where V, =V = T}.

On the other hand, for any X € H(IH"), n(X,£) = 0 implies

VUxé = Vxt-Ty(X,£) = (Vi)xé=0.

Then, from V¢ = 0, Vg = 0 it follows: VT =0 <= Vr =0.

Now, it is easy to see that for any X,Y € H(N) we have VxY = Vy4Y —

T(X,Y) where V' is the flat Riemannian connection on N.

It follows that~6])v is the canonical connection determined by T, and,

consequently, Vr = 0 on N and on any integral manifold of D, taking

account of the definition of «.

A direct computation shows that €7¢E,~ =0fori=2,...,n.
Furthermore, since V¢ = 0, 7(£,X) = 7(X,£) = 0 and

n

a=h
T ) (Bin Ey) = Z ;Tij(av Y)En
h=2
where T?,-(a, y) are constant, we have:
(Ver)(Ein€) =0, (Ver)(BuEj)=0, (Ver)(&Ey)=0,
(Ver)(§, E:) =0, (Ve,x)(E;,€) =0, so that Vx=0on H".
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