Some Results on the Homogeneous Riemannian Structures of Class $\mathcal{T}_1 \oplus \mathcal{T}_2$

A.M. PASTORE - F. VERROCA(*)

RIASSUNTO – Si studiano le strutture Riemanniane omogenee appartenenti alla classe $T_1 \oplus T_2$ della classificazione di Tricerri e Vanhecke, ed aventi 1-forma fondamentale chiusa.

ABSTRACT – We study homogeneous Riemannian structures of class $T_1 \oplus T_2$ whose foundamental 1-form is closed.

KEY WORDS - Homogeneous Riemannian structures.

A.M.S. CLASSIFICATION: 53C20 - 53C30

- Introduction

Let (M,g) be a connected Riemannian manifold of dimension n. A homogeneous Riemannian structure on (M,g) is a tensor field T of type (1,2) satisfying the following equations of Ambrose and Singer:

$$(A-S) \begin{cases} i) \ g(T_XY,Z) + g(T_XZ,Y) = 0 \\ ii) \ (\nabla_X R)_{YZ} = [T_X,R_{YZ}] - R_{T_XYZ} - R_{YT_XZ} \\ iii) \ (\nabla_X T)_Y = [T_X,T_Y] - T_{T_XY} \end{cases}$$

^(*)Work partially supported by MURST

for any $X, Y, Z \in \mathcal{H}(M)$, [1], [9].

Here, $\mathcal{H}(M)$ denotes the Lie algebra of the tangent vector fields on M, ∇ is the Riemannian connection with the curvature tensor field R defined by

$$R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}.$$

It is well-known that, putting $\tilde{\nabla} = \nabla - T$, an equivalent formulation of (A - S) is given by:

$$(A-S)' \begin{cases} i) \ \widetilde{\nabla} g = 0 \\ ii) \ \widetilde{\nabla} R = 0 \\ iii) \ \widetilde{\nabla} T = 0. \end{cases}$$

Furthermore, the curvature tensor fields R and \widetilde{R} verify the relation:

(1)
$$R(X,Y) = \widetilde{R}(X,Y) + [T_X,T_Y] + T_{\widetilde{\Sigma}(X,Y)}$$

where $\tilde{\Sigma}$ denotes the torsion tensor field of $\tilde{\nabla}$.

Now, we recall that among the eight classes founded by F. Tricerri and L. Vanhecke, the class $\mathcal{T}_1 \oplus \mathcal{T}_2$ is characterized by the condition

where $T(X,Y) = T_X Y$ and $\sum_{X,Y,Z}$ denotes the ciclic sum over X,Y,Z. Furthermore, the class T_2 is characterized by (2) and $c_{12}(T) = 0$, where, by definition, $c_{12}(T)(Z) = \sum_{i=1}^{n} g(T(E_i, E_i), Z)$, with $Z \in \mathcal{H}(M)$ and (E_1, \ldots, E_n) local orthonormal fields. Finally, putting

(3)
$$\xi = \frac{1}{n-1} \sum_{i=1}^{n} T(E_i, E_i)$$

for a structure $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$, we have:

(4)
$$T(X,Y) = g(X,Y)\xi - g(Y,\xi)X + \pi(X,Y),$$

where π is a tensor field of type (1,2).

Since, $\xi = 0$ implies $T \in \mathcal{T}_2$, and $\pi = 0$ implies $T \in \mathcal{T}_1$, [9], we say that $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$ is a proper structure if $\xi \neq 0$ and $\pi \neq 0$.

For such a structure, we denote by ω the foundamental 1-form i.e. the 1-form which is dual of ξ with respect to the metric g.

There exist examples of proper structures $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$ in dimension n = 3, 4, [9, p. 85, 93]. In each case, an easy computation shows that $d\omega = 0$.

In dimension $n \ge 4$, many examples can be obtained, taking:

- a) the direct product of two structures in \mathcal{T}_1 whose 1-form is always closed, as easily follows from Lemma 5.3 in [9]. In the simply-connected case, the underlying Riemannian manifold is a product of two hyperbolic spaces, [9, Th. 5.2].
- b) the direct product of two proper structures of class $\mathcal{T}_1 \oplus \mathcal{T}_2$ with closed foundamental 1-forms;
- c) the direct product of a structure in \mathcal{T}_1 and a structure $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$ having a closed, possibly vanishing, foundamental 1-form.

Namely, consider two manifolds (M_1, g_1) and (M_2, g_2) of dimension $n \geq 2$, $m \geq 2$ and structures T_1 , T_2 respectively. Obviously the product structure T is homogeneous, Riemannian on $(M_1 \times M_2, g_1 \times g_2)$ and $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$, when $T_1, T_2 \in \mathcal{T}_1 \oplus \mathcal{T}_2$.

Now, suppose $T_1 \notin T_2$. Then, we have $\xi = a\xi_1 + b\xi_2$, $\xi_1 \neq 0$, $a = \frac{n-1}{n+m-1} \neq 0$. By a direct computation, we obtain $\pi(X_2, \xi_1) = a\|\xi_1\|^2 X_2$ for any $X_2 \in \mathcal{H}(M_2)$ and then T is proper, since $\xi \neq 0$ and $\pi \neq 0$. Finally, for any Z, orthogonally decomposed as $Z_1 + Z_2$, we have $\omega(Z) = a\omega_1(Z_1) + b\omega_2(Z_2)$ and ω is closed if ω_1 and ω_2 are closed. Now, a), b), c) follow easily.

We do not know any example satisfying $d\omega \neq 0$.

In this paper, we study proper structures of class $\mathcal{T}_1 \oplus \mathcal{T}_2$ with $d\omega = 0$. In the simply-connected case, we prove that the underlying Riemannian manifold (M,g) is foliated by an isoparametric family of (n-1)-dimensional submanifolds carrying a homogeneous structure of class \mathcal{T}_2 . Furthermore, M is the total space of a Riemannian submersion with base \mathbb{R} , the mixed sectional curvatures are non-positive and at least one of them is negative.

We discuss the case of warped products, proving that, in this hy-

pothesis, (M,g) has to be isometric to the hyperbolic space \mathbb{H}^n , $n \geq 6$, of constant negative curvature $K = -\|\xi\|^2$.

Finally, as we will see in the last section, the existence of such a homogeneous structure on \mathbb{H}^n , $n \geq 6$, depends on the existence of a parallel, non-vanishing, homogeneous structure of class \mathcal{T}_2 on \mathbb{R}^{n-1} .

1 - General properties of homogeneous Riemannian structures of class $\mathcal{T}_1 \oplus \mathcal{T}_2$ with closed foundamental 1-form

Let (M,g) be an n-dimensional connected Riemannian manifold equipped with a proper homogeneous structure $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$. Since, in dimension n=2, there exist only structures of class \mathcal{T}_1 , we have to suppose $n \geq 3$. Observe that there exist examples in dimension n=3, [9]. It is also well-known that M is not compact, since $\xi \neq 0$, [10].

From the conditions (2), (3), (4) and (A - S)' iii) it follows that:

$$\widetilde{\nabla}\xi=0\,,\;\widetilde{\nabla}\omega=0\,,\;\widetilde{\nabla}\pi=0\,,\;c_{12}(\pi)=0\,,\;\mathop{\mathfrak{S}}_{X,Y,Z}g(\pi(X,Y),Z)=0\,.$$

Furthermore, it is easy to see that π is neither symmetric nor alternating, and

(5)
$$g(\pi(X,Y),Z) + g(\pi(X,Z),Y) = 0,$$

so that we have $g(\pi(X,\xi),\xi)=0$.

On the other hand, $\tilde{\nabla}\xi = 0$ implies $||\xi|| = c$, c constant. Hence ξ is bounded and complete, [9]. Moreover, ξ is not conformally Killing, [10, th.4.3].

Finally, the torsion tensor of $\tilde{\nabla}$ is given by:

$$\widetilde{\Sigma}(X,Y) = g(Y,\xi)X - g(X,\xi)Y + \pi(Y,X) - \pi(X,Y).$$

LEMMA 1. The following conditions are equivalent.

- a) ω is closed,
- b) $\omega \circ \tilde{\Sigma} = 0$,
- c) $\pi_{\xi} = \pi(\xi, \cdot) = 0.$

From the relation $(d\omega)(X,Y) = (\tilde{\nabla}\omega)(Y,X) - (\tilde{\nabla}\omega)(X,Y) + (\omega \circ \tilde{\Sigma})(X,Y)$, where $d\omega$ is defined without the factor $\frac{1}{2}$, using (5) and $\tilde{\nabla}\xi = 0$, we have

$$(d\omega)(X,Y) = (\omega \circ \widetilde{\Sigma})(X,Y) = g(\pi(Y,X),\xi) - g(\pi(X,Y),\xi) =$$
$$= \underset{Y,X,\xi}{\mathfrak{S}} g(\pi(Y,X),\xi) + g(\pi(\xi,X),Y) = g(\pi(\xi,X),Y)$$

since the ciclic sum vanishes.

Note that $d\omega = 0$ implies:

(6)
$$g(\pi(X,\xi),Y)=g(\pi(Y,\xi),X).$$

From now on, we suppose $d\omega = 0$ and we denote by \mathcal{D} the distribution orthogonal to ξ . Since π_{ξ} vanishes, $\tilde{\nabla}\xi = 0$ implies $\nabla_{\xi}\xi = 0$ so that the integral curves of ξ are geodesics.

PROPOSITION 1.1. Let (M,g) be a Riemannian manifold equipped with a proper homogeneous structure $T \in T_1 \oplus T_2$ such that $d\omega = 0$. Then the distribution $\mathcal D$ orthogonal to ξ is integrable and each integral manifold carries a structure $\overline T \in T_2$.

The integrability of \mathcal{D} follows immediately from the hypothesis $d\omega=0$. Now, let N be a maximal integral manifold of \mathcal{D} . For any $X,Y\in\mathcal{H}(N)$ we have $\widetilde{\nabla}_Xg(Y,\xi)=0$ and $\widetilde{\nabla}g=0$, $\widetilde{\nabla}\xi=0$ imply $g(\widetilde{\nabla}_XY,\xi)=0$ i.e. $\widetilde{\nabla}_XY\in\mathcal{H}(N)$ and so N is autoparallel with respect to $\widetilde{\nabla}$.

Applying the theorem 2.1 and 2.8 in [10], we have that the induced structure \overline{T} on N belongs to the class $T_1 \oplus T_2$ and $\overline{T}(X,Y) = T(X,Y) - \alpha(X,Y)$. Here α is the second foundamental form of N in M, defined by the Gauss equation $\nabla_X Y = \nabla_X' Y + \alpha(X,Y)$ for each $X,Y \in \mathcal{H}(N)$, where ∇' is the Riemannian connection on N. Using the Gauss equation, for any $X,Y \in \mathcal{H}(N)$, we have:

$$\alpha(X,Y) = g(X,Y)\xi + \frac{1}{c^2}g(\pi(X,Y),\xi)\xi, \quad c^2 = ||\xi||^2.$$

It follows:

(7)
$$\overline{T}(X,Y) = \pi(X,Y) - \frac{1}{c^2}g(\pi(X,Y),\xi)\xi.$$

Finally, if (E_1, \ldots, E_{n-1}) is a local orthonormal basis of N, putting $\eta = \frac{\xi}{\|\xi\|}$ we have $\pi(\eta, \eta) = 0$ and for each $Z \in \mathcal{H}(N)$,

$$c_{12}(\overline{T})(Z) = \sum_{i=1}^{n-1} g(\overline{T}(E_i, E_i), Z) =$$

$$= \sum_{i=1}^{n-1} g(\pi(E_i, E_i), Z) = c_{12}(\pi)(Z) = 0.$$

Hence \overline{T} belongs to \mathcal{T}_2 .

REMARK 1. Obviously, it may happen that the structure $\overline{T} \in \mathcal{T}_2$ induced by T on N is trivial. In this case, N is locally symmetric and for any $X,Y \in \mathcal{H}(N)$ we have $T(X,Y) = \alpha(X,Y)$, and $T(X,Y) = g(X,Y)\xi + \pi(X,Y)$, using (4) and $g(Y,\xi) = 0$. As a special case, suppose that n = 3. Then each integral manifold is locally symmetric, since, in dimension $2, \overline{T} \in \mathcal{T}_2$ implies $\overline{T} = 0$.

REMARK 2. Let N be a maximal integral manifold of \mathcal{D} . It is easy to verify that for any $X \in \mathcal{H}(N)$, we have:

(8)
$$\nabla_X \xi = -c^2 X + \pi(X, \xi).$$

Hence, the Weingarten operator determined by the unique normal unit vector field η , is given by:

(9)
$$A_{\eta}X = cX - \pi(X,\eta).$$

Let us denote by B the tensor field of type (1,1) on M defined by

(10)
$$B(X) = \pi(X, \eta) \qquad X \in \mathcal{H}(M).$$

PROPOSITION 1.2. B is diagonizable and trace-free. Furthermore, 0 is one of its eigenvalues.

Using (6), we have $g(B(X),Y)=g(\pi(X,\eta),Y)=g(\pi(Y,\eta),X)=g(X,B(Y))$ for any $X,Y\in\mathcal{H}(M)$, so that B is symmetric with respect to the metric g and it can be diagonalized. Since $B(\eta)=\pi(\eta,\eta)=0$, η is eigenvector with eigenvalue 0. Finally

$$\operatorname{tr}(B) = \sum_{i=1}^{n-1} g(B(E_i), E_i) + g(B(\eta), \eta) = -c_{12}(\pi)(\eta) = 0$$

where (E_1, \ldots, E_{n-1}) is a local orthonormal basis of \mathcal{D} .

REMARK 3. Since $B(\xi) = 0$ and $g(B(X), \xi) = 0$, B induces a tensor field of type (1,1) on every integral manifold of \mathcal{D} . Such a tensor will be denoted with the same letter B.

PROPOSITION 1.3. The eigenvalues of B are constant on M and the integral manifolds are isoparametric hypersurfaces.

The existence of a homogeneous structure on M, implies that M is locally homogeneous. Now, fixed $p, q \in M$, there exist neighboords U of p and V of q and an isometry $\phi \colon U \longrightarrow V$ such that $\phi(p) = q$. ϕ is an affine transformation of $\widetilde{\nabla}$ and we have in $U \colon \phi_{\star}(T(X,Y)) = T(\phi_{\star}(X),\phi_{\star}(Y))$. It follows $\phi_{\star}\xi = \xi$ and $\phi_{\star}(B(X)) = B(\phi_{\star}(X))$.

Now, suppose that X is an eigenvector of B in p with eigenvalue μ . We have:

$$B_q(\phi_{\star p}(X)) = \phi_{\star p}(B_p(X)) = \phi_{\star p}(\mu X) = \mu \phi_{\star p}(X)$$

i.e. $\phi_{\star p}(X)$ is eigenvector of B in q with eigenvalue μ . Hence the eigenvalues of B are constant on M.

Let N be an integral manifold of \mathcal{D} . From (9) we have $A_{\eta}X = cX - B(X)$, and the principal curvatures $\lambda_i = c - \mu_i$, where μ_i is eigenvalue of B, are constant on N and they do not depend on the integral manifold. It follows that the mean curvature of each integral manifold is constant and equal to c.

PROPOSITION 1.4. Let $p \in M$. If Y is an eigenvector of B_p , with eigenvalue μ , and orthogonal to ξ_p , then Y is eigenvector in p with eigenvalue $(\mu - c)^2$ for the curvature operator $R(\eta, \eta)$.

Since $\widetilde{\nabla} \eta = 0$ implies $\widetilde{R}(\eta, Y)\eta = 0$, from (1) we have:

$$R(\eta, Y)\eta = [T_{\eta}, T_Y](\eta) + T_{\widetilde{\Sigma}(\eta, Y)}\eta.$$

Now, $\tilde{\Sigma}(\eta, Y) = T(Y, \eta) - T(\eta, Y)$, $T_{\eta} = \pi_{\eta} = 0$ and (4) give:

$$R(\eta, Y)\eta = T(T(Y, \eta)\eta) = (\mu - c)^2 Y.$$

PROPOSITION 1.5. The Ricci curvature $Ricc(\eta, \eta)$ is a constant negative function on M.

Let N be the maximal integral manifold of \mathcal{D} throught a fixed point $p \in M$ and (E_1, \ldots, E_{n-1}) an orthonormal basis of $T_p(N)$ given by eigenvectors of A_n .

The proposition 1.4 implies:

$$\operatorname{Ricc}(\eta,\eta)(p) = -\sum_{i=1}^{n-1} g(E_i, R(\eta, E_i)\eta) = -\sum_{i=1}^{n-1} (c - \mu_i)^2 \le 0$$

and the equality does not hold, since B is trace-free and $c \neq 0$. Obviously, that means that for any $p \in M$ there is a 2-plane σ_i spanned by (E_i, η) with sectional curvature $K(\sigma_i) < 0$.

As corollaries, we have:

PROPOSITION 1.6. The Euclidean space \mathbb{R}^n does not admit any proper homogeneous Riemannian structure $T \in T_1 \oplus T_2$ with closed foundamental 1-form.

PROPOSITION 1.7. Any manifold (M,g) with sectional curvature $K \geq 0$ does not admit any proper homogeneous Riemannian structure $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$ with closed foundamental 1-form.

Finally, we have the following result:

PROPOSITION 1.8. The following properties hold:

- 1) $\nabla_n T = 0$, $\nabla_n \pi = 0$, $\nabla_n \omega = 0$, $\nabla_n R = 0$.
- 2) $\nabla \omega$ is a 2-covariant symmetric tensor field. Furthermore, if M is simply-connected, then $\omega = df$ and $\nabla \omega$ is the Hessian of f.
- 3) For any $X, Y, Z \in \mathcal{H}(M)$, we have:

$$(\nabla_X \pi)(Y, Z) = [\pi_X, \pi_Y](Z) - \pi_{\pi(X,Y)}Z + g(X, \pi(Y, Z))\xi +$$

$$-g(\pi(Y, Z), \xi)X + g(Y, \xi)\pi(X, Z) - g(X, Z)\pi(Y, \xi) +$$

$$+g(Z, \xi)\pi(Y, X).$$

4) $\nabla_n B = 0$ and $L_n B = 0$, where L denotes the Lie differentiation.

Since $\pi_{\eta}=0$, we have $T_{\eta}=0$ and $\nabla_{\eta}\eta=0$. Then, obviously, $\nabla_{\eta}\omega=0$ and (A-S) iii) implies $\nabla_{\eta}T=0$. Hence $\nabla_{\eta}\pi=\nabla_{\eta}T=0$.

Furthermore, $\nabla_{\eta} R = 0$ follows from (A - S) ii). A direct computation gives 2) and 3). For 4), $\nabla_{\eta} B = 0$ follows from 3). Finally, we have $(L_{\eta} B)(\eta) = 0$ and for each $X \in \mathcal{D}$, $(L_{\eta} B)(X) = [A_{\eta}, B](X) = [cK - B, B](X) = 0$, since $A_{\eta} = cK - B$, where K is the Kronecker tensor field.

The Frobenius theorem implies that M is locally isometric to the product $\mathbb{R} \times N$, where N is a maximal integral manifold of \mathcal{D} , with a suitable metric.

For such a metric, we are giving the local expression.

Consider $p \in N$. By the Frobenius theorem, there exists a neighboord U of p in M, with coordinates $(t, x^1, \ldots, x^{n-1})$ centered at p such that $\xi = \frac{\partial}{\partial t}$ and $\left\{\frac{\partial}{\partial x^i}\right\}_{i=1,\ldots,n-1}$ generate the distribution \mathcal{D} in U. We have, in U:

$$g\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) = \|\xi\|^2 = c^2;$$

$$g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial t}\right) = 0 \quad \text{for } i = 1, \dots, n-1.$$

It follows that

$$g \equiv c^2 dt^2 + \sum_{i,j=1}^{n-1} g_{ij}(t,x) dx^i dx^j$$

where

$$g_{ij}(t,x) = g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right)$$
 for $i,j=1,\ldots,n-1$.

Using (8) and $\tilde{\nabla} \eta = 0$, a direct computation (as in [9, p.52-53]) gives:

$$g'_{ij}(t,x) = rac{\partial}{\partial t}g_{ij}(t,x) = -2c^2g_{ij}(t,x) - 2g\left(\pi\left(rac{\partial}{\partial x^i},rac{\partial}{\partial x^j}
ight),\xi
ight)(t,x).$$

Since

$$g\left(\pi\left(\frac{\partial}{\partial x^i},\frac{\partial}{\partial x^j}\right),\xi\right)=g\left(\pi^r_{ij}\frac{\partial}{\partial x^r}+\pi^0_{ij}\xi,\xi\right)=c^2\pi^0_{ij}\;,$$

we obtain the differential equation $g'_{ij} = -2c^2g_{ij} - 2c^2\pi^0_{ij}$, and so

$$g_{ij}(t,x)e^{2c^2t} = -2c^2\int\limits_0^t \pi^0_{ij}(s,x)e^{2c^2s}ds + h.$$

Now, t = 0 implies $h = g_{ij}(0, x)$ where $g_{ij}(0, x)$ is the metric induced on $U \cap N$, hence

$$g_{ij}(t,x) = e^{-2c^2t}g_{ij}(0,x) - 2c^2e^{-2c^2t}\int_0^t \pi_{ij}^0(s,x)e^{2c^2s}ds.$$

2 - Homogeneous Riemannian structures of class $\mathcal{T}_1 \oplus \mathcal{T}_2$ with $d\omega = 0$ on simply-connected manifolds

Let (M,g) be a connected, simply-connected Riemannian manifold equipped with a proper homogeneous Riemannian structure $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$, with $d\omega = 0$. Obviously, there exists a function $f \colon M \to \mathbb{R}$ such that $\omega = df$ and $\xi = \operatorname{grad} f$. The results of section 1 imply that f is an isoparametric function and the maximal integral manifolds of \mathcal{D} are the

level hypersurfaces of f. Since ξ is nowhere zero, the level hypersurfaces are regular so that there are not focal varieties of f, [7]. The existence of f allows us to consider the manifold (M,g) under two points of view: as a manifold foliated by the level sets of f as well as the total space of a Riemannian submersion.

From the first point of view, the foliation is a Riemannian foliation with bundle-like metric g [8]. It is not harmonic, since its leaves are submanifolds with non-zero constant mean curvature $c = ||\xi||$, by proposition 1.3. Using the theorem 2 in [4], we obtain that the leaves, obviously closed, are simply-connected. Moreover the remark 1 implies that such leaves are symmetric spaces, if M has dimension n=3. On the other hand, the map $f: (M,g) \to (\mathbb{R},g_0)$ with $g_0 = c^{-2}dt^2$, t coordinate in \mathbb{R} , is a Riemannian submersion. Namely, since grad $f=\xi$ is nowhere zero, for any $p \in M$ the tangent map f_* is surjective and then f is a submersion. Its fibres are the level sets of f so that the vertical distribution f coincides with f0, whereas the horizontal distribution f1 is spanned by f2. Furthermore, each fibre is not totally geodesic, since its mean curvature is a non-zero constant. Finally, for any f2 is f3, we have f3, f4, f4, f5, f5, f5, f6, f8. Thus f9 is a Riemannian submersion.

Let Q and A be the two tensor invariants of the Riemannian submersion, both immersed in tensor fields on M, [2]. The invariant A vanishes, since the distribution H is integrable.

The other invariant Q is defined by $Q(X,Y) = H\nabla_{VX}VY + V\nabla_{VX}HY$, for any $X,Y \in \mathcal{H}(M)$. Observe that, for $X,Y \in \mathcal{D}$, we have $Q(X,Y) = H\nabla_X Y$, hence, on each fibre, Q is the second foundamental form.

Since (M,g) is complete, by the theorem of Ehresmann and Hermann, [2, 9.40, 9.42], f is a locally trivial fibration with diffeomorphic fibres. Furthermore, the distribution H is an Ehresmann-connection i.e. Ehresmann-complete with trivial holonomy group Φ_t at $t \in \mathbb{R}$. Namely, Φ_t is the group of all diffeomorphisms of the fibre over t corresponding to closed paths in \mathbb{R} starting at t.

Now, a theorem of J.A. Wolf, [2, 9.48], implies that Φ_t is the structural group of f and, since it reduces to the identity, M is diffeomorphic to the product $\mathbb{R} \times N$ where N is the standard fibre and f is the projection on the first factor. Since A vanishes, M is locally isometric to the product $\mathbb{R} \times N$ with a Riemannian metric $g = g_0 + g_t$ whose value

at $(t,p) \in \mathbb{R} \times N$ is given by $g(t,p) = f^*(g_0(t)) + h^*(g_t(p))$, where h is the projection on the second factor and g_t is the metric induced by g on $N_t = f^{-1}(\{t\})$.

Using the O'Neill formulas for the curvature, we obtain the results of proposition 1.5 and the following one.

PROPOSITION 2.1. The mixed sectional curvatures are non-positive.

Let be $p \in M$, $X \in \mathcal{D}$, ||X|| = 1 and σ the 2-plane generated by η and X at p. Then, we have, [2,9.29b]: $K(\sigma) = g((\nabla_{\eta}Q)_X X, \eta) - ||Q(X, \eta)||^2$. Since $\nabla_{\eta}\pi = 0$ and $g(\pi(X,Y), \eta) = g(\pi(Y,X), \eta)$ (see the proof of Lemma 1), we obtain $K(\sigma) = -||Q(X,\eta)||^2 = -||-cX + \pi(X,\eta)||^2 \le 0$.

Observe that $K(\sigma) = 0$ if and only if $\pi(X, \eta) = cX$. Hence the mixed sectional curvatures at p can not vanish simultaneously, since B is trace-free.

As a special case of Riemannian submersion we can consider the warped product of two manifolds (M_1, g_1) and (M_2, g_2) by means of a positive function $\phi \colon M_1 \to \mathbb{R}$. Therefore, we can ask is a simply-connected Riemannian manifold (M, g) equipped with a proper homogeneous Riemannian structure $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$ such that $d\omega = 0$, can be a warped product.

From [2, 9.104] we already know that a Riemannian submersion is locally a warped product if and only if the invariant A vanishes, the vector field (n-1)H, (H mean curvature vector) is basic and the "trace-free" part Q^0 of the invariant Q, vanishes.

PROPOSITION 2.2. Let (M,g) be an n-dimensional, connected, simply-connected Riemannian manifold with a proper homogeneous structure $T \in T_1 \oplus T_2$ having closed foundamental 1-form. If (M,g) is a warped product, then M is isometric to the hyperbolic space \mathbb{H}^n of constant curvature $-\|\xi\|^2$ and $n \geq 6$.

We already know that A vanishes. Obviously, (n-1)H is basic. Thus, the hypothesis of warped product reduces to the condition $Q^0 = 0$. Since, by definition, we have:

$$\begin{cases} Q^{0}(X,Y) = Q(X,Y) - g(X,Y)H \\ Q^{0}(X,\eta) = Q(X,\eta) + g(H,\eta)X & X,Y \in \mathcal{D} \\ Q^{0}(\eta,X) = 0 \end{cases}$$

the condition $Q^0 = 0$ is equivalent to:

$$\begin{cases} \alpha(X,Y) = g(X,Y)H \\ A_nX = g(H,\eta)X \end{cases}$$

which can be rewritten as

$$\begin{cases} g(\pi(X,Y),\eta) = 0 \\ \pi(X,\eta) = 0 \end{cases}$$

and these conditions reduce to B = 0.

Consequently, the tensor T verifies the relations:

$$\begin{cases} T(X,\xi) = g(X,\xi)\xi - \|\xi\|^2 X \\ T(\xi,X) = 0 \end{cases}$$

for any $X \in \mathcal{H}(M)$. Now, the theorem 6.2 in [10] implies that (M,g) is isometric to the hyperbolic space \mathbb{H}^n with $K = -\|\xi\|^2$. Following the proof of theorem 6.2 in [10] we have that the integral manifolds of \mathcal{D} are flat and isometric to \mathbb{R}^{n-1} . Proposition 1.1 implies that \mathbb{R}^{n-1} has to carry a homogeneous induced structure \overline{T} of class \mathcal{T}_2 . Now, suppose n < 6. Since the classification given in [6] excludes the Euclidean spaces \mathbb{R}^3 and \mathbb{R}^4 , it follows that $\overline{T} = 0$ on \mathbb{R}^{n-1} and so we have:

$$\pi(X,Y) = \frac{1}{c^2} g(\pi(X,Y),\xi) \xi = -g(\pi(X,\eta),Y) \eta = 0$$

for any $X, Y \in \mathcal{D}$.

Since $\pi(X, \eta) = \pi(\eta, X) = 0$, we conclude $\pi = 0$ and $T \in \mathcal{T}_1$, a contradiction.

3 – The hyperbolic space \mathbb{H}^n , $n \geq 6$.

In this section, we discuss the existence of a proper homogeneous Riemannian structure of class $\mathcal{T}_1 \oplus \mathcal{T}_2$ with closed foundamental 1-form, on \mathbb{H}^n , $n \geq 6$.

PROPOSITION 3.1. The hyperbolic space \mathbb{H}^n , $n \geq 6$, admits a proper structure $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$ with $d\omega = 0$ if and only if the Euclidean space \mathbb{R}^{n-1} admits a parallel, non-vanishing, homogeneous structure $\overline{T} \in \mathcal{T}_2$.

Suppose that $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$ is a proper homogeneous Riemannian structure on \mathbb{H}^n , $n \geq 6$, with $d\omega = 0$. Since $\mathbb{H}^n = \mathbb{R} \times_{\mathbf{e}^{2t}} \mathbb{R}^{n-1}$ is a warped product, the proposition 2.2 implies $\pi(X, \eta) = 0$ for any $X \in \mathcal{D}$.

Observe that the same result can be achieved using the results obtained by E.CARTAN, [3]. Namely, putting $\omega=df$, the level hypersurfaces of f give a family of isoparametric hypersurfaces. Furthermore, since \mathbb{H}^n has negative constant curvature K, either the principal curvatures coincide, or there exist two principal curvatures $\lambda \neq \overline{\lambda}$. In the first case, the eigenvalues of $B=\pi(\ ,\eta)$ coincide and vanish, since B is trace-free.

In the last case, the relation $d\lambda_i = (K + \lambda_i^2)dt$, i = 1, ..., n - 1, in [3] and the proposition 1.3 imply $K + \lambda^2 = 0$ and $K + \overline{\lambda}^2 = 0$.

But, since $\lambda \overline{\lambda} + K = 0$, we have $\lambda = \overline{\lambda}$ so that we reduce to the first case.

Now, each integral manifold of the distribution \mathcal{D} orthogonal to ξ is isometric to \mathbb{R}^{n-1} , [10], and by proposition 1.1 the induced structure $\overline{T} \in \mathcal{T}_2$ on \mathbb{R}^{n-1} is given by $\overline{T}(X,Y) = \pi(X,Y)$ for any $X,Y \in \mathcal{D}$. Obviously $\overline{T} \neq 0$, otherwise we have $\pi = 0$ and $T \in \mathcal{T}_1$.

Since IHⁿ has constant negative curvature $K = -\|\xi\|^2$, $T(\xi, \cdot) = 0$ and $T(X, \xi) = -\|\xi\|^2 X$ for any $X \in \mathcal{D}$, the condition (1) implies:

$$\widetilde{R}(X,\xi)Z = -\|\xi\|^2\pi(X,Z)$$
 for any $X,Z\in\mathcal{D}$.

On the other hand $\tilde{R}(X,\xi)\xi=0=-\|\xi\|^2\pi(X,\xi)$ so that we have $\tilde{R}(X,\xi)=-\|\xi\|^2\pi_X$ for any $X\in\mathcal{D}$.

Now, it is easy to verify that $\widetilde{R}(X,\xi) \cdot g = 0$ and $\widetilde{R}(X,\xi) \cdot \widetilde{\Sigma} = 0$ imply $\widetilde{R}(X,\xi) \cdot \pi = 0$ and $\pi_X \cdot \pi = 0$. It follows $[\pi_X, \pi_Y](Z) - \pi_{\pi(X,Y)}Z = [\pi_X, \pi_Z](Y) - \pi_{\pi(X,Z)}Y$ for any $X, Y, Z \in \mathcal{D}$. Since π is a homogeneous structure on \mathbb{R}^{n-1} , using (A-S) $i=2,\ldots,n$.

iii) the above relation becomes $(D_X\pi)_YZ = (D_X\pi)_ZY$ where D is the Levi-Civita connection on \mathbb{R}^{n-1} .

Hence $D_X \pi$ is a symmetric tensor field on \mathbb{R}^{n-1} . By covariant derivation of $\mathfrak{S}_{X,Y,Z} g(\pi(X,Y),Z) = 0$ with respect to an arbitrary $W \in \mathcal{D}$, we have $\mathfrak{S}_{X,Y,Z} g((D_W \pi)(X,Y),Z) = 0$ and the symmetry of $D_W \pi$ together with its skew-symmetry with respect to g, give $D_W \pi = 0$.

Conversely, given a parallel, non-vanishing homogeneous Riemannian structure $\overline{T} \in \mathcal{T}_2$ on \mathbb{R}^{n-1} , $n \geq 6$, we can construct a proper homogeneous Riemannian structure $T \in \mathcal{T}_1 \oplus \mathcal{T}_2$ on \mathbb{H}^n , having $d\omega = 0$.

Let us consider the Poincaré half-space $\mathbb{H}^n = \mathbb{R}_+^* \times \mathbb{R}^{n-1}$, $n \geq 6$, with the metric g given by $ds^2 = r^2(y^1)^{-2} \sum_{j=1}^n (dy^j)^2$, r > 0, and the global orthogonal fields ξ, E_2, \ldots, E_n defined by $\xi = \frac{y^1}{r^2} \frac{\partial}{\partial n^1}$ and $E_i = \frac{y^1}{r^2} \frac{\partial}{\partial n^2}$.

Now, since the dual form of ξ is $\omega = (y^1)^{-1} dy^1$, we have $\xi = \operatorname{grad} f$, with $f: \mathbb{H}^n \to \mathbb{R}$, given by $f(y^1, \ldots, y^n) = \log y^1$. Obviously, the distribution \mathcal{D} orthogonal to ξ is integrable, with maximal integral manifolds isometric to \mathbb{R}^{n-1} and given by $\{a\} \times \mathbb{R}^{n-1}$, $a \in \mathbb{R}_+^*$ Namely, they are the level sets of f with induced metric $g_a = r^2 a^{-2} \sum_{i=2}^n (dy^i)^2$. Let

 $N=\{a\}\times\mathbb{R}^{n-1},\ a>0$ be a fixed maximal integral manifold of $\mathcal D$ and denote by $\overline T$ a parallel, non vanishing homogeneous structure of class T_2 on \mathbb{R}^{n-1} and hence on N. Consider the extension of $\overline T$ to a tensor field π on \mathbb{H}^n defined as follows. Fix $p=(a,y)=(a,y^2,\ldots,y^n)\in\mathbb{R}_+^*\times\mathbb{R}^{n-1}$. Since any vector $X_p\in T_p(\mathbb{R}_+^*\times\mathbb{R}^{n-1})$ can be written as $X_p=\rho\xi_p+\overline{X}_p$ with $\rho\in\mathbb{R}$ and $\overline{X}_p\in T_p(N)$, we define $\pi'_p(X_p,Y_p)=\overline{T}_p(\overline{X}_p,\overline{Y}_p)$ and we denote by π' the tensor field uniquely determined on $\mathbb{R}_+^*\times\mathbb{R}^{n-1}$ by parallel transport of π'_p with respect to the Levi-Civita connection on the flat space $\mathbb{R}_+^*\times\mathbb{R}^{n-1}$. Obviously, we have $\pi'(\xi,X)=0,\ \pi'(X,\xi)=0$ for any vector field X and $\pi'_{N}=\overline{T}$.

Now, put $\pi(X,Y) = \frac{a}{y^1}\pi'(X,Y)$ for any $X,Y \in \mathcal{H}(\mathbb{H}^n)$.

It is easy to verify that $\pi_{|N} = \overline{T}$ and

(11)
$$\pi(\xi, \cdot) = 0, \quad \pi(\cdot, \xi) = 0, \quad g(\pi(X, Y), \xi) = 0$$

for any $X, Y \in \mathcal{H}(\mathbb{H}^n)$.

Finally, for any $X, Y \in \mathcal{H}(\mathbb{H}^n)$ we define

$$T(X,Y) = g(X,Y)\xi - g(Y,\xi)X + \pi(X,Y)$$

and we consider the connection $\tilde{\nabla} = \nabla - T$, where ∇ is the Riemannian connection on \mathbb{H}^n .

Using the construction of π and the condition (2) for \overline{T} , we have

(12)
$$\mathfrak{S}_{X,Y,Z} g(T(X,Y),Z) = \mathfrak{S}_{X,Y,Z} g(\pi(X,Y),Z) = 0.$$

Now, the condition (A - S) i) for T, i.e. $\nabla g = 0$ follows from (11) and the analogous condition for \overline{T} .

Obviously, we have $\tilde{\nabla}R=0$, where R is the Riemannian curvature of \mathbb{H}^n . Finally, to obtain $T\in \mathcal{T}_1\oplus \mathcal{T}_2$ we have to prove that $\tilde{\nabla}T=0$. Since $T_1(X,Y)=g(X,Y)\xi-g(Y,\xi)X$ determines a structure of class \mathcal{T}_1 on \mathbb{H}^n , [9], we have $\nabla_1\xi=0$, where $\nabla_1=\nabla-T_1$.

On the other hand, for any $X \in \mathcal{H}(\mathbb{H}^n)$, $\pi(X,\xi) = 0$ implies

$$\widetilde{\nabla}_X \xi = \nabla_X \xi - T_1(X,\xi) = (\nabla_1)_X \xi = 0.$$

Then, from $\tilde{\nabla}\xi = 0$, $\tilde{\nabla}g = 0$ it follows: $\tilde{\nabla}T = 0 \iff \tilde{\nabla}\pi = 0$. Now, it is easy to see that for any $X, Y \in \mathcal{H}(N)$ we have $\tilde{\nabla}_X Y = \nabla'_X Y - \overline{T}(X, Y)$ where ∇' is the flat Riemannian connection on N.

It follows that $\tilde{\nabla}_{|N}$ is the canonical connection determined by \overline{T} , and, consequently, $\tilde{\nabla}\pi=0$ on N and on any integral manifold of \mathcal{D} , taking account of the definition of π .

A direct computation shows that $\tilde{\nabla}_{\xi} E_i = 0$ for i = 2, ..., n.

Furthermore, since $\tilde{\nabla}\xi = 0$, $\pi(\xi, X) = \pi(X, \xi) = 0$ and

$$\pi_{(y^1,y)}(E_i,E_j) = \sum_{h=2}^n \frac{a}{r} \overline{T}_{ij}^h(a,y) E_h$$

where $\overline{T}_{ij}^h(a,y)$ are constant, we have:

$$\begin{split} &(\widetilde{\nabla}_{\xi}\pi)(E_i,\xi)=0\,,\quad (\widetilde{\nabla}_{\xi}\pi)(E_i,E_j)=0\,,\quad (\widetilde{\nabla}_{E_i}\pi)(\xi,E_j)=0\,,\\ &(\widetilde{\nabla}_{\xi}\pi)(\xi,E_i)=0\,,\quad (\widetilde{\nabla}_{E_i}\pi)(E_j,\xi)=0\,,\text{ so that }\widetilde{\nabla}\pi=0\text{ on }\mathbb{H}^n\;. \end{split}$$

REFERENCES

- W.AMBROSE I.M. SINGER: On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647-663.
- [2] A.BESSE: Einstein Manifolds, Springer Verlag, 1987.
- [3] E. CARTAN: Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Math. 17 (1938), 177-191.
- [4] J.J. HEBDA: Curvature and focal points in Riemannian foliations, Indiana Univ., Math. Journal, 35,2, (1986), 321-331.
- [5] S. KOBAYASHI K. NOMIZU: Foundations of Differential Geometry, Vol. I, II, Interscience, New York, 1969.
- [6] O. KOWALSKI F. TRICERRI: Riemannian manifolds of dimension n ≤ 4 admitting a homogeneous structure of class T₂, Conferenze del Seminario di Matematica, Univ. Bari, 222, (1987).
- [7] QI-MING WANG: Isoparametric functions on Riemannian manifolds, I, Math. Ann. 277 (1987), 639-646.
- [8] P. TONDEUR: Foliations on Riemannian manifolds, Springer Verlag, 1988.
- [9] F. TRICERRI L. VANHECKE: Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Note Series, 83, Cambridge Univ. Press, 1983.
- [10] F. TRICERRI L. VANHECKE: Special homogeneous structures on Riemannian manifolds, Colloquia Math. Soc. J. Bolyai, 64, Topics in Differential Geometry, Debrecen, (1988), 1211-1246.
- [11] F. TRICERRI L. VANHECKE: Two results about homogeneous structures, Bull. U.M.I. (7), 2-A, (1988), 261-267.

Lavoro pervenuto alla redazione il 19 marzo 1990 ed accettato per la pubblicazione il 22 maggio 1990 su parere favorevole di A. Cossu e di S. Marchiafava

INDIRIZZO DEGLI AUTORI:

Anna Maria Pastore - Dipartimento di Matematica - Campus Universitario - Traversa 200 Re David, 4 - 70125 Bari - Italia

Francesca Verroca - Dipartimento di Matematica - Campus Universitario - Traversa 200 Re David, 4 - 70125 Bari - Italia