The Ruscheweyh's Derivative and some Criteria for Univalence in the Unit Disc

M. OBRADOVIĆ - S. OWA

RIASSUNTO – Per una funzione $f(z) = z + a_2 z^2 + \dots$, analitica in |z| < 1, vengono dati alcuni criteri di univalenza mediante derivate di Ruscheweyh: $D^n f(z) = \frac{1}{(1-z)^n+1} * f(z) \text{ ("*" indica il prodotto di Hadamard)}.$

ABSTRACT – For a function $f(z)=z+a_2z^2+\ldots$, analytic in |z|<1, some criteria for univalence in terms on the Ruscheweyh's derivative: $D^n f(z)=\frac{1}{(1-z)^{n+1}}\star f(z)$ ("*" means the Hadamard product) are given.

KEY WORDS - Ruscheweyh's derivative - Univalence.

A.M.S. CLASSIFICATION: 30C45

1 - Introduction and preliminaries

Let A denote the class of functions of the form $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ which are analytic in the unit disc $U = \{z : |z| < 1\}$.

As usual, by $S^*(\alpha)$, $0 \le \alpha < 1$, we denote the class of starlike functions of order α in U, i.e.

$$S^{\star}(\alpha) = \left\{ f \in A \colon \operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha, z \in U \right\}.$$

The class $S^*(0) = S^*$ we call the class of starlike functions.

In [5] RUSCHEWEYH introduced the classes $K_n \subset A$, $n \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$ under the condition

(1)
$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} > \frac{1}{2}, \quad z \in U,$$

where

(2)
$$D^{n} f(z) = \frac{z}{(1-z)^{n+1}} \star f(z)$$

and "*" means the Hadamard product of two analytic functions. He showed that $K_{n+1} \subset K_n \subset K_0 \equiv S^*(1/2)$ holds for $n \in \mathbb{N}_0$. This implies that K_n , $n \in \mathbb{N}_0$, are the subclasses of univalent functions in U.

Let f and g be analytic functions in U. We say that f is subordinate to g, written $f \prec g$, or $f(z) \prec g(z)$, if g is univalent in U, f(0) = g(0) and $f(U) \subset g(U)$.

In the present paper by using the Ruscheweyh's derivative (2) we give some criteria for univalence in U. The similar method was given in [2].

For our results in the second part of this paper we need the next lemmas.

LEMMA A. Let g be a convex univalent in U, g(0) = 1. Let f be analytic in U, F(0) = 1 and let $f \prec g$ in U. Then for all $n \in \mathbb{N}_0$,

$$(n+1)z^{-n-1}\int_{0}^{z}t^{n}f(t)dt \prec (n+1)z^{-n-1}\int_{0}^{z}t^{n}g(t)dt.$$

This lemma in more general form is due to HALLENBECK and RUSCHEWEYH [1].

LEMMA B. [7] Let f and g be analytic functions in U, with f(0) = g(0). If the function h(z) = zg'(z) is starlike and

$$zf'(z) \prec zg'(z)$$
,

then

$$f(z) \prec g(z) = g(0) + \int_0^z \frac{h(t)}{t} dt.$$

LEMMA C. [7] Let μ be a positive measure on [0,1] and let q(z,t) be a complex function on $U \times [0,1]$ such that $q(z,\cdot)$ is μ -integrable on [0,1] for all $z \in U$. Suppose that $\operatorname{Re} q(z,t) > 0$ for $z \in U$, $t \in [0,1]$, q(-r,t) is real and

$$\operatorname{Re}\left\{\frac{1}{q(z,t)}\right\} \geq \frac{1}{q(-r,t)}\,,\quad for\ |z| \leq r < 1\,,\quad t \in [0,1]\,.$$

If

$$q(z) = \int_0^1 q(z,t)d\mu(t),$$

then

$$\operatorname{Re}\left\{\frac{1}{q(z)}\right\} \geq \frac{1}{q(-r)} \quad for \ |z| \leq r.$$

2 - On some criteria for univalence

First we give the following

LEMMA 1. Let p(z) be analytic in U, p(0) = 1, and let $n \in \mathbb{N}_0$, $0 < k \le 1$. If

(3)
$$\frac{1}{n+2}(1+(n+1)p(z)+zp'(z)) \prec 1-kz,$$

then $p(z) \prec 1 - kz$.

PROOF. Since the function $1 - kz(0 < k \le 1)$ is a convex function in U and since

$$(n+1)p(z)+zp'(z)=\frac{(z^{n+1}p(z))'}{z^n}, n \in \mathbb{N}_0,$$

then by applying Lemma A we get

$$(n+1)z^{-n-1}\int_{0}^{z}t^{n}\frac{1}{n+2}\left(1+\frac{(t^{n+1}p(t))'}{t^{n}}\right)dt \prec (n+1)z^{-n-1}\int_{0}^{z}t^{n}(1-kt)dt.$$

From there we easily obtain

$$\frac{1}{n+2} + \frac{n+1}{n+2}p(z) \prec 1 - k\frac{n+1}{n+2}z,$$

i.e.

$$p(z) \prec 1 - kz$$
.

THEOREM 1. Let $f(z) \in A$ and $D^n f(z) \neq 0$ for 0 < |z| < 1, and $n \in \mathbb{N}_0$. If there exists a real number k, $0 < k \le 1$, such that

(4)
$$\left| \frac{D^{n+2} f(z)}{D^{n+1} f(z)} - 1 \right| < k \left| \frac{D^{n+1} f(z)}{D^n f(z)} \right|, \quad z \in U$$

then f(z) is univalent in U and $\frac{D^{n+1}f(z)}{D^nf(z)} \prec \frac{1}{1-kz}$.

PROOF. The condition (4) and $D^n f(z) \neq 0$ for 0 < |z| < 1 implies that $D^{n+1} f(z) \neq 0$ for 0 < |z| < 1. If $p(z) \neq 0$, $z \in U$ in Lemma 1, then the condition (3) can be written in the form

(5)
$$\frac{p(z)}{n+2}\left(\frac{n+1}{p(z)}-(n+1)-\frac{zp'(z)}{p(z)}\right) \prec kz.$$

If we put $p(z) = \frac{D^n f(z)}{D^{n+1} f(z)}$, then we have p(0) = 1 and $p(z) \neq 0$ for 0 < |z| < 1. After taking the logarithmic differentiation and by using identity

(6)
$$z(D^m f(z))' = (m+1)D^{m+1}f(z) - mD^m f(z), \quad m \in \mathbb{N}_0,$$

we get

$$(7) \ \frac{p(z)}{n+2} \left(\frac{n+1}{p(z)} - (n+1) - \frac{zp'(z)}{p(z)} \right) = \frac{D^n f(z)}{D^{n+1} f(z)} \left(\frac{D^{n+2} f(z)}{D^{n+1} f(z)} - 1 \right) .$$

From the condition (4) and the relation (7) we conclude that the condition (5), i.e. (3) is satisfied. Now, by Lemma 1 we have that $p(z) \prec 1 - kz$, which implies $\frac{1}{p(z)} \prec \frac{1}{1 - kz}$, i.e.

$$\frac{D^{n+1}f(z)}{D^nf(z)}\prec\frac{1}{1-kz}.$$

Since $\operatorname{Re}\left\{\frac{1}{1-kz}\right\} > \frac{1}{1+k} \ge \frac{1}{2}$ for $0 < k \le 1$, we obtain $\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^nf(z)}\right\} > \frac{1}{2}$, $z \in U$. By the Ruscheweyh's result this proves that f is univalent in U.

For n=0 in the previous theorem we have.

COROLLARY 1. Let $f \in A$ and $f(z) \neq 0$ for 0 < |z| < 1. If there exists a real number $0 < k \le 1$ such that

$$\left|\frac{zf''(z)}{f'(z)}\right| < 2k \left|\frac{zf'(z)}{f(z)}\right| \,, \quad f \in U \,,$$

then
$$f \in S^*\left(\frac{1}{1+k}\right)$$
 and $\frac{zf'(z)}{f(z)} \prec \frac{1}{1-kz}$.

This is the earlier result due to ROBERTSON [4].

THEOREM 2. Let $f \in A$ and let $D^n f(z) \neq 0$ for 0 < |z| < 1. If there exists a real number k > n + 1, $n \in \mathbb{N}_0$, such that

(8)
$$\left| (n+2) \frac{D^{n+2} f(z)}{D^{n+1} f(z)} - 1 \right| < k \left| \frac{D^{n+1} f(z)}{D^n f(z)} \right|, \quad z \in U,$$

then

(9)
$$\frac{D^n f(z)}{D^{n+1} f(z)} \prec 1 + \frac{(n+1)^2 - k^2}{n+1} \ln \left(1 + \frac{n+1}{k} z \right)$$

(where we take ln 1 = 0).

If, in addition, $n + 1 < k \le \frac{1 + \sqrt{1 + 4(n+1)^2}}{2}$, then

$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} > \alpha(n,k),$$

where

(10)
$$\alpha(n,k) = \left(1 + \frac{(n+1)^2 - k^2}{n+1} \ln \left(1 - \frac{n+1}{k}\right)\right)^{-1}.$$

PROOF. From the condition (8) we have that $D^{n+1}f(z) \neq 0$ for 0 < |z| < 1, hence $p(z) = \frac{D^n f(z)}{D^{n+1} f(z)}$ is analytic in U and $p(z) \neq 0$. Hence, the condition (8) is equivalent to

$$\left| \frac{D^n f(z)}{D^{n+1} f(z)} \left((n+2) \frac{D^{n+2} f(z)}{D^{n+1} f(z)} - 1 \right) \right| < k,$$

or if we use the identity (6),

$$\left|(n+1)-z\left(\frac{D^nf(z)}{D^{n+1}f(z)}\right)'\right|< k,$$

i.e.

$$(11) |n+1-zp'(z)| < k.$$

The previous relation (11) we can write in the form

$$zp'(z) \prec \frac{((n+1)^2 - k^2)z}{k + (n+1)z} \equiv zq'(z),$$

and since zq' is starlike, by Lemma B we have that

(12)
$$p(z) \prec q(z) = 1 + \int_{0}^{z} \frac{(n+1)^{2} - k^{2}}{k + (n+1)z} dz = 1 + \frac{(n+1)^{2} - k^{2}}{n+1} \ln\left(1 + \frac{n+1}{k}z\right),$$

which was to be prove.

Since the function q, given by (12), is convex and q(U) is symmetric with respect to the real axis, we conclude

(13)
$$\operatorname{Re}\left\{\frac{D^n f(z)}{D^{n+1} f(z)}\right\} > 1 + \frac{(n+1)^2 - l^2}{n+1} \ln\left(1 + \frac{n+1}{k}\right), \quad z \in U.$$

For the proof of the second part of this theorem we will use Lemma C. Namely the function q, given by (12), we can write in the form

$$q = \int_{0}^{1} \frac{1 + \frac{(n+1)^{2} - k^{2} + (n+1)t}{k}z}{1 + \frac{n+1}{k}tz} dt =$$

$$= \int_{0}^{1} q(z, t)dt,$$

where

(14)
$$q(z,t) = \frac{1 + \frac{(n+1)^2 - k^2 + (n+1)t}{k}z}{1 + \frac{n+1}{k}tz}$$

Since $-1 \le \frac{(n+1)^2 - k^2 + (n+1)t}{k} \le 1$ for $t \in [0,1]$ and $n+1 < k \le \frac{1 + \sqrt{1 + 4(n+1)^2}}{2} = k_0(n)$ we get $\text{Re}\{q(z,t)\} > 0$ for $z \in U$ and $t \in [0,1]$. Because $\text{Re}\{1/q(z,t)\} > 1/q(-1,t)$, by Lemma C we have

$$\operatorname{Re}\left\{\frac{1}{q(z)}\right\} = \operatorname{Re}\left\{\frac{1}{\int_{0}^{1} q(z,t)dt}\right\} \ge \frac{1}{q(-1)} =$$

$$= \left(1 + \frac{(n+1)^{2} - k^{2}}{n+1}\log\left(1 - \frac{n+1}{k}\right)\right)^{-1}$$

Finally combining this result with the relation (9) already proved, we obtain the statement of Theorem.

Taking n = 0 we have the following.

COROLLARY 2. If $f \in A$, $f(z) \neq 0$ for 0 < |z| < 1 and if there exists k > 1 such that

(15)
$$\left| \frac{zf''(z)}{f'(z)} + 1 \right| < k \left| \frac{zf'(z)}{f(z)} \right|, \quad z \in U,$$

then

$$\frac{f(z)}{zf'(z)} \prec 1 + (1 - k^2) \log \left(1 + \frac{z}{k}\right).$$

Later, if $k_0 = 1.8089...$ is the root of the equation $1+(1-k^2)\ln\left(1+\frac{1}{k}\right) = 0$, then $f(z) \in S^*$ for $1 < k \le k_0$.

Moreover, if $1 < k \le (1 + \sqrt{5})/2 = 1.618...$, then $f(z) \in S^*(\alpha)$, where

$$\alpha = \alpha(0,k) = \left(1 + (1-k^2)\log\left(1 - \frac{1}{k}\right)\right)^{-1}.$$

This is the earlier result given by MOCANU [2].

REMARK 1. Let's put $\beta(k) = \frac{1}{\alpha(n,k)}$, where $\alpha(n,k)$ defined by (10), i.e.

$$\beta(k) = 1 + \frac{(n+1)^2 - k^2}{n+1} \ln \left(1 - \frac{n+1}{k}\right)$$
,

and let consider this function for $n+1 < k \le \frac{1+\sqrt{1+4(n+1)^2}}{2} = k_0(n) < n+2$, and fixed $n \in \mathbb{N}_0$.

Since
$$\beta'(k) = -\frac{2k}{n+1} \ln \left(1 - \frac{n+1}{k} \right) - \frac{n+1}{k} - 1 =$$

$$= 1 + 2 \sum_{m=2}^{\infty} \frac{1}{m+1} \left(\frac{n+1}{k} \right)^m > 0 \text{ for } k > n+1$$

we deduce that $\beta(k)$ is an increasing function in that interval. Also we easily get that $\lim_{k\to n+1+0} \beta(k) = 1$, while

$$\beta(k_0(n)) = 1 - \frac{k_0(n)}{n+1} \ln \left(1 - \frac{n+1}{k_0(n)} \right) =$$

$$= 2 + \frac{1}{2} \frac{n+1}{k_0(n)} + \dots >$$

$$> 1 + \frac{1}{2} \frac{n+1}{n+2} \ge \frac{9}{4} = 2.25$$

(because $k_0(n)$ satisfies the equation $k^2 - (n+1)^2 = k$, and $k_0(n) < n+2$. In that sense, the function $\alpha(n,k) = 1/\beta(k)$ is decreasing function on $n+1 < k \le k_0(n)$ from 1 to $\alpha(n,k_0(n)) = -\frac{1}{\beta(k_0(n))} < 0.44...$

For n=1 in Theorem 2 we have the following criteria for univalence.

COROLLARY 3. Let $f(z) \in A$ for 0 < |z| < 1 and $f'(z) \neq 0$. If there exists a real number k,

$$2 < k \le k_0(1) = \frac{1 + \sqrt{17}}{2} = 2.5615... \text{ such that}$$

$$\left| 3 \frac{D^3 f(z)}{D^2 f(z)} - 1 \right| < k \left| \frac{D^2 f(z)}{D^1 f(z)} \right|, \quad z \in U$$

then

$$\operatorname{Re}\left\{\frac{D^2f(z)}{D^1f(z)}\right\} > \alpha(1,k)$$
,

and f is univalent in U, where

(16)
$$\alpha(1,k) = \left(1 + \frac{4-k^2}{2} \ln\left(1 - \frac{2}{k}\right)\right)^{-1}.$$

PROOF. We only need to prove that f is univalent in U. According to Remark 1 we have that $0.339... = \alpha(1, k_0(1)) \le \alpha(1, k) < 1$. Since $\operatorname{Re}\left\{\frac{D^2 f(z)}{D^1 f(z)}\right\} > \alpha(1, k) \ge 0.339... > \frac{1}{4}$, which implies $\operatorname{Re}\left\{1 + \frac{z f''(z)}{f'(z)}\right\} > -\frac{1}{2}$, we conclude that f is univalent [3].

If we use the result of Ruscheweyh for univalence in the unit disc $\left(\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^nf(z)}\right\} > \frac{1}{2}, z \in U\right)$, from Theorem 2 and Remark 1 we obtain for $n \geq 2$:

COROLLARY 4. Let $f \in A$ and let $D^n f(z) \neq 0$, 0 < |z| < 1. If there exists a real number $n+1 < k \le k_n$, where k_n is the root of the equation

$$\left(1+\frac{(n+1)^2-k^2}{n+1}\log\left(1-\frac{n+1}{k}\right)\right)^{-1}=\frac{1}{2},$$

and if

$$\left| (n+2) \frac{D^{n+2} f(z)}{D^{n+1} f(z)} - 1 \right| < k \left| \frac{D^{n+1} f(z)}{D^n f(z)} \right|, \quad z \in U,$$

then

$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} > \frac{1}{2}, \quad z \in U$$

i.e. f is univalent in U.

REFERENCES

- D.J. HALLENBERK S. RUSCHEWEYH: Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195.
- [2] P.T. MOCANU: On a Theorem of M. Robertson, "Babes-Bolyai" University, Seminar on Geometric Function Theory, Preprint No. 5. (1986), 77-82.
- [3] S. OZAKI: On the theory of multivalent functions, II, Sci. Rep. Tokyo Bunrika Daigaku, 4(1941), 45-87.
- [4] M.S. ROBERTSON: Certain classes of starlike functions, Michigan Math. J. 32 (1985), 135-140.
- [5] S. RUSCHEWEYH: New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
- [6] T.J. SUFFRIDGE: Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970), 775-777.
- [7] D.R. WILKEN J. FENG: A remark on convex and starlike functions, J. London Math. Soc. (2), 21 (1980), 287-290.

Lavoro pervenuto alla redazione il 2 dicembre 1989 ed accettato per la pubblicazione il 6 giugno 1990 su parere favorevole di A. Ossicini e di P.E. Ricci

INDIRIZZO DEGLI AUTORI:

Milutin Obradović - Department of Mathematics - Faculty of Technology and Metallurgy - 4 Karnegieva Street - 11000 Belgrade - Yugoslavia

Shigeyoshi Owa - Department of Mathematics - Kinki University - Higashi-Osaka - Osaka 577 - Japan